1
|
Gerini G, Mari E, Pontecorvi P, Camero S, Romano E, Ranieri D, Megiorni F, Fioramonti P, Angeloni A, Marchese C, Ceccarelli S. 3D culturing as a promising strategy to enhance the angiogenic potential of adipose stem cell-derived secretome: insights into the role of miR-145-5p/ANGPT2 axis. Stem Cell Res Ther 2025; 16:153. [PMID: 40155988 PMCID: PMC11951674 DOI: 10.1186/s13287-025-04277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, mostly due to the paracrine activity of their secretome, exerting pro-angiogenic, antinflammatory and immunosuppressive effects. Recently, 3D culturing models has been shown to significantly influence the intrinsic characteristics of these cells, their gene expression and the secretome's composition, thus affecting ASC paracrine effects and clinical potential. This study aims to investigate the feasibility of exploiting 3D culturing as a tool to improve ASC secretome therapeutic efficacy. METHODS ASCs were cultured in monolayers via conventional two-dimensional (2D) methods or induced to form 3D spheroids by seeding them on 96-well ultra-low attachment (ULA) plates. The phenotypical characterization of 3D-ASCs was performed through immunofluorescence analyses. The composition and angiogenic potential of 3D-ASC-derived secretome was assessed by means of protein array and functional tube formation assay, respectively. We analyzed the expression profile of 92 angiogenesis-related genes in 2D versus 3D cultures through a qRT-PCR array, and GO term enrichment analysis followed by network analysis was applied to identify the top hub genes. The expression of specific angiomiRs in 3D-ASCs and their secretome was assessed by qRT-PCR. The role of miR-145-5p was investigated through transfection with specific mimics/anti-miR. RESULTS 3D-ASCs showed increased stemness, cell-cell and cell-ECM interactions with respect to 2D-cultured cells. 3D culturing increased the secretion of cytokines involved in the promotion of angiogenesis, resulting in improved angiogenic effects on HUVEC cells. Mechanistically, qRT-PCR array data indicated downregulation of angiopoietin-2 (ANGPT2) as a key factor in the 3D-ASC-secretome-induced angiogenesis. In addition, ANGPT2 was recognized as a predicted target of miR-145-5p, one of the angiomiRs found upregulated in 3D-ASCs. Depletion of miR-145-5p significantly altered ASC secretome angiogenic potential and ANGPT2 expression on HUVEC cells. CONCLUSIONS All these findings corroborate our hypothesis that 3D culturing is able to positively modulate ASC gene expression and secretome composition in terms of pro-angiogenic potential. Indeed, our study contributes to shed light on the role of the miR-145-5p/ANGPT2 axis in this process, opening the way to innovative potentiation strategies to implement secretome-based therapies, with broad clinical applications.
Collapse
Affiliation(s)
- G Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - E Mari
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - P Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Camero
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - E Romano
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Ranieri
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - F Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - P Fioramonti
- Unit of Plastic Surgery "P. Valdoni", Department of Surgery "P. Valdoni", Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - C Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
2
|
Gerini G, Traversa A, Cece F, Cassandri M, Pontecorvi P, Camero S, Nannini G, Romano E, Marampon F, Venneri MA, Ceccarelli S, Angeloni A, Amedei A, Marchese C, Megiorni F. Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment. Cells 2025; 14:135. [PMID: 39851564 PMCID: PMC11763738 DOI: 10.3390/cells14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration.
