1
|
Mirabelli M, Chiefari E, Arcidiacono B, Salatino A, Pascarella A, Morelli M, Credendino SC, Brunetti FS, Di Vito A, Greco A, Huin V, Nicoletti F, Pierantoni GM, Fedele M, Aguglia U, Foti DP, Brunetti A. HMGA1 deficiency: a pathogenic link between tau pathology and insulin resistance. EBioMedicine 2025; 115:105700. [PMID: 40233659 PMCID: PMC12019291 DOI: 10.1016/j.ebiom.2025.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Growing evidence links tau-related neurodegeneration with insulin resistance and type 2 diabetes (T2D), though the underlying mechanisms remain unclear. Our previous research identified HMGA1 as crucial for insulin receptor (INSR) expression, with defects in the HMGA1 gene associated with insulin resistance and T2D. Here, we explore HMGA1 deficiency as a potential contributor to tauopathies, such as Alzheimer's disease (AD), and its connection to insulin resistance. METHODS Immunoblot analyses, protein-DNA interaction studies, ChIP-qPCR, and reporter gene assays were conducted in human and mouse neuronal cell models. Tau immunohistochemistry, behavioural studies, and brain glucose metabolism were analysed in Hmga1-knockout mice. Additionally, a case-control study investigated the relationship between HMGA1 and tau pathology in patients with tauopathy, carrying or not the HMGA1 rs146052672 variant, known to reduce HMGA1 protein levels and increase the risk of insulin resistance and T2D. FINDINGS We show that HMGA1 regulates tau protein expression primarily through the specific repression of MAPT gene transcription. In both human neuronal cells and primary mouse neurons, tau mRNA and protein levels were inversely correlated with HMGA1 expression. This inverse relationship was further confirmed in the brain of Hmga1-knockout mice, where tau was overexpressed, INSR was downregulated, and brain glucose uptake was impaired. Additionally, the rs146052672 variant was more common in patients with tauopathy (12/69, 17.4%) than in controls (10/200, 5.0%) (p = 0.001), and carriers of this variant exhibited more severe disease progression and poorer therapeutic outcomes. INTERPRETATION These findings suggest that HMGA1 deficiency may drive tau pathology, linking tauopathies to insulin resistance and providing new insights into the relationship between metabolic and neurodegenerative disorders. Furthermore, our observation that over 17% of individuals with tauopathy exhibit a deficit in HMGA1 protein production could have significant clinical implications, potentially guiding the development of therapeutic strategies targeting this specific defect. FUNDING See acknowledgements section.
Collapse
Affiliation(s)
- Maria Mirabelli
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Maurizio Morelli
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Sara C Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Adelaide Greco
- Interdepartmental Centre of Veterinary Radiology, University of Naples "Federico II", Naples, Italy
| | - Vincent Huin
- University of Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, UMR-S1172, Team Alzheimer & Tauopathies, F-59000, Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giovanna M Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology, CNR, Naples, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro, Italy.
| |
Collapse
|
2
|
Li H, Jiang RY, Tang YJ, Ling C, Liu F, Xu JJ. Lnc-Pim1 Promotes Neurite Outgrowth and Regeneration of Neuron-Like Cells Following ACR-Induced Neuronal Injury. J Cell Biochem 2025; 126:e30659. [PMID: 39370596 DOI: 10.1002/jcb.30659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Decreased regenerative capacity of central nervous system neurons is the main cause for failure of damaged neuron regeneration and functional recovery. Long noncoding RNAs (lncRNAs) are abundant in mammalian transcriptomes, and many time- and tissue-specific lncRNAs are thought to be closely related to specific biological functions. The promoting effect of Pim-1 gene on neural differentiation and regeneration has been documented, but the effect and mechanism of its neighbor gene Lnc-Pim1 in regulating the response of central neurons to injury remain unclear. RT-PCR in this study demonstrated that the expression of Lnc-Pim1 was upregulated in acrylamide (ACR)-induced neuronal injury. FISH and nucleus-cytoplasmic assay demonstrated that Lnc-Pim1 was mainly expressed in the neuron cytoplasm, with a small amount in the nucleus. Western blot analysis proved that Lnc-Pim1 overexpression induced by the lentivirus vector could promote neurite outgrowth in Neuro-2a cells by activating the Erk1/2 signal pathway, and improve neurite regeneration of injured neurons by upregulating GAP-43 and β-Ⅲ tubulin protein expression. However, silencing Lnc-Pim1 expression by interfering RNA could effectively downregulate the GAP-43 and β-Ⅲ tubulin protein expression, and inhibit neurite growth of neurons. In addition, CHIRP-MS was performed to identify several potential targets of Lnc-Pim1 involved in the regulation of neurite regeneration of injured neurons. In conclusion, our study demonstrated that Lnc-Pim1 is a potential lnc-RNA, playing an important role in regulating central nerve regeneration.
