1
|
Yang Q, Madueke-Laveaux OS, Cun H, Wlodarczyk M, Garcia N, Carvalho KC, Al-Hendy A. Comprehensive Review of Uterine Leiomyosarcoma: Pathogenesis, Diagnosis, Prognosis, and Targeted Therapy. Cells 2024; 13:1106. [PMID: 38994959 PMCID: PMC11240800 DOI: 10.3390/cells13131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most common subtype of uterine sarcomas. They have a poor prognosis with high rates of recurrence and metastasis. The five-year survival for uLMS patients is between 25 and 76%, with survival rates approaching 10-15% for patients with metastatic disease at the initial diagnosis. Accumulating evidence suggests that several biological pathways are involved in uLMS pathogenesis. Notably, drugs that block abnormal functions of these pathways remarkably improve survival in uLMS patients. However, due to chemotherapy resistance, there remains a need for novel drugs that can target these pathways effectively. In this review article, we provide an overview of the recent progress in ascertaining the biological functions and regulatory mechanisms in uLMS from the perspective of aberrant biological pathways, including DNA repair, immune checkpoint blockade, protein kinase and intracellular signaling pathways, and the hedgehog pathway. We review the emerging role of epigenetics and epitranscriptome in the pathogenesis of uLMS. In addition, we discuss serum markers, artificial intelligence (AI) combined with machine learning, shear wave elastography, current management and medical treatment options, and ongoing clinical trials for patients with uLMS. Comprehensive, integrated, and deeper insights into the pathobiology and underlying molecular mechanisms of uLMS will help develop novel strategies to treat patients with this aggressive tumor.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | | | - Han Cun
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | - Marta Wlodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Natalia Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento deObstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil;
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| |
Collapse
|
2
|
Abedin Y, Fife A, Samuels CA, Wright R, Murphy T, Zhang X, Alpert E, Cheung E, Zhao Q, Einstein MH, Douglas NC. Combined Treatment of Uterine Leiomyosarcoma with Gamma Secretase Inhibitor MK-0752 and Chemotherapeutic Agents Decreases Cellular Invasion and Increases Apoptosis. Cancers (Basel) 2024; 16:2184. [PMID: 38927890 PMCID: PMC11201464 DOI: 10.3390/cancers16122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Due to limited effective therapeutics for uterine leiomyosarcoma (uLMS), the impact of the gamma secretase inhibitor (GSI) MK-0752 with common chemotherapeutics was explored in uLMS. MTT assays were performed on two human uLMS cell lines, SK-UT-1B and SK-LMS-1, using MK-0752, docetaxel, doxorubicin, and gemcitabine, individually and in combination, to determine cell viability after treatment. Synergistic combinations were used in transwell invasion assays, cell cycle flow cytometry, proliferation assays, and RNA sequencing. In SK-UT-1B, MK-0752 was synergistic with doxorubicin and gemcitabine plus docetaxel. In SK-LMS-1, MK-0752 was synergistic with all individual agents and with the combination of gemcitabine plus docetaxel. MK-0752, gemcitabine, and docetaxel decreased invasion in SK-UT-1B 2.1-fold* and in SK-LMS-1 1.7-fold*. In SK-LMS-1, invasion decreased 1.2-fold* after treatment with MK-0752 and docetaxel and 2.2-fold* after treatment with MK-0752 and doxorubicin. Cell cycle analysis demonstrated increases in the apoptotic sub-G1 population with MK-0752 alone in SK-UT-1B (1.4-fold*) and SK-LMS-1 (2.7-fold**), along with increases with all combinations in both cell lines. The combination treatments had limited effects on proliferation, while MK-0752 alone decreased proliferation in SK-LMS-1 (0.63-fold**). Both MK-0752 alone and in combination altered gene expression and KEGG pathways. In conclusion, the combinations of MK-0752 with either doxorubicin, docetaxel, or gemcitabine plus docetaxel are potential novel therapeutic approaches for uLMS. (* p < 0.05, ** p < 0.01).