Collapse
Affiliation(s)
- Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Alice Traversa
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Matteo Cassandri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy; (A.T.); (S.C.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.N.); (A.A.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.G.); (F.C.); (M.C.); (P.P.); (M.A.V.); (S.C.); (A.A.); (C.M.)
| |
Collapse
|
3
|
Cai Z, Yang Y, Zhong J, Ji Y, Li T, Luo J, Hu S, Luo H, Wu Y, Liu F, Zhang J. cGAS suppresses β-cell proliferation by a STING-independent but CEBPβ-dependent mechanism. Metabolism 2024; 157:155933. [PMID: 38729601 DOI: 10.1016/j.metabol.2024.155933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
AIMS/HYPOTHESIS cGAS (cyclic GMP-AMP synthase) has been implicated in various cellular processes, but its role in β-cell proliferation and diabetes is not fully understood. This study investigates the impact of cGAS on β-cell proliferation, particularly in the context of diabetes. METHODS Utilizing mouse models, including cGAS and STING (stimulator of interferon genes) knockout mice, we explored the role of cGAS in β-cell function. This involved β-cell-specific cGAS knockout (cGASβKO) mice, created by breeding cGAS floxed mice with transgenic mice expressing Cre recombinase under the insulin II promoter. We analyzed cGAS expression in diabetic mouse models, evaluated the effects of cGAS deficiency on glucose tolerance, and investigated the molecular mechanisms underlying these effects through RNA sequencing. RESULTS cGAS expression is upregulated in the islets of diabetic mice and by high glucose treatment in MIN6 cells. Both global cGAS deficiency and β-cell-specific cGAS knockout mice lead to improved glucose tolerance by promoting β-cell mass. Interestingly, STING knockout did not affect pancreatic β-cell mass, suggesting a STING-independent mechanism for cGAS's role in β-cells. Further analyses revealed that cGAS- but not STING-deficiency leads to reduced expression of CEBPβ, a known suppressor of β-cell proliferation, concurrently with increased β-cell proliferation. Moreover, overexpression of CEBPβ reverses the upregulation of Cyclin D1 and D2 induced by cGAS deficiency, thereby regulating β-cell proliferation. These results confirm that cGAS regulation of β-cell proliferation via a CEBPβ-dependent but STING-independent mechanism. CONCLUSIONS/INTERPRETATION Our findings highlight the pivotal role of cGAS in promoting β-cell proliferation and maintaining glucose homeostasis, potentially by regulating CEBPβ expression in a STING-independent manner. This study uncovers the significance of cGAS in controlling β-cell mass and identifies a potential therapeutic target for enhancing β-cell proliferation in the treatment of diabetes.
Collapse
Affiliation(s)
- Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Li
- Departments of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Luo
- Departments of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shanbiao Hu
- Departments of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Shahin H, Belcastro L, Das J, Perdiki Grigoriadi M, Saager RB, Steinvall I, Sjöberg F, Olofsson P, Elmasry M, El-Serafi AT. MicroRNA-155 mediates multiple gene regulations pertinent to the role of human adipose-derived mesenchymal stem cells in skin regeneration. Front Bioeng Biotechnol 2024; 12:1328504. [PMID: 38562669 PMCID: PMC10982420 DOI: 10.3389/fbioe.2024.1328504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The role of Adipose-derived mesenchymal stem cells (AD-MSCs) in skin wound healing remains to be fully characterized. This study aims to evaluate the regenerative potential of autologous AD-MSCs in a non-healing porcine wound model, in addition to elucidate key miRNA-mediated epigenetic regulations that underlie the regenerative potential of AD-MSCs in wounds. Methods: The regenerative potential of autologous AD-MSCs was evaluated in porcine model using histopathology and spatial frequency domain imaging. Then, the correlations between miRNAs and proteins of AD-MSCs were evaluated using an integration analysis in primary human AD-MSCs in comparison to primary human keratinocytes. Transfection study of AD-MSCs was conducted to validate the bioinformatics data. Results: Autologous porcine AD-MSCs improved wound epithelialization and skin properties in comparison to control wounds. We identified 26 proteins upregulated in human AD-MSCs, including growth and angiogenic factors, chemokines and inflammatory cytokines. Pathway enrichment analysis highlighted cell signalling-associated pathways and immunomodulatory pathways. miRNA-target modelling revealed regulations related to genes encoding for 16 upregulated proteins. miR-155-5p was predicted to regulate Fibroblast growth factor 2 and 7, C-C motif chemokine ligand 2 and Vascular cell adhesion molecule 1. Transfecting human AD-MSCs cell line with anti-miR-155 showed transient gene silencing of the four proteins at 24 h post-transfection. Discussion: This study proposes a positive miR-155-mediated gene regulation of key factors involved in wound healing. The study represents a promising approach for miRNA-based and cell-free regenerative treatment for difficult-to-heal wounds. The therapeutic potential of miR-155 and its identified targets should be further explored in-vivo.