1
|
Yu J, Ge S, Li J, Zhang Y, Xu J, Wang Y, Liu S, Yu X, Wang Z. Interaction between coronaviruses and the autophagic response. Front Cell Infect Microbiol 2024; 14:1457617. [PMID: 39650836 PMCID: PMC11621220 DOI: 10.3389/fcimb.2024.1457617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the emergence and widespread dissemination of the coronavirus SARS-CoV-2 has posed a significant threat to global public health and social development. In order to safely and effectively prevent and control the spread of coronavirus diseases, a profound understanding of virus-host interactions is paramount. Cellular autophagy, a process that safeguards cells by maintaining cellular homeostasis under diverse stress conditions. Xenophagy, specifically, can selectively degrade intracellular pathogens, such as bacteria, fungi, viruses, and parasites, thus establishing a robust defense mechanism against such intruders. Coronaviruses have the ability to induce autophagy, and they manipulate this pathway to ensure their efficient replication. While progress has been made in elucidating the intricate relationship between coronaviruses and autophagy, a comprehensive summary of how autophagy either benefits or hinders viral replication remains elusive. In this review, we delve into the mechanisms that govern how different coronaviruses regulate autophagy. We also provide an in-depth analysis of virus-host interactions, particularly focusing on the latest data pertaining to SARS-CoV-2. Our aim is to lay a theoretical foundation for the development of novel coronavirus vaccines and the screening of potential drug targets.
Collapse
Affiliation(s)
- Jiarong Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | | | - Jiao Xu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yingli Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shan Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaojing Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Khan A, Ling J, Li J. Is Autophagy a Friend or Foe in SARS-CoV-2 Infection? Viruses 2024; 16:1491. [PMID: 39339967 PMCID: PMC11437447 DOI: 10.3390/v16091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As obligate parasites, viruses need to hijack resources from infected cells to complete their lifecycle. The interaction between the virus and host determines the viral infection process, including viral propagation and the disease's outcome. Understanding the interaction between the virus and host factors is a basis for unraveling the intricate biological processes in the infected cells and thereby developing more efficient and targeted antivirals. Among the various fundamental virus-host interactions, autophagy plays vital and also complicated roles by directly engaging in the viral lifecycle and functioning as an anti- and/or pro-viral factor. Autophagy thus becomes a promising target against virus infection. Since the COVID-19 pandemic, there has been an accumulation of studies aiming to investigate the roles of autophagy in SARS-CoV-2 infection by using different models and from distinct angles, providing valuable information for systematically and comprehensively dissecting the interplay between autophagy and SARS-CoV-2. In this review, we summarize the advancements in the studies of the interaction between SARS-CoV-2 and autophagy, as well as detailed molecular mechanisms. We also update the current knowledge on the pharmacological strategies used to suppress SARS-CoV-2 replication through remodeling autophagy. These extensive studies on SARS-CoV-2 and autophagy can advance our understanding of virus-autophagy interaction and provide insights into developing efficient antiviral therapeutics by regulating autophagy.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
| |
Collapse
|
3
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
5
|
Rahmati S, Moeinafshar A, Rezaei N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J Transl Med 2024; 22:452. [PMID: 38741166 PMCID: PMC11092134 DOI: 10.1186/s12967-024-05267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.
Collapse
Affiliation(s)
- Soheil Rahmati
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wei B, Fu Y, Li X, Chen F, Zhang Y, Chen H, Tong M, Li L, Pan Y, Zhang S, Chen S, Liu X, Zhong Q. ANKFY1 bridges ATG2A-mediated lipid transfer from endosomes to phagophores. Cell Discov 2024; 10:43. [PMID: 38622126 PMCID: PMC11018839 DOI: 10.1038/s41421-024-00659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024] Open
Abstract
Macroautophagy is a process that cells engulf cytosolic materials by autophagosomes and deliver them to lysosomes for degradation. The biogenesis of autophagosomes requires ATG2 as a lipid transfer protein to transport lipids from existing membranes to phagophores. It is generally believed that endoplasmic reticulum is the main source for lipid supply of the forming autophagosomes; whether ATG2 can transfer lipids from other organelles to phagophores remains elusive. In this study, we identified a new ATG2A-binding protein, ANKFY1. Depletion of this endosome-localized protein led to the impaired autophagosome growth and the reduced autophagy flux, which largely phenocopied ATG2A/B depletion. A pool of ANKFY1 co-localized with ATG2A between endosomes and phagophores and depletion of UVRAG, ANKFY1 or ATG2A/B led to reduction of PI3P distribution on phagophores. Purified recombinant ANKFY1 bound to PI3P on membrane through its FYVE domain and enhanced ATG2A-mediated lipid transfer between PI3P-containing liposomes. Therefore, we propose that ANKFY1 recruits ATG2A to PI3P-enriched endosomes and promotes ATG2A-mediated lipid transfer from endosomes to phagophores. This finding implicates a new lipid source for ATG2A-mediated phagophore expansion, where endosomes donate PI3P and other lipids to phagophores via lipid transfer.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanmo Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Avcı CB, Sogutlu F, Pinar Ozates N, Shademan B, Gunduz C. Enhanced Anti-cancer Potency Using a Combination of Oleanolic Acid and Maslinic Acid to Control Treatment Resistance in Breast Cancer. Adv Pharm Bull 2023; 13:611-620. [PMID: 37646060 PMCID: PMC10460813 DOI: 10.34172/apb.2023.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/ mTOR) pathway is a complex intracellular metabolic pathway that leads to cell growth and tumor proliferation and plays a key role in drug resistance in breast cancer. Therefore, the anti-cancer effects of oleanolic acid (OA), maslinic acid (MA), and their combination were investigated to improve the performance of the treatment strategy. Methods We investigated the effect of OA and MA on cell viability using the WST-1 method. The synergistic effect of the combination was analyzed by isobologram analysis. In addition, the effects of the two compounds, individually and in combination, on apoptosis, autophagy, and the cell cycle were investigated in MCF7 cells. In addition, changes in the expression of PI3K/AKT/mTOR genes involved in apoptosis, cell cycle and metabolism were determined by quantitative RT-PCR. Results MA, OA, and a combination of both caused G0/G1 arrest. Apoptosis also increased in all treated groups. The autophagosomal LC3-II formation was induced 1.74-fold in the MA-treated group and 3.25-fold in the MA-OA-treated group. The combination treatment resulted in increased expression of genes such as GSK3B, PTEN, CDKN1B and FOXO3 and decreased expression of IGF1, PRKCB and AKT3 genes. Conclusion The results showed that the combination of these two substances showed the highest synergistic effect at the lowest dose and using MA-OA caused cancer cells to undergo apoptosis. The use of combination drugs may reduce the resistance of cancer cells to treatment.