Collapse
Affiliation(s)
- He Li
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Ruo Yu Jiang
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Ya Jie Tang
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Cong Ling
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| | - Jia Jun Xu
- Department of Anatomy, Second Military Medical University, Shanghai, P. R. China
| |
Collapse
|
3
|
Esposito M, Migliaccio A, Credendino SC, Maturi R, Prevete N, De Vita G. KLHL14 is a tumor suppressor downregulated in undifferentiated thyroid cancer. Cell Death Discov 2024; 10:297. [PMID: 38909024 PMCID: PMC11193815 DOI: 10.1038/s41420-024-02063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
KLHL14 is a substrate-binding subunit of Cullin-RING ligase 3 ubiquitin ligase complex, highly enriched in thyroid since early embryonic development, together with its antisense RNA KLHL14-AS. We have previously demonstrated that Klhl14-AS is a competing endogenous RNA regulating several differentiation and survival factors in thyroid cancer, acting as tumor suppressor. Recently, also KLHL14 has been shown to function as tumor suppressor in diffuse large B-cell lymphoma and in malignant mesothelioma. Here we show that KLHL14 expression is strongly reduced in anaplastic thyroid cancer, the less differentiated and most aggressive type of thyroid neoplasia. Such reduction is reproduced in different in vivo and in vitro models of thyroid cancer, being invariably associated with loss of differentiation. When Klhl14 expression is rescued in thyroid transformed cells, it reduces the cell proliferation rate and increase the number of apoptotic cells. On the other side, Klhl14 loss of function in normal thyroid cells affects the expression of several regulatory as well as functional thyroid markers. All these findings suggest that KLHL14 could be considered as a novel tumor suppressor in thyroid cancer, by also revealing its physiological role in the maintenance of a fully differentiated and functional thyroid phenotype.
Collapse
Affiliation(s)
- Matteo Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Antonella Migliaccio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Sara Carmela Credendino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Rufina Maturi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Gabriella De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy.
| |
Collapse
|
4
|
FOXE1 Gene Dosage Affects Thyroid Cancer Histology and Differentiation In Vivo. Int J Mol Sci 2020; 22:ijms22010025. [PMID: 33375029 PMCID: PMC7792778 DOI: 10.3390/ijms22010025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The transcription factor Forkhead box E1 (FOXE1) is a key player in thyroid development and function and has been identified by genome-wide association studies as a susceptibility gene for papillary thyroid cancer. Several cancer-associated polymorphisms fall into gene regulatory regions and are likely to affect FOXE1 expression levels. However, the possibility that changes in FOXE1 expression modulate thyroid cancer development has not been investigated. Here, we describe the effects of FOXE1 gene dosage reduction on cancer phenotype in vivo. Mice heterozygous for FOXE1 null allele (FOXE1+/−) were crossed with a BRAFV600E-inducible cancer model to develop thyroid cancer in either a FOXE1+/+ or FOXE1+/− genetic background. In FOXE1+/+ mice, cancer histological features are quite similar to that of human high-grade papillary thyroid carcinomas, while cancers developed with reduced FOXE1 gene dosage maintain morphological features resembling less malignant thyroid cancers, showing reduced proliferation index and increased apoptosis as well. Such cancers, however, appear severely undifferentiated, indicating that FOXE1 levels affect thyroid differentiation during neoplastic transformation. These results show that FOXE1 dosage exerts pleiotropic effects on thyroid cancer phenotype by affecting histology and regulating key markers of tumor differentiation and progression, thus suggesting the possibility that FOXE1 could behave as lineage-specific oncogene in follicular cell-derived thyroid cancer.