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, October City, Cairo, Egypt
| | - Luigi Belcastro
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics Unit, Core Facility (KEF), Faculty of Medicine and Health Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Rolf B. Saager
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Pia Olofsson
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| |
Collapse
|
5
|
Rodrigues EM, Giovanini AF, Ribas CAPM, Malafaia O, Roesler R, Isolan GR. The Nervous System Development Regulator Neuropilin-1 as a Potential Prognostic Marker and Therapeutic Target in Brain Cancer. Cancers (Basel) 2023; 15:4922. [PMID: 37894289 PMCID: PMC10605093 DOI: 10.3390/cancers15204922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropilins are transmembrane glycoproteins that regulate developmental processes in the nervous system and other tissues. Overexpression of neuropilin-1 (NRP1) occurs in many solid tumor types and, in several instances, may predict patient outcome in terms of overall survival. Experimental inhibition of NRP1 activity can display antitumor effects in different cancer models. Here, we review NRP1 expression and function in adult and pediatric brain cancers, particularly glioblastomas (GBMs) and medulloblastomas, and present analyses of NRP1 transcript levels and their association with patient survival in GBMs. The case of NRP1 highlights the potential of regulators of neurodevelopment as biomarkers and therapeutic targets in brain cancer.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | | | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
6
|
Yu Y, Uchida-Fukuhara Y, Weng Y, He Y, Ikegame M, Wang Z, Yoshida K, Okamura H, Qiu L. Neuropilin 1 (NRP1) Positively Regulates Adipogenic Differentiation in C3H10T1/2 Cells. Int J Mol Sci 2023; 24:ijms24087394. [PMID: 37108554 PMCID: PMC10138427 DOI: 10.3390/ijms24087394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for several ligands, is highly expressed in many kinds of mesenchymal stem cells (MSCs), but its function is poorly understood. In this study, we explored the roles of full-length NRP1 and glycosaminoglycan (GAG)-modifiable NRP1 in adipogenesis in C3H10T1/2 cells. The expression of full-length NRP1 and GAG-modifiable NRP1 increased during adipogenic differentiation in C3H10T1/2 cells. NRP1 knockdown repressed adipogenesis while decreasing the levels of Akt and ERK1/2 phosphorylation. Moreover, the scaffold protein JIP4 was involved in adipogenesis in C3H10T1/2 cells by interacting with NRP1. Furthermore, overexpression of non-GAG-modifiable NRP1 mutant (S612A) greatly promoted adipogenic differentiation, accompanied by upregulation of the phosphorylated Akt and ERK1/2. Taken together, these results indicate that NRP1 is a key regulator that promotes adipogenesis in C3H10T1/2 cells by interacting with JIP4 and activating the Akt and ERK1/2 pathway. Non-GAG-modifiable NRP1 mutant (S612A) accelerates the process of adipogenic differentiation, suggesting that GAG glycosylation is a negative post-translational modification of NRP1 in adipogenic differentiation.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yuhan He
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Lihong Qiu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| |
Collapse
|
7
|
Tang Y, Hu S, Li T, Qiu X. Tumor cells-derived exosomal circVCP promoted the progression of colorectal cancer by regulating macrophage M1/M2 polarization. Gene 2023; 870:147413. [PMID: 37028610 DOI: 10.1016/j.gene.2023.147413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most frequent tumors of the digestive tract and the second leading cause of cancer death worldwide. Tumor-associated macrophages (TAMs) are one of the most critical immune cells in the tumor microenvironment, which closely interact with tumor cells to promote tumor incidence and progression. However, the precise mechanism of action between CRC cells and TAMs polarization is still being investigated. METHODS Transmission electronic microscopy (TEM), NanoSight