Collapse
Affiliation(s)
- Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
9
|
Nah J. The Role of Alternative Mitophagy in Heart Disease. Int J Mol Sci 2023; 24:ijms24076362. [PMID: 37047336 PMCID: PMC10094432 DOI: 10.3390/ijms24076362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis through bulk degradation of subcellular constituents, including misfolded proteins and dysfunctional organelles. It is generally governed by the proteins Atg5 and Atg7, which are critical regulators of the conventional autophagy pathway. However, recent studies have identified an alternative Atg5/Atg7-independent pathway, i.e., Ulk1- and Rab9-mediated alternative autophagy. More intensive studies have identified its essential role in stress-induced mitochondrial autophagy, also known as mitophagy. Alternative mitophagy plays pathophysiological roles in heart diseases such as myocardial ischemia and pressure overload. Here, this review discusses the established and emerging mechanisms of alternative autophagy/mitophagy that can be applied in therapeutic interventions for heart disorders.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
10
|
Bahamondes Lorca VA, Wu S. Ultraviolet Light, Unfolded Protein Response and Autophagy †. Photochem Photobiol 2023; 99:498-508. [PMID: 36591940 DOI: 10.1111/php.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
The endoplasmic reticulum (ER) plays an important role in the regulation of protein synthesis. Alterations in the folding capacity of the ER induce stress, which activates three ER sensors that mediate the unfolded protein response (UPR). Components of the pathways regulated by these sensors have been shown to regulate autophagy. The last corresponds to a mechanism of self-eating and recycling important for proper cell maintenance. Ultraviolet radiation (UV) is an external damaging stimulus that is known for inducing oxidative stress, and DNA, lipid and protein damage. Many controversies exist regarding the role of UV-inducing ER stress or autophagy. However, a connection between the three of them has not been addressed. In this review, we will discuss the contradictory theories regarding the relationships between UV radiation with the induction of ER stress and autophagy, as well as hypothetic connections between UV, ER stress and autophagy.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH.,Department of Chemistry and Biochemistry, Ohio University, Athens, OH
| |
Collapse
|
11
|
Zhang J, Li L, Yu J, Zhang F, Shi J, LI M, Liu J, Li H, Gao J, Wu Y. Autophagy-Modulated Biomaterial: A Robust Weapon for Modulating the Wound Environment to Promote Skin Wound Healing. Int J Nanomedicine 2023; 18:2567-2588. [PMID: 37213350 PMCID: PMC10198186 DOI: 10.2147/ijn.s398107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy, a self-renewal mechanism, can help to maintain the stability of the intracellular environment of organisms. Autophagy can also regulate several cellular functions and is strongly related to the onset and progression of several diseases. Wound healing is a biological process that is coregulated by different types of cells. However, it is troublesome owing to prolonged treatment duration and poor recovery. In recent years, biomaterials have been reported to influence the skin wound healing process by finely regulating autophagy. Biomaterials that regulate autophagy in various cells involved in skin wound healing to regulate the differentiation, proliferation and migration of cells, inflammatory responses, oxidative stress and formation of the extracellular matrix (ECM) have emerged as a key method for improving the tissue regeneration ability of biomaterials. During the inflammatory phase, autophagy enhances the clearance of pathogens from the wound site and leads to macrophage polarization from the M1 to the M2 phenotype, thus preventing enhanced inflammation that can lead to further tissue damage. Autophagy plays important roles in facilitating the formation of extracellular matrix (ECM) during the proliferative phase, removing excess intracellular ROS, and promoting the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. This review summarizes the close association between autophagy and skin wound healing and discusses the role of biomaterial-based autophagy in tissue regeneration. The applications of recent biomaterials designed to target autophagy are highlighted, including polymeric materials, cellular materials, metal nanomaterials, and carbon-based materials. A better understanding of biomaterial-regulated autophagy and skin regeneration and the underlying molecular mechanisms may open new possibilities for promoting skin regeneration. Moreover, this can lay the foundation for the development of more effective therapeutic approaches and novel biomaterials for clinical applications.