Collapse
|
5
|
RNA-sequencing analysis reveals the potential contribution of lncRNAs in palmitic acid-induced insulin resistance of skeletal muscle cells. Biosci Rep 2020; 40:221488. [PMID: 31833538 PMCID: PMC6944669 DOI: 10.1042/bsr20192523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) has been considered as the common pathological basis and developmental driving force for most metabolic diseases. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators in modulation of glucose and lipid metabolism. However, the comprehensive profile of lncRNAs in skeletal muscle cells under the insulin resistant status and the possible biological effects of them were not fully studied. In this research, using C2C12 myotubes as cell models in vitro, deep RNA-sequencing was performed to profile lncRNAs and mRNAs between palmitic acid-induced IR C2C12 myotubes and control ones. The results revealed that a total of 144 lncRNAs including 70 up-regulated and 74 down-regulated (|fold change| > 2, q < 0.05) were significantly differentially expressed in palmitic acid-induced insulin resistant cells. In addition, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases revealed that the target genes of the differentially expressed lncRNAs were significantly enriched in fatty acid oxidation, lipid oxidation, PPAR signaling pathway, and insulin signaling pathway. Moreover, Via qPCR, most of selected lncRNAs in myotubes and db/db mice skeletal muscle showed the consistent expression trends with RNA-sequencing. Co-expression analysis also explicated the key lncRNA–mRNA interactions and pointed out a potential regulatory network of candidate lncRNA ENSMUST00000160839. In conclusion, the present study extended the skeletal muscle lncRNA database and provided novel potential regulators for future genetic and molecular studies on insulin resistance, which is helpful for prevention and treatment of the related metabolic diseases.
Collapse
|
6
|
Guerriero I, De Angelis MT, D'Angelo F, Leveque R, Savignano E, Roberto L, Lucci V, Mazzone P, Laurino S, Storto G, Nardelli A, Sgambato A, Ceccarelli M, De Felice M, Amendola E, Falco G. Exploring the Molecular Crosstalk between Pancreatic Bud and Mesenchyme in Embryogenesis: Novel Signals Involved. Int J Mol Sci 2019; 20:ijms20194900. [PMID: 31623299 PMCID: PMC6811752 DOI: 10.3390/ijms20194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023] Open
Abstract
Pancreatic organogenesis is a multistep process that requires the cooperation of several signaling pathways. In this context, the role of pancreatic mesenchyme is important to define the epithelium development; nevertheless, the precise space–temporal signaling activation still needs to be clarified. This study reports a dissection of the pancreatic embryogenesis, highlighting the molecular network surrounding the epithelium–mesenchyme interaction. To investigate this crosstalk, pancreatic epithelium and surrounding mesenchyme, at embryonic day 10.5, were collected through laser capture microdissection (LCM) and characterized based on their global gene expression. We performed a bioinformatic analysis to hypothesize crosstalk interactions, validating the most promising genes and verifying the precise localization of their expression in the compartments, by RNA in situ hybridization (ISH). Our analyses pointed out also the c-Met gene, a very well-known factor involved in stimulating motility, morphogenesis, and organ regeneration. We also highlighted the potential crosstalk between Versican (Vcan) and Syndecan4 (Sdc4) since these genes are involved in pancreatic tissue repair, strengthening the concept that the same signaling pathways required during pancreatic embryogenesis are also involved in tissue repair. This finding leads to novel strategies for obtaining functional pancreatic stem cells for cell replacement therapies.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Maria Teresa De Angelis
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Fulvio D'Angelo
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Rita Leveque
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Eleonora Savignano
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Luca Roberto
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
| | - Valeria Lucci
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Pellegrino Mazzone
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| | - Simona Laurino
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Giovanni Storto
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via De Amicis No. 95, 80145 Napoli, Italy.
| | - Alessandro Sgambato
- IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Mario De Felice
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Elena Amendola
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
- Istituto per l'Endocrinologia e l'OncologiaSperimentale "G. Salvatore", CNR, 80131 Napoli, Italy.
| | - Geppino Falco
- Istituto di RicercheGenetiche G. Salvatore, Biogems.c.ar.l, ArianoIrpino, 83031 Avellino, Italy.
- Dipartimento di Biologia, Universita' degliStudi di Napoli, Federico II, 80126 Napoli, Italy.