and western blotting were used to characterize exosomes (Exo) isolated from the culture medium of CRC cells. The cellular uptake and internalization of Exo were detected by confocal laser scanning microscopy. M1/ M2 phenotype markers expression were examined by ELISA and flow cytometry. Cell migration, invasion and proliferation were determined by transwell and CCK-8 assay, respectively. A xenograft tumor model was established to explore the role of circVCP in vivo. The target genes of circVCP or miR-9-5p were predicted by StarBase2.0. The target association among miR-9-5p and circVCP or NRP1 was confirmed using the luciferase assay and RNA-pull down assay. RESULTS circVCP was highly accumulated in exosomes derived from plasma of CRC patients and CRC cells. Additionally, exosomal circVCP derived from CRC cells promoted cell proliferation, migration and invasion by regulating the miR-9-5p/NRP1 axis, and induced macrophage M2 polarization and inhibited macrophage M1 polarization. CONCLUSIONS Over-expressed exosomal circVCP promoted the progression of CRC by regulating macrophage M1/M2 polarization through miR-9-5p/NRP1 axis. CircVCP may be a diagnostic biomarker and potential target for CRC therapy.
Collapse
|
8
|
Hasegawa M, Taniguchi J, Ueda H, Watanabe M. Twin Study: Genetic and Epigenetic Factors Affecting Circulating Adiponectin Levels. J Clin Endocrinol Metab 2022; 108:144-154. [PMID: 36082629 DOI: 10.1210/clinem/dgac532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clarification of the association among phenotypes, genetic, and environmental factors with clinical laboratory traits can reveal the cause of diseases and assist in developing methods for the prediction and prevention of diseases. It is difficult to investigate the environmental effect on phenotypes using individual samples because their genetic and environmental factors differ, but we can easily investigate the influence of environmental factors using monozygotic (MZ) twins because they have the same genetic factors. OBJECTIVE We aimed to examine the methylation level of CpG sites as an environmental factor affecting adiponectin levels on the basis of the same genetic background using MZ twins and to identify the epigenetic factors related to adiponectin levels and the genetic factors associated with sensitivity to acquired changes in adiponectin. METHODS Using 2 groups built from each twin of 232 MZ twin pairs, we performed a replicated epigenome-wide association study to clarify the epigenetic factors affecting adiponectin levels adjusted by genetic risk score. Moreover, we divided twin pairs into concordant and discordant for adiponectin levels. We conducted a genome-wide association study to identify a genetic background specific for discordance. RESULTS Methylation levels at 38 CpG sites were reproducibly associated with adjusted adiponectin levels, and some of these CpG sites were in genes related to adiponectin, including CDH13. Some genes related to adiponectin or insulin resistance were found to be genetic factors specific for discordance. CONCLUSION We clarified specific epigenetic factors affecting adiponectin levels and genetic factors associated with sensitivity to acquired changes in adiponectin.
Collapse
Affiliation(s)
- Mika Hasegawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jumpei Taniguchi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Amidzadeh Z, Yasami‐Khiabani S, Rahimi H, Bonakdar S, Shams D, Habibi‐Anbouhi M, Golkar M, Shokrgozar MA. Enhancement of keratinocyte growth factor potential in inducing adipose‐derived stem cells differentiation into keratinocytes by collagen‐targeting. J Cell Mol Med 2022; 26:5929-5942. [DOI: 10.1111/jcmm.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Zahra Amidzadeh
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
- Department of Parasitology Pasteur Institute of Iran Tehran Iran
| | | | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center Pasteur Institute of Iran Tehran Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| | - Davoud Shams
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| | | | - Majid Golkar
- Department of Parasitology Pasteur Institute of Iran Tehran Iran
| | | |
Collapse
|
10
|
Ceccarelli S, Gerini G, Megiorni F, Pontecorvi P, Messina E, Camero S, Anastasiadou E, Romano E, Onesti MG, Napoli C, Marchese C. Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation: Focus on the role of Akt/mTOR and Wnt/β-catenin pathways on adipogenesis. Front Cell Dev Biol 2022; 10:926180. [PMID: 36120582 PMCID: PMC9478209 DOI: 10.3389/fcell.2022.926180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/β-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches.