Collapse
Affiliation(s)
- Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jiayi Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Meiyun LI
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Jie Gao, Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China, Tel/Fax +86 21-31166666, Email
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
- Correspondence: Yan Wu, College of Life Science, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157001, People’s Republic of China, Tel/Fax +86-453-6984647, Email
| |
Collapse
|
12
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
13
|
The unfolded protein response transducer IRE1α promotes reticulophagy in podocytes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166391. [PMID: 35304860 DOI: 10.1016/j.bbadis.2022.166391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.
Collapse
|
14
|
Liang W, Liu H, He J, Ai L, Meng Q, Zhang W, Yu C, Wang H, Liu H. Studies Progression on the Function of Autophagy in Viral Infection. Front Cell Dev Biol 2022; 9:772965. [PMID: 34977022 PMCID: PMC8716779 DOI: 10.3389/fcell.2021.772965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a conservative lysosomal catabolic pathway commonly seen in eukaryotic cells. It breaks down proteins and organelles by forming a two-layer membrane structure of autophagosomes and circulating substances and maintaining homeostasis. Autophagy can play a dual role in viral infection and serve either as a pro-viral factor or an antiviral defense element dependent on the virus replication cycle. Recent studies have suggested the complicated and multidirectional role of autophagy in the process of virus infection. On the one hand, autophagy can orchestrate immunity to curtail infection. On the other hand, some viruses have evolved strategies to evade autophagy degradation, facilitating their replication. In this review, we summarize recent progress of the interaction between autophagy and viral infection. Furthermore, we highlight the link between autophagy and SARS-CoV-2, which is expected to guide the development of effective antiviral treatments against infectious diseases.
Collapse
Affiliation(s)
| | - Huimin Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, China
| | - Qingxue Meng
- Department of Science, Southern University of Science and Technology, Shenzhen, China
| | - Weiwen Zhang
- Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Department of Science, Southern University of Science and Technology, Shenzhen, China.,Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
15
|
How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Autophagy. Int J Mol Sci 2021; 22:ijms222413232. [PMID: 34948027 PMCID: PMC8704322 DOI: 10.3390/ijms222413232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
The cGAS–STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS–STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS–STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS–STING pathway and their consequences. The cGAS–STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS–DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress–mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS–STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.
Collapse
|
16
|
Kallergi E, Nikoletopoulou V. Macroautophagy and normal aging of the nervous system: Lessons from animal models. Cell Stress 2021; 5:146-166. [PMID: 34708187 PMCID: PMC8490955 DOI: 10.15698/cst2021.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.
Collapse
Affiliation(s)
- Emmanouela Kallergi
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
17
|
The Role of Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 in the Pathogenesis of Human Cancer. Int J Mol Sci 2021; 22:ijms222010964. [PMID: 34681622 PMCID: PMC8535862 DOI: 10.3390/ijms222010964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), the mammalian ortholog of yeast vesicular protein sorting 34 (Vps34), belongs to the phosphoinositide 3-kinase (PI3K) family. PIK3C3 can phosphorylate phosphatidylinositol (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), a phospholipid central to autophagy. Inhibition of PIK3C3 successfully inhibits autophagy. Autophagy maintains cell survival when modifications occur in the cellular environment and helps tumor cells resist metabolic stress and cancer treatment. In addition, PIK3C3 could induce oncogenic transformation and enhance tumor cell proliferation, growth, and invasion through mechanisms independent of autophagy. This review addresses the structural and functional features, tissue distribution, and expression pattern of PIK3C3 in a variety of human tumors and highlights the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and cancer therapy are discussed. Altogether, the discovery of pharmacological inhibitors of PIK3C3 could reveal novel strategies for improving treatment outcomes for PIK3C3-mediated human diseases.