Collapse
Affiliation(s)
- Yasmin Abedin
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Alexander Fife
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Cherie-Ann Samuels
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Rasheena Wright
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Trystn Murphy
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Emily Alpert
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Emma Cheung
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Mark H. Einstein
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Ren L, Yang Y, Li W, Yang H, Zhang Y, Ge B, Zhang S, Du G, Wang J. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet 2023; 13:1085391. [PMID: 36685834 PMCID: PMC9845602 DOI: 10.3389/fgene.2022.1085391] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor development is frequently accompanied by abnormal expression of multiple genomic genes, which can be broadly viewed as decreased expression of tumor suppressor genes and upregulated expression of oncogenes. In this process, epigenetic regulation plays an essential role in the regulation of gene expression without alteration of DNA or RNA sequence, including DNA methylation, RNA methylation, histone modifications and non-coding RNAs. Therefore, drugs developed for the above epigenetic modulation have entered clinical use or preclinical and clinical research stages, contributing to the development of antitumor drugs greatly. Despite the efficacy of epigenetic drugs in hematologic caners, their therapeutic effects in solid tumors have been less favorable. A growing body of research suggests that epigenetic drugs can be applied in combination with other therapies to increase efficacy and overcome tumor resistance. In this review, the progress of epigenetics in tumor progression and oncology drug development is systematically summarized, as well as its synergy with other oncology therapies. The future directions of epigenetic drug development are described in detail.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jinhua Wang,
| |
Collapse
|
4
|
Grand'Maison A, Kohrn R, Omole E, Shah M, Fiorica P, Sims J, Ohm JE. Genetic and environmental reprogramming of the sarcoma epigenome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:283-317. [PMID: 36858777 DOI: 10.1016/bs.apha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sarcomas are rare and heterogenous mesenchymal tumors occurring in soft tissue and bone. The World Health Organization Classification of sarcomas comprises more than hundred different entities which are very diverse in their molecular, genetic and epigenetic signatures as they are in their clinical presentations and behaviors. While sarcomas can be associated with an underlying hereditary cancer predisposition, most sarcomas developed sporadically without identifiable cause. Sarcoma oncogenesis involves complex interactions between genetic, epigenetic and environmental factors which are intimately related and intensively studied. Several molecular discoveries have been made over the last decades leading to the development of new therapeutic avenues. Sarcoma research continues its effort toward a more specific and personalized approach to all sarcoma sub-types to improve patient outcomes and this through world-wide collaboration. This chapter on "Genetic and Environmental Reprogramming of the Sarcoma Epigenome" provides a comprehensive review of general concepts and epidemiology of sarcoma as well as a detailed description of the genetic, molecular and epigenetic alterations seen in sarcomas, their therapeutic implications and ongoing research. This review also presents evidenced-based data on the environmental and occupational factors possibly involved in the etiology of sarcomas and a brief discussion on the role of the microbiome in sarcoma.
Collapse
Affiliation(s)
- Anne Grand'Maison
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rachael Kohrn
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Emmanuel Omole
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mahek Shah
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Peter Fiorica
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jennie Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
| |
Collapse
|
5
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
6
|
Large-Scale Identification of Multiple Classes of Host Defense Peptide-Inducing Compounds for Antimicrobial Therapy. Int J Mol Sci 2022; 23:ijms23158400. [PMID: 35955551 PMCID: PMC9368921 DOI: 10.3390/ijms23158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.
Collapse
|
7
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
8
|
Maemoto Y, Shimizu Y, Katoh R, Ito A. Naturally occurring small molecule compounds that target histone deacetylases and their potential applications in cancer therapy. J Antibiot (Tokyo) 2021; 74:667-676. [PMID: 34426659 DOI: 10.1038/s41429-021-00459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Epigenetics is defined as the heritable alteration of gene expression without change to the DNA sequence. Epigenetic abnormalities play a role in various diseases, including cancer. Epigenetic regulation of gene expression occurs through histone chemical modifications and DNA methylation. Lysine acetylation is one of the major histone chemical modifications essential for epigenetic gene expression. Histone acetylation is reversibly regulated by histone acetyltransferases and histone deacetylases, which are molecular targets for cancer therapy. There has been an explosion of research in epigenetic-related drug discovery, and accordingly many small molecule compounds have been developed. Notably, several small molecule inhibitors of histone deacetylases have been approved for the treatment of cancer. This review will introduce natural products, their derivative inhibitors of histone deacetylases, and their clinical development.