Collapse
Affiliation(s)
- S. Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: S. Ceccarelli ,
| | - G. Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F. Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - P. Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S. Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - E. Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Romano
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - M. G. Onesti
- Department of Surgery “P. Valdoni”, Unit of Plastic Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - C. Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - C. Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Ogata H, Mori M, Jingushi Y, Matsuzaki H, Katahira K, Ishimatsu A, Enokizu-Ogawa A, Taguchi K, Moriwaki A, Yoshida M. Impact of visceral fat on the prognosis of coronavirus disease 2019: an observational cohort study. BMC Infect Dis 2021; 21:1240. [PMID: 34893021 PMCID: PMC8660963 DOI: 10.1186/s12879-021-06958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background Clarification of the risk factors for coronavirus disease 2019 (COVID-19) severity is strongly warranted for global health. Recent studies have indicated that elevated body mass index (BMI) is associated with unfavorable progression of COVID-19. This is assumed to be due to excessive deposition of visceral adipose tissue (VAT); however, the evidence investigating the association between intra-abdominal fat and COVID-19 prognosis is sparse. We therefore investigated whether measuring the amount of intra-abdominal fat is useful to predict the prognosis of COVID-19. Methods The present study enrolled 53 consecutive cases of COVID-19 patients aged ≥ 20 years with chest computed tomography (CT) scans. The VAT area, total adipose tissue (TAT) area, and VAT/TAT ratio were estimated using axial CT images at the level of the upper pole of the right kidney. Severe COVID-19 was defined as death or acute respiratory failure demanding oxygen at ≥ 6 L per minute, a high-flow nasal cannula, or mechanical ventilation. The association of VAT/TAT with the incidence of progression to a severe state was estimated as a hazard ratio (HR) using Cox regression analysis. To compare the prediction ability for COVID-19 disease progression between BMI and VAT/TAT, the area under the receiver operating characteristic curve (AUC) of each was assessed. Results A total of 15 cases (28.3% of the whole study subjects) progressed to severe stages. The incidence of developing severe COVID-19 increased significantly with VAT/TAT (HR per 1% increase = 1.040 (95% CI 1.008–1.074), P = 0.01). After adjustment for potential confounders, the positive association of VAT/TAT with COVID-19 aggravation remained significant (multivariable-adjusted HR = 1.055 (95% CI 1.000–1.112) per 1% increase, P = 0.049). The predictive ability of VAT/TAT for COVID-19 becoming severe was significantly better than that of BMI (AUC of 0.73 for VAT/TAT and 0.50 for BMI; P = 0.0495 for the difference). Conclusions A higher ratio of VAT/TAT was an independent risk factor for disease progression among COVID-19 patients. VAT/TAT was superior to BMI in predicting COVID-19 morbidity. COVID-19 patients with high VAT/TAT levels should be carefully observed as high-risk individuals for morbidity and mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06958-z.
Collapse
Affiliation(s)
- Hiroaki Ogata
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan.