Collapse
|
18
|
Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 Is Colocalized and Interacts with Mutant Huntingtin in Huntington Disease Rodent Animal Models. Int J Mol Sci 2021; 22:8914. [PMID: 34445621 PMCID: PMC8396294 DOI: 10.3390/ijms22168914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Judith Stemick
- Department of Molecular Neurology, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Julia Harrer
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joan S. Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| |
Collapse
|
19
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
20
|
Schultheis N, Jiang M, Selleck SB. Putting the brakes on autophagy: The role of heparan sulfate modified proteins in the balance of anabolic and catabolic pathways and intracellular quality control. Matrix Biol 2021; 100-101:173-181. [PMID: 33548399 DOI: 10.1016/j.matbio.2021.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process discovered as a response to nutrient deprivation. It provides the cellular and molecular machinery for catabolism of cellular constituents, generating energy and providing building blocks for continued survival. However, autophagy does much more than provide an entry into catabolic pathways, it provides a mechanism for intracellular quality control, removing damaged organelles and misfolded proteins, processes critical for cellular health. Autophagy serves as a counterpoint to cell growth and anabolic events, activated when growth is not possible or is suppressed. Hence, there is an inherent antagonism between autophagy and growth. Heparan sulfate modified proteins are important co-receptors that generally promote growth factor activity and are therefore positioned within signaling networks that inhibit, or negatively regulate autophagy levels. This review summarizes evidence that heparan sulfate modified proteins provide an evolutionarily conserved inhibitory modulation of autophagy that can have profound effects on cell physiology and organismal responses to stress.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Mei Jiang
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Scott B Selleck
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
21
|
Zhang Y, Sun H, Pei R, Mao B, Zhao Z, Li H, Lin Y, Lu K. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov 2021; 7:31. [PMID: 33947832 PMCID: PMC8096138 DOI: 10.1038/s41421-021-00268-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 pandemic. How SARS-CoV-2 regulates cellular responses to escape clearance by host cells is unknown. Autophagy is an intracellular lysosomal degradation pathway for the clearance of various cargoes, including viruses. Here, we systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes. ORF3a colocalized with lysosomes and interacted with VPS39, a component of the homotypic fusion and protein sorting (HOPS) complex. The ORF3a-VPS39 interaction prohibited the binding of HOPS with RAB7, which prevented the assembly of fusion machinery, leading to the accumulation of unfused autophagosomes. These results indicated the potential mechanism by which SARS-CoV-2 escapes degradation; that is, the virus interferes with autophagosome-lysosome fusion. Furthermore, our findings will facilitate strategies targeting autophagy for conferring potential protection against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hao Sun
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
22
|
Kalugina KK, Sukhareva KS, Churkinа AI, Kostareva AA. Autophagy as a Pathogenetic Link and
a Target for Therapy of Musculoskeletal System Diseases. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
24
|
Alharbi YM, Bima AI, Elsamanoudy AZ. An Overview of the Perspective of Cellular Autophagy: Mechanism, Regulation, and the Role of Autophagy Dysregulation in the Pathogenesis of Diseases. J Microsc Ultrastruct 2021; 9:47-54. [PMID: 34350099 PMCID: PMC8291096 DOI: 10.4103/jmau.jmau_33_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a cellular process that eliminates unnecessary cytoplasmic materials, such as long-age proteins, destroyed organelles, and foreign microorganisms. Macroautophagy (MaA), chaperone-mediated autophagy, and microautophagy are the three main types of autophagy. It is regulated by the integration of signaling from the AMPK and mTOR-ULK1 pathways. Autophagy plays a physiological role in health, and its dysregulation could be a pathophysiologic mechanism in different disease conditions. In the current study, we reviewed papers of Google Scholar database, PubMed, PubMed Central, Cochrane Database of Systematic Reviews, MEDLINE, and MedlinePlus with no time limitation and a recent World Health Organization report. In the current review, it could be concluded that autophagy plays many physiological functions, including immune system modulation, and regulates different cellular processes such as metabolism, protein synthesis, and cellular transportation. Dysregulation of autophagy is implicated in tumorigenesis, aging, age-related neurodegeneration, and endothelial dysfunctions. Autophagy dysregulation is also implicated in the newly discovered CoV-COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Yasser M. Alharbi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Lim SM, Mohamad Hanif EA, Chin SF. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci 2021; 11:56. [PMID: 33743781 PMCID: PMC7981910 DOI: 10.1186/s13578-021-00570-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
Collapse
Affiliation(s)
- Su Min Lim
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, W. Persekutuan, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
28
|
Rigon L, De Filippis C, Napoli B, Tomanin R, Orso G. Exploiting the Potential of Drosophila Models in Lysosomal Storage Disorders: Pathological Mechanisms and Drug Discovery. Biomedicines 2021; 9:biomedicines9030268. [PMID: 33800050 PMCID: PMC8000850 DOI: 10.3390/biomedicines9030268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
Collapse
Affiliation(s)
- Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Correspondence:
| | - Concetta De Filippis
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Barbara Napoli
- Laboratory of Molecular Biology, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Rosella Tomanin
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
29
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
30
|
Deregulation of Lipid Homeostasis: A Fa(c)t in the Development of Metabolic Diseases. Cells 2020; 9:cells9122605. [PMID: 33291746 PMCID: PMC7761975 DOI: 10.3390/cells9122605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Lipids are important molecules for human health. The quantity and quality of fats consumed in the diet have important effects on the modulation of both the natural biosynthesis and degradation of lipids. There is an important number of lipid-failed associated metabolic diseases and an increasing number of studies suggesting that certain types of lipids might be beneficial to the treatment of many metabolic diseases. The aim of the present work is to expose an overview of de novo biosynthesis, storage, and degradation of lipids in mammalian cells, as well as, to review the published data describing the beneficial effects of these processes and the potential of some dietary lipids to improve metabolic diseases.
Collapse
|
31
|
Almeida C, Amaral MD. A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cell Mol Life Sci 2020; 77:4729-4745. [PMID: 32313974 PMCID: PMC11104799 DOI: 10.1007/s00018-020-03523-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Early eukaryotic cells emerged from the compartmentalization of metabolic processes into specific organelles through the development of an endomembrane system (ES), a precursor of the endoplasmic reticulum (ER), which was essential for their survival. Recently, substantial evidence emerged on how organelles communicate among themselves and with the plasma membrane (PM) through contact sites (CSs). From these studies, the ER-the largest single structure in eukaryotic cells-emerges as a central player communicating with all organelles to coordinate cell functions and respond to external stimuli to maintain cellular homeostasis. Herein we review the functional insights into the ER-CSs with other organelles in a physiological perspective. We hypothesize that, in addition to the primitive role by the ES in the appearance of proto-eukaryotes, its successor-the ER-emerges as the key coordinator of inter-organelle/PM communication. The ER thus appears to be the 'maestro' driving eukaryotic cell evolution by incorporating new functions/organelles, while remaining the real coordinator overarching cellular functions and orchestrating them with the external milieu.