| |
Collapse
|
7
|
Credendino SC, Bellone ML, Lewin N, Amendola E, Sanges R, Basu S, Sepe R, Decaussin-Petrucci M, Tinto N, Fusco A, De Felice M, De Vita G. A ceRNA Circuitry Involving the Long Noncoding RNA Klhl14-AS, Pax8, and Bcl2 Drives Thyroid Carcinogenesis. Cancer Res 2019; 79:5746-5757. [PMID: 31558562 DOI: 10.1158/0008-5472.can-19-0039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/07/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
Klhl14-AS is a long noncoding RNA expressed since early specification of thyroid bud and is the most enriched gene in the mouse thyroid primordium at E10.5. Here, we studied its involvement in thyroid carcinogenesis by analyzing its expression in cancer tissues and different models of neoplastic transformation. Compared with normal thyroid tissue and cells, Klhl14-AS was significantly downregulated in human thyroid carcinoma tissue specimens, particularly the anaplastic histotype, thyroid cancer cell lines, and rodent models of thyroid cancer. Downregulating the expression of Klhl14-AS in normal thyroid cells decreased the expression of thyroid differentiation markers and cell death and increased cell viability. These effects were mediated by the binding of Klhl14-AS to two miRNAs, Mir182-5p and Mir20a-5p, which silenced Pax8 and Bcl2, both essential players of thyroid differentiation. MIR182-5p and MIR20a-5p were upregulated in human thyroid cancer and thyroid cancer experimental models and their effects on Pax8 and Bcl2 were rescued by Klhl14-AS overexpression, confirming Klhl14-AS as a ceRNA for both Pax8 and Bcl2. This work connects deregulation of differentiation with increased proliferation and survival in thyroid neoplastic cells and highlights a novel ceRNA circuitry involving key regulators of thyroid physiology. SIGNIFICANCE: This study describes a new ceRNA with potential tumor suppression activity and helps us better understand the regulatory mechanisms during thyroid differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Sara C Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria L Bellone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicole Lewin
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Amendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Remo Sanges
- Computational Genomics Laboratory, Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Romina Sepe
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
8
|
Maciel LF, Morales-Vicente DA, Silveira GO, Ribeiro RO, Olberg GGO, Pires DS, Amaral MS, Verjovski-Almeida S. Weighted Gene Co-Expression Analyses Point to Long Non-Coding RNA Hub Genes at Different Schistosoma mansoni Life-Cycle Stages. Front Genet 2019; 10:823. [PMID: 31572441 PMCID: PMC6752179 DOI: 10.3389/fgene.2019.00823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules’ networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.
Collapse
Affiliation(s)
- Lucas F Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - David A Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilbert O Silveira
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Raphael O Ribeiro
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna G O Olberg
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - David S Pires
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Murilo S Amaral
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Kraus P, Sivakamasundari V, Olsen V, Villeneuve V, Hinds A, Lufkin T. Klhl14 Antisense RNA is a Target of Key Skeletogenic Transcription Factors in the Developing Intervertebral Disc. Spine (Phila Pa 1976) 2019; 44:E260-E268. [PMID: 30086079 PMCID: PMC10426336 DOI: 10.1097/brs.0000000000002827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN RNA in situ hybridization (RISH) allows for validation and characterization of the long noncoding (lnc) natural antisense RNA (NAT) Klhl14as in the embryonic murine intervertebral disc (IVD) in the context of loss-of-function mutants for key transcription factors (TFs) in axial skeleton development. OBJECTIVE Validation of Klhl14as in the developing murine IVD. SUMMARY OF BACKGROUND DATA The IVD is a focus of regenerative medicine; however, processes and signaling cascades resulting in the different cell types in a mature IVD still require clarification in most animals including humans. Technological advances increasingly point to implications of lnc NATs in transcription/translation regulation. Transcriptome data generation and analysis identified a protein encoding transcript and related noncoding antisense transcript as downregulated in embryos devoid of key TFs during axial skeleton development. Here, primarily, the antisense transcript is analyzed in this loss-of-function context. METHODS 4930426D05Rik and 6330403N15Rik were identified as Klhl14as and sense, respectively, two transcripts downregulated in the vertebral column of midgestation Pax1 and Pax9 mutant mouse embryos. RISH on wildtype and mutant embryos for the TF encoding genes Pax1/Pax9, Sox5/Sox6/Sox9, and Bapx1 was used to further analyze Klhl14as in the developing IVD. RESULTS Klhl14as and Klhl14 were the top downregulated transcripts in Pax1; Pax9 E12.5 embryos. Our data demonstrate expression of Klhl14as and sense transcripts in the annulus fibrosus (AF) and notochord of the developing IVD. Klhl14as expression in the inner annulus fibrosus (iAF) seems dependent on the TFs Pax1/Pax9, Sox6, Sox9, and Bapx1. CONCLUSION We are the first to suggest a role for the lncRNA Klhl14as in the developing IVD. Our data link Klhl14as to a previously established gene regulatory network during axial skeleton development and contribute further evidence that lnc NATs are involved in crucial gene regulatory networks in eukaryotic cells. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY
| | - V. Sivakamasundari
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | | | - Abbey Hinds
- Department of Biology, Clarkson University, Potsdam, NY
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY
| |
Collapse
|