| | - Masahiro Mori
- Department of Radiology, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Yujiro Jingushi
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Hiroshi Matsuzaki
- Department of Pediatrics, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Katsuyuki Katahira
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Akiko Ishimatsu
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Aimi Enokizu-Ogawa
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Kazuhito Taguchi
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Atsushi Moriwaki
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| | - Makoto Yoshida
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, 4-39-1 Yakatabaru, Minami-ku, Fukuoka, 811-1394, Japan
| |
Collapse
|
12
|
MiR-200c-3p maintains stemness and proliferative potential in adipose-derived stem cells by counteracting senescence mechanisms. PLoS One 2021; 16:e0257070. [PMID: 34534238 PMCID: PMC8448302 DOI: 10.1371/journal.pone.0257070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are promising therapeutic tools in regenerative medicine because they possess self-renewal, differentiation and immunomodulatory capacities. After isolation, ASCs are passaged multiple times in vitro passages to obtain a sufficient amount of cells for clinical applications. During this time-consuming procedure, ASCs become senescent and less proliferative, compromising their clinical efficacy. Here, we sought to investigate how in vitro passages impact ASC proliferation/senescence and expression of immune regulatory proteins. MicroRNAs are pivotal regulators of ASC physiology. Particularly, miR-200c is known to maintain pluripotency and targets the immune checkpoint Programmed death-ligand 1 (PD-L1). We therefore investigated its involvement in these critical characteristics of ASCs during in vitro passages. We found that when transiently expressed, miR-200c-3p promotes proliferation, maintains stemness, and contrasts senescence in late passaged ASCs. Additionally, this miRNA modulates PD-L1 and Indoleamine 2,3-Dioxygenase (IDO1) expression, thus most likely interfering with the immunoregulatory capacity of ASCs. Based on our results, we suggest that expression of miR-200c-3p may prime ASC towards a self-renewing phenotype by improving their in vitro expansion. Contrarily, its inhibition is associated with senescence, reduced proliferation and induction of immune regulators. Our data underline the potential use of miR-200c-3p as a switch for ASCs reprogramming and their clinical application.
Collapse
|
13
|
Dong Y, Ma WM, Shi ZD, Zhang ZG, Zhou JH, Li Y, Zhang SQ, Pang K, Li BB, Zhang WD, Fan T, Zhu GY, Xue L, Li R, Liu Y, Hao L, Han CH. Role of NRP1 in Bladder Cancer Pathogenesis and Progression. Front Oncol 2021; 11:685980. [PMID: 34249735 PMCID: PMC8261128 DOI: 10.3389/fonc.2021.685980] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023] Open
Abstract
Bladder urothelial carcinoma (BC) is a fatal invasive malignancy and the most common malignancy of the urinary system. In the current study, we investigated the function and mechanisms of Neuropilin-1 (NRP1), the co-receptor for vascular endothelial growth factor, in BC pathogenesis and progression. The expression of NRP1 was evaluated using data extracted from GEO and HPA databases and examined in BC cell lines. The effect on proliferation, apoptosis, angiogenesis, migration, and invasion of BC cells were validated after NRP1 knockdown. After identifying differentially expressed genes (DEGs) induced by NRP1 silencing, GO/KEGG and IPA® bioinformatics analyses were performed and specific predicted pathways and targets were confirmed in vitro. Additionally, the co-expressed genes and ceRNA network were predicted using data downloaded from CCLE and TCGA databases, respectively. High expression of NRP1 was observed in BC tissues and cells. NRP1 knockdown promoted apoptosis and suppressed proliferation, angiogenesis, migration, and invasion of BC cells. Additionally, after NRP1 silencing the activity of MAPK signaling and molecular mechanisms of cancer pathways were predicted by KEGG and IPA® pathway analysis and validated using western blot in BC cells. NRP1 knockdown also affected various biological functions, including antiviral response, immune response, cell cycle, proliferation and migration of cells, and neovascularisation. Furthermore, the main upstream molecule of the DEGs induced by NRP1 knockdown may be NUPR1, and NRP1 was also the downstream target of NUPR1 and essential for regulation of FOXP3 expression to activate neovascularisation. DCBLD2 was positively regulated by NRP1, and PPAR signaling was significantly associated with low NRP1 expression. We also found that NRP1 was a predicted target of miR-204, miR-143, miR-145, and miR-195 in BC development. Our data provide evidence for the biological function and molecular aetiology of NRP1 in BC and for the first time demonstrated an association between NRP1 and NUPR1, FOXP3, and DCBLD2. Specifically, downregulation of NRP1 contributes to BC progression, which is associated with activation of MAPK signaling and molecular mechanisms involved in cancer pathways. Therefore, NRP1 may serve as a target for new therapeutic strategies to treat BC and other cancers.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhi-Guo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jia-He Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Shao-Qi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Bi-Bo Li