Collapse
Affiliation(s)
- Celso Almeida
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| | - Margarida D Amaral
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| |
Collapse
|
32
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
33
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
34
|
Pradel B, Robert-Hebmann V, Espert L. Regulation of Innate Immune Responses by Autophagy: A Goldmine for Viruses. Front Immunol 2020; 11:578038. [PMID: 33123162 PMCID: PMC7573147 DOI: 10.3389/fimmu.2020.578038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway for intracellular components and is highly conserved across eukaryotes. This process is a key player in innate immunity and its activation has anti-microbial effects by directly targeting pathogens and also by regulating innate immune responses. Autophagy dysfunction is often associated with inflammatory diseases. Many studies have shown that it can also play a role in the control of innate immunity by preventing exacerbated inflammation and its harmful effects toward the host. The arms race between hosts and pathogens has led some viruses to evolve strategies that enable them to benefit from autophagy, either by directly hijacking the autophagy pathway for their life cycle, or by using its regulatory functions in innate immunity. The control of viral replication and spread involves the production of anti-viral cytokines. Controlling the signals that lead to production of these cytokines is a perfect way for viruses to escape from innate immune responses and establish successful infection. Published reports related to this last viral strategy have extensively grown in recent years. In this review we describe several links between autophagy and regulation of innate immune responses and we provide an overview of how viruses exploit these links for their own benefit.
Collapse
Affiliation(s)
- Baptiste Pradel
- IRIM, University of Montpellier, CNRS UMR 9004, Montpellier, France
| | | | - Lucile Espert
- IRIM, University of Montpellier, CNRS UMR 9004, Montpellier, France
| |
Collapse
|
35
|
Moss JJ, Hammond CL, Lane JD. Zebrafish as a model to study autophagy and its role in skeletal development and disease. Histochem Cell Biol 2020; 154:549-564. [PMID: 32915267 PMCID: PMC7609422 DOI: 10.1007/s00418-020-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
In the last twenty years, research using zebrafish as a model organism has increased immensely. With the many advantages that zebrafish offer such as high fecundity, optical transparency, ex vivo development, and genetic tractability, they are well suited to studying developmental processes and the effect of genetic mutations. More recently, zebrafish models have been used to study autophagy. This important protein degradation pathway is needed for cell and tissue homeostasis in a variety of contexts. Correspondingly, its dysregulation has been implicated in multiple diseases including skeletal disorders. In this review, we explore how zebrafish are being used to study autophagy in the context of skeletal development and disease, and the ways these areas are intersecting to help identify potential therapeutic targets for skeletal disorders.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Jon D Lane
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
36
|
Reggio A, Buonomo V, Grumati P. Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 2020; 396:112276. [PMID: 32918896 PMCID: PMC7480532 DOI: 10.1016/j.yexcr.2020.112276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
| |
Collapse
|
37
|
Abstract
Autosis is an autophagy-dependent, nonapoptotic, and non-necrotic form of cell death that is characterized by unique morphological and biochemical features, including the presence of ballooning of perinuclear space (PNS) and sensitivity to cardiac glycosides, respectively. Autotic cell death may be initiated by excessive accumulation of autophagosomes rather than lysosomal degradation. Autosis is stimulated during the late phase of reperfusion after a period of ischemia in the heart when up-regulation of rubicon in the presence of continuous autophagosome production induces massive accumulation of autophagosomes. Suppression of autosis, which may reduce death of cardiomyocytes during the late phase of reperfusion, in combination with inhibition of apoptosis and necrosis targeting the early phase of injury, may enhance the effectiveness of treatment for I/R injury in the heart.
Excessive autophagy induces a defined form of cell death called autosis, which is characterized by unique morphological features, including ballooning of perinuclear space and biochemical features, including sensitivity to cardiac glycosides. Autosis is observed during the late phase of reperfusion after a period of ischemia and contributes to myocardial injury. This review discusses unique features of autosis, the involvement of autosis in myocardial injury, and the molecular mechanism of autosis. Because autosis promotes myocardial injury under some conditions, a better understanding of autosis may lead to development of novel interventions to protect the heart against myocardial stress.
Collapse
Key Words
- ATG, autophagy-related
- ATPase, adenosine triphosphatase
- ER, endoplasmic reticulum
- HIV, human immunodeficiency virus
- I/R, ischemia-reperfusion
- LBR, lamin B receptor
- Na+,K+–adenosine triphosphatase
- PI3K, phosphatidylinositol 3 kinase
- PNS, perinuclear space
- Tat, transactivation of transcription
- autophagic cell death
- autophagic flux
- autosis
- beclin 1
- rubicon
Collapse
|
38
|
Al-Bari MAA. A current view of molecular dissection in autophagy machinery. J Physiol Biochem 2020; 76:357-372. [PMID: 32451934 DOI: 10.1007/s13105-020-00746-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved lysosomal pathway for catabolism of intracellular material in eukaryotic cells. Autophagy is also an essential homeostatic process through which intracellular components are recycled for reuse or energy production. The extremely regulated autophagy process begins with the formation of hallmarked double membrane bound organelles called autophagosomes which in turn fuse with lysosomes called autolysosomes and finally degrade the autophagic cargos. The multistages molecular machinery of autophagy is critically orchestrated by the action of a set of the autophagy proteins (Atg) and a supreme regulator, mTOR (mechanistic target of rapamycin). However, individual stages of autophagy are mechanistically complex and partially understood. In this review, the individual stages of autophagy are dissected, and the corresponding molecular regulation is discussed in view of current scientific knowledge of autophagy. This understanding of sequential events of autophagy machinery through this review may lead to great interest in the therapeutic potential for manipulating of autophagy in established diseases.
Collapse
|
39
|
Ochaba J, Powers AF, Tremble KA, Greenlee S, Post NM, Matson JE, MacLeod AR, Guo S, Aghajan M. A novel and translational role for autophagy in antisense oligonucleotide trafficking and activity. Nucleic Acids Res 2020; 47:11284-11303. [PMID: 31612951 PMCID: PMC6868497 DOI: 10.1093/nar/gkz901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.
Collapse
Affiliation(s)
- Joseph Ochaba
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | | | | | - Noah M Post
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - John E Matson
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | |
Collapse
|
40
|
Condello M, Mancini G, Meschini S. The Exploitation of Liposomes in the Inhibition of Autophagy to Defeat Drug Resistance. Front Pharmacol 2020; 11:787. [PMID: 32547395 PMCID: PMC7272661 DOI: 10.3389/fphar.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a mechanism involved in many human diseases and in cancers can have a cytotoxic/cytostatic or protective action, being in the latter case involved in multidrug resistance. Understanding which of these roles autophagy has in cancer is thus fundamental for therapeutical decisions because it permits to optimize the therapeutical approach by activating or inhibiting autophagy according to the progression of the disease. However, a serious drawback of cancer treatment is often the scarce availability of drugs and autophagy modulators at the sites of interest. In the recent years, several nanocarriers have been developed and investigated to improve the solubility, bioavailability, controlled release of therapeutics and increase their cytotoxic effect on cancer cell. Here we have reviewed only liposomes as carriers of chemotherapeutics and autophagy inhibitors because they have low toxicity and immunogenicity and they are biodegradable and versatile. In this review after the analysis of the dual role of autophagy, of the main autophagic pathways, and of the role of autophagy in multidrug resistance, we will focus on the most effective liposomal formulations, thus highlighting the great potential of these targeting systems to defeat cancer diseases.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Giovanna Mancini
- Institute for Biological Systems, National Research Council, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
41
|
El-Gowily AH, Abosheasha MA. Differential mechanisms of autophagy in cancer stem cells: Emphasizing gastrointestinal cancers. Cell Biochem Funct 2020; 39:162-173. [PMID: 32468609 DOI: 10.1002/cbf.3552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) cancers are one of the most common forms of malignancies and still are the most important cause of cancer-related mortality worldwide. Autophagy is a conserved catabolic pathway involving lysosomal degradation and recycling of whole cellular components, which is essential for cellular homeostasis. For instance, it acts as a pivotal intracellular quality control and repair mechanism but also implicated in cell reformation during cell differentiation and development. Indeed, GI cancer stem cells (CSCs) are thought to be responsible for tumour initiation, traditional therapies resistance, metastasis and tumour recurrence. Molecular mechanisms of autophagy in normal vs CSCs gain great interest worldwide. Here, we shed light on the role of autophagy in normal stem cells differentiation for embryonic progression and its role in maintaining the activity and self-renewal capacity of CSCs which offer novel viewpoints on promising cancer therapeutic strategies based on the differential roles of autophagy in CSCs.
Collapse
Affiliation(s)
- Afnan H El-Gowily
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.,Organ and Cell physiology Department, Juntendo University, Tokyo, Japan
| | - Mohammed A Abosheasha
- Cellular Genetics Laboratory, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
42
|
Quinet G, Gonzalez-Santamarta M, Louche C, Rodriguez MS. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy. Molecules 2020; 25:E2352. [PMID: 32443527 PMCID: PMC7288101 DOI: 10.3390/molecules25102352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Protein degradation is tightly regulated inside cells because of its utmost importance for protein homeostasis (proteostasis). The two major intracellular proteolytic pathways are the ubiquitin-proteasome and the autophagy-lysosome systems which ensure the fate of proteins when modified by various members of the ubiquitin family. These pathways are tightly interconnected by receptors and cofactors that recognize distinct chain architectures to connect with either the proteasome or autophagy under distinct physiologic and pathologic situations. The degradation of proteasome by autophagy, known as proteaphagy, plays an important role in this crosstalk since it favours the activity of autophagy in the absence of fully active proteasomes. Recently described in several biological models, proteaphagy appears to help the cell to survive when proteostasis is broken by the absence of nutrients or the excess of proteins accumulated under various stress conditions. Emerging evidence indicates that proteaphagy could be permanently activated in some types of cancer or when chemoresistance is observed in patients.