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Guang-Yuan Zhu
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Liang Xue
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Ying Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China.,College of Life Sciences, Jiangsu Normal University, Xuzhou, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Pontecorvi P, Megiorni F, Camero S, Ceccarelli S, Bernardini L, Capalbo A, Anastasiadou E, Gerini G, Messina E, Perniola G, Benedetti Panici P, Grammatico P, Pizzuti A, Marchese C. Altered Expression of Candidate Genes in Mayer-Rokitansky-Küster-Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. BIOLOGY 2021; 10:biology10060450. [PMID: 34063745 PMCID: PMC8223793 DOI: 10.3390/biology10060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University of Rome-San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152 Rome, Italy;
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Correspondence: ; Tel.: +39-06-4997-2872
| |
Collapse
|
15
|
Demeulemeester F, de Punder K, van Heijningen M, van Doesburg F. Obesity as a Risk Factor for Severe COVID-19 and Complications: A Review. Cells 2021; 10:933. [PMID: 33920604 PMCID: PMC8073853 DOI: 10.3390/cells10040933] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.
Collapse
|
16
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol 2020; 8:236. [PMID: 32363193 PMCID: PMC7180192 DOI: 10.3389/fcell.2020.00236] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Pepin ME, Infante T, Benincasa G, Schiano C, Miceli M, Ceccarelli S, Megiorni F, Anastasiadou E, Della Valle G, Fatone G, Faenza M, Docimo L, Nicoletti GF, Marchese C, Wende AR, Napoli C. Differential DNA Methylation Encodes Proliferation and Senescence Programs in Human Adipose-Derived Mesenchymal Stem Cells. Front Genet 2020; 11:346. [PMID: 32351540 PMCID: PMC7174643 DOI: 10.3389/fgene.2020.00346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 11/28/2022] Open
Abstract
Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5′-azacitidine (5′-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified “phagocytosis,” “type 2 diabetes,” and “metabolic pathways” as disproportionately hypomethylated, whereas “adipocyte differentiation” was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs.
Collapse
Affiliation(s)
- Mark E Pepin
- Department of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Concetta Schiano
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Gerardo Fatone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Mario Faenza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ludovico Docimo
- Clinical Department of Internal Medicine and Specialistics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni F Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Adam R Wende
- Department of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Claudio Napoli
- IRCCS SDN, Naples, Italy.,Clinical Department of Internal Medicine and Specialistics, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
19
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
20
|
MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:3. [PMID: 31898520 PMCID: PMC6939329 DOI: 10.1186/s13046-019-1490-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. METHODS Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons' correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. RESULTS We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. CONCLUSIONS These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.
Collapse
|
21
|
van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, Banton MC, Tandon P, Hendricks AE, Keogh JM, Riley SE, Papadia S, Henning E, Bounds R, Bochukova EG, Mistry V, O'Rahilly S, Simerly RB, Minchin JEN, Barroso I, Jones EY, Bouret SG, Farooqi IS. Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. Cell 2019; 176:729-742.e18. [PMID: 30661757 PMCID: PMC6370916 DOI: 10.1016/j.cell.2018.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/28/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.
Collapse
Affiliation(s)
- Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Sophie Croizier
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Soyoung Park
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Youxin Kong
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, France
| | - Matthew C Banton
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Panna Tandon
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Audrey E Hendricks
- Wellcome Sanger Institute, Cambridge, UK; Department of Mathematical and Statistical Sciences, University of Colorado-Denver, Denver, CO 80204, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susanna E Riley
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Sofia Papadia
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanisha Mistry
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Richard B Simerly
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, TN 37232-0615, USA
| | - James E N Minchin
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, UK
| | - Inês Barroso
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Wellcome Sanger Institute, Cambridge, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
22
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|