Collapse
Affiliation(s)
| | | | | | - Manuel S. Rodriguez
- ITAV-CNRS USR 3505 IPBS-UPS, 1 Place Pierre Potier, 31106 Toulouse, France; (G.Q.); (M.G.-S.); (C.L.)
| |
Collapse
|
43
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular. Int J Mol Sci 2020; 21:ijms21072576. [PMID: 32276321 PMCID: PMC7178086 DOI: 10.3390/ijms21072576] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Beyond the consolidated role in degrading and recycling cellular waste, the autophagic- and endo-lysosomal systems play a crucial role in extracellular release pathways. Lysosomal exocytosis is a process leading to the secretion of lysosomal content upon lysosome fusion with plasma membrane and is an important mechanism of cellular clearance, necessary to maintain cell fitness. Exosomes are a class of extracellular vesicles originating from the inward budding of the membrane of late endosomes, which may not fuse with lysosomes but be released extracellularly upon exocytosis. In addition to garbage disposal tools, they are now considered a cell-to-cell communication mechanism. Autophagy is a cellular process leading to sequestration of cytosolic cargoes for their degradation within lysosomes. However, the autophagic machinery is also involved in unconventional protein secretion and autophagy-dependent secretion, which are fundamental mechanisms for toxic protein disposal, immune signalling and pathogen surveillance. These cellular processes underline the crosstalk between the autophagic and the endosomal system and indicate an intersection between degradative and secretory functions. Further, they suggest that the molecular mechanisms underlying fusion, either with lysosomes or plasma membrane, are key determinants to maintain cell homeostasis upon stressing stimuli. When they fail, the accumulation of undigested substrates leads to pathological consequences, as indicated by the involvement of autophagic and lysosomal alteration in human diseases, namely lysosomal storage disorders, age-related neurodegenerative diseases and cancer. In this paper, we reviewed the current knowledge on the functional role of extracellular release pathways involving lysosomes and the autophagic- and endo-lysosomal systems, evaluating their implication in health and disease.
Collapse
|
45
|
Zachari M, Ktistakis NT. Mammalian Mitophagosome Formation: A Focus on the Early Signals and Steps. Front Cell Dev Biol 2020; 8:171. [PMID: 32258042 PMCID: PMC7093328 DOI: 10.3389/fcell.2020.00171] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022] Open
Abstract
Mitophagy, a conserved intracellular process by which mitochondria are eliminated via the autophagic machinery, is a quality control mechanism which facilitates maintenance of a functional mitochondrial network and cell homeostasis, making it a key process in development and longevity. Mitophagy has been linked to multiple human disorders, especially neurodegenerative diseases where the long-lived neurons are relying on clearance of old/damaged mitochondria to survive. During the past decade, the availability of novel tools to study mitophagy both in vitro and in vivo has significantly advanced our understanding of the molecular mechanisms governing this fundamental process in normal physiology and in various disease models. We here give an overview of the known mitophagy pathways and how they are induced, with a particular emphasis on the early events governing mitophagosome formation.
Collapse
Affiliation(s)
- Maria Zachari
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
46
|
Bellusci L, Runfola M, Carnicelli V, Sestito S, Fulceri F, Santucci F, Lenzi P, Fornai F, Rapposelli S, Origlia N, Zucchi R, Chiellini G. Endogenous 3-Iodothyronamine (T1AM) and Synthetic Thyronamine-like Analog SG-2 Act as Novel Pleiotropic Neuroprotective Agents Through the Modulation of SIRT6. Molecules 2020; 25:molecules25051054. [PMID: 32110992 PMCID: PMC7179148 DOI: 10.3390/molecules25051054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
3-iodothyronamine (T1AM) and the recently developed analog SG-2 are rapidly emerging as promising multi-target neuroprotective ligands able to reprogram lipid metabolism and to produce memory enhancement in mice. To elucidate the molecular mechanisms underlying the multi-target effects of these novel drug candidates, here we investigated whether the modulation of SIRT6, known to play a key role in reprogramming energy metabolism, might also drive the activation of clearing pathways, such as autophagy and ubiquitine-proteasome (UP), as further mechanisms against neurodegeneration. We show that both T1AM and SG-2 increase autophagy in U87MG cells by inducing the expression of SIRT6, which suppresses Akt activity thus leading to mTOR inhibition. This effect was concomitant with down-regulation of autophagy-related genes, including Hif1α, p53 and mTOR. Remarkably, when mTOR was inhibited a concomitant activation of autophagy and UP took place in U87MG cells. Since both compounds activate autophagy, which is known to sustain long term potentiation (LTP) in the entorhinal cortex (EC) and counteracting AD pathology, further electrophysiological studies were carried out in a transgenic mouse model of AD. We found that SG-2 was able to rescue LTP with an efficacy comparable to T1AM, further underlying its potential as a novel pleiotropic agent for neurodegenerative disorders treatment.
Collapse
Affiliation(s)
- Lorenza Bellusci
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (L.B.); (V.C.); (S.S.); (R.Z.)
| | - Massimiliano Runfola
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.R.); (S.R.)
| | - Vittoria Carnicelli
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (L.B.); (V.C.); (S.S.); (R.Z.)
| | - Simona Sestito
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (L.B.); (V.C.); (S.S.); (R.Z.)
| | - Federica Fulceri
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy;
| | | | - Paola Lenzi
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (F.F.)
| | - Francesco Fornai
- Unit of Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (F.F.)
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Simona Rapposelli
- Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (M.R.); (S.R.)
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, 56124 Pisa, Italy;
| | - Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (L.B.); (V.C.); (S.S.); (R.Z.)
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (L.B.); (V.C.); (S.S.); (R.Z.)
- Correspondence: ; Tel.: +39-050-221-86-62
| |
Collapse
|
47
|
Ganesan D, Ramaian Santhaseela A, Rajasekaran S, Selvam S, Jayavelu T. Astroglial biotin deprivation under endoplasmic reticulum stress uncouples BCAA‐mTORC1 role in lipid synthesis to prolong autophagy inhibition in the aging brain. J Neurochem 2020; 154:562-575. [DOI: 10.1111/jnc.14979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
|
48
|
Cao Z, Wang Y, Long Z, He G. Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1087-1095. [PMID: 31609412 DOI: 10.1093/abbs/gmz098] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy, a metabolic pathway that plays an important role in maintaining the dynamic balance of cells, has two types, i.e. non-selective autophagy and selective autophagy. The role of non-selective autophagy is primarily to allow cells to circulate nutrients in an energy-limited environment, while selective autophagy primarily cleans up the organelles inside the cells to maintain the cell structure. The NLRP3 inflammasome is an innate immune response produced by the organism that can promote the secretion of interleukin-1β and interleukin-18 through caspase-1 activation and resist the damage of some pathogens. However, when the NLRP3 inflammasome is overactivated, it can cause various inflammatory diseases, such as inflammatory liver disease and inflammatory bowel disease. Many previous studies have shown that autophagy can inhibit the NLRP3 inflammasome, while in recent years, new studies have found that autophagy can also promote the NLRP3 inflammasome in some cases, and the NLRP3 inflammasome can, in turn, affect autophagy. In this review, the interaction between autophagy and the NLRP3 inflammasome is explored, and then the application of this interaction in disease treatment is discussed.
Collapse
Affiliation(s)
- Zhenrui Cao
- Chongqing Key Laboratory of Neurobiology, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Wang
- Chongqing Key Laboratory of Neurobiology, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Zhimin Long
- Chongqing Key Laboratory of Neurobiology, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
49
|
Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A. A Cleaning Crew: The Pursuit of Autophagy in Parkinson's Disease. ACS Chem Neurosci 2019; 10:3914-3926. [PMID: 31385687 DOI: 10.1021/acschemneuro.9b00244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder, neuropathologically characterized by the aggregation of misfolded α-synuclein (α-syn) protein, which appears to be central to the onset and progression of PD pathology. Evidence from pioneering studies has highly advocated the existence of impaired autophagy pathways in the brains of PD patients. Autophagy is an evolutionarily conserved, homeostatic mechanism for minimizing abnormal protein aggregates and facilitating organelle turnover. Any aberration in constitutive autophagy activity results in the aggregation of misfolded α-syn, which, in turn, may further inhibit their own degradation-leading to a vicious cycle of neuronal death. Despite the plethora of available literature, there are still lacunas existing in our understanding of the exact cellular interplay between autophagy impairment and α-syn accumulation-mediated neurotoxicity. In this context, clearance of aggregated α-syn via up-regulation of the autophagy-lysosomal pathway could provide a pharmacologically viable approach to the treatment of PD. The present Review highlights the basics of autophagy and detrimental cross-talk between α-syn and chaperone-mediated autophagy, and α-syn and macroautophagy. It also depicts the interaction between α-syn and novel targets, LRRK2 and mTOR, followed by the role of autophagy in PD from a therapeutic perspective. More importantly, it further updates the reader's understanding of various newer therapeutic avenues that may accomplish disease modification via promoting clearance of toxic α-syn through activation of autophagy.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Anagha Gadepalli
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Abhishekh Shahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| |
Collapse
|
50
|
Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K. Autophagy, cancer and angiogenesis: where is the link? Cell Biosci 2019; 9:65. [PMID: 31428311 PMCID: PMC6693242 DOI: 10.1186/s13578-019-0327-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background Autophagy is a catabolic process for degradation of intracellular components. Damaged proteins and organelles are engulfed in double-membrane vesicles ultimately fused with lysosomes. These vesicles, known as phagophores, develop to form autophagosomes. Encapsulated components are degraded after autophagosomes and lysosomes are fused. Autophagy clears denatured proteins and damaged organelles to produce macromolecules further reused by cells. This process is vital to cell homeostasis under both physiologic and pathologic conditions. Main body While the role of autophagy in cancer is quite controversial, the majority of studies introduce it as an anti-tumorigenesis mechanism. There are evidences confirming this role of autophagy in cancer. Mutations and monoallelic deletions have been demonstrated in autophagy-related genes correlating with cancer promotion. Another pathway through which autophagy suppresses tumorigenesis is cell cycle. On the other hand, under hypoxia and starvation condition, tumors use angiogenesis to provide nutrients. Also, autophagy flux is highlighted in vessel cell biology and vasoactive substances secretion from endothelial cells. The matrix proteoglycans such as Decorin and Perlecan could also interfere with angiogenesis and autophagy signaling pathway in endothelial cells (ECs). It seems that the connection between autophagy and angiogenesis in the tumor microenvironment is very important in determining the fate of cancer cells. Conclusion Matrix glycoproteins can regulate autophagy and angiogenesis linkage in tumor microenvironment. Also, finding details of how autophagy and angiogenesis correlate in cancer will help adopt more effective therapeutic approaches.
Collapse
Affiliation(s)
- Bahareh Kardideh
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Zahra Samimi
- 1Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Norooznezhad
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Sarah Kiani
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran
| | - Kamran Mansouri
- 2Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6714967346 Iran.,3Molecular Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|