Collapse
Affiliation(s)
- Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuki Shimizu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryu Katoh
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
9
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
10
|
Tirnavean O, Van Bellinghen C, Monfort L, Coulier B, Buche M, Papadatos S, Buche F, Etienne PY. Inferior vena cava reconstruction with a superficial femoral vein graft after resection of a venous leiomyosarcoma. Acta Chir Belg 2021; 121:144-151. [PMID: 33146588 DOI: 10.1080/00015458.2020.1846940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Leiomyosarcoma is a rare malign neoplasm, representing about 5-7% of all tissue sarcomas while inferior vena cava leiomyosarcomas accounts for only 1%. This paper presents the case of a 74 years old patient that was diagnosed with an abdominal venous leiomyosarcoma involving the inter-renal segment of the inferior vena cava. Tumor was treated by complete in bloc resection. Reconstruction of the vascular axis was performed with an autologous venous tube graft achieved with segments of the right superficial femoral vein. Recurrent free survival and freedom from local or systemic recurrence was observed at 2 years after the intervention thanks to the aggressive radical surgical management.
Collapse
Affiliation(s)
- Ovidiu Tirnavean
- Department of the Cardiothoracic and Vascular Surgery, Saint Luc Hospital, Bouge, Belgium
| | | | - Luc Monfort
- Department of Internal Medicine, Saint Luc Hospital, Bouge, Belgium
| | - Bruno Coulier
- Department of Radiology, Saint Luc Hospital, Bouge, Belgium
| | - Michel Buche
- Department of the Cardiothoracic and Vascular Surgery, Saint Luc Hospital, Bouge, Belgium
| | - Spiridon Papadatos
- Department of the Cardiothoracic and Vascular Surgery, Saint Luc Hospital, Bouge, Belgium
| | - François Buche
- Department of the Cardiothoracic and Vascular Surgery, Saint Luc Hospital, Bouge, Belgium
| | - Pierre-Yves Etienne
- Department of the Cardiothoracic and Vascular Surgery, Saint Luc Hospital, Bouge, Belgium
| |
Collapse
|
11
|
Mastoraki A, Schizas D, Vlachou P, Melissaridou NM, Charalampakis N, Fioretzaki R, Kole C, Savvidou O, Vassiliu P, Pikoulis E. Assessment of Synergistic Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Sarcoma. Mol Diagn Ther 2020; 24:557-569. [PMID: 32696211 DOI: 10.1007/s40291-020-00487-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sarcomas are a rare group of neoplasms with a mesenchymal origin that are mainly characterized by the abnormal growth of connective tissue cells. The standard treatment for local control of sarcomas includes surgery and radiation, while for adjuvant and palliative therapy, chemotherapy has been strongly recommended. Despite the availability of multimodal therapies, the survival rate for patients with sarcoma is still not satisfactory. In recent decades, there has been a considerable effort to overcome chemotherapy resistance in sarcoma cells. This has led to the investigation of more cellular compounds implicated in gene expression and transcription processes. Furthermore, it has been discovered that histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to a modified chromatin structure and therefore changes in gene expression. In addition, histone deacetylase inhibition is found to play a key role in limiting the tumor burden in sarcomas, as histone deacetylase inhibitors act on well-described oncogenic signaling pathways. Histone deacetylase inhibitors disrupt the increased cell motility and invasiveness of sarcoma cells, undermining their metastatic potential. Moreover, their activity on evoking cell arrest has been extensively described, with histone deacetylase inhibitors regulating the reactivation of tumor suppressor genes and induction of apoptosis. Promoting autophagy and increasing cellular reactive oxygen species are also included in the antitumor activity of histone deacetylase inhibitors. It should be noted that many studies revealed the synergy between histone deacetylase inhibitors and other drugs, leading to the enhancement of an antitumor effect in sarcomas. Therefore, there is an urgent need for therapeutic interventions modulated according to the distinct clinical and molecular characteristics of each sarcoma subtype. It is concluded that a better understanding of histone deacetylase and histone deacetylase inhibitors could provide patients with sarcoma with more targeted and efficient therapies, which may contribute to significant improvement of their survival potential.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pigi Vlachou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | - Nikoleta Maria Melissaridou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | | | | | - Christo Kole
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Savvidou
- First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Pikoulis
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| |
Collapse
|
12
|
Scott AT, Weitz M, Breheny PJ, Ear PH, Darbro B, Brown BJ, Braun TA, Li G, Umesalma S, Kaemmer CA, Maharjan CK, Quelle DE, Bellizzi AM, Chandrasekharan C, Dillon JS, O'Dorisio TM, Howe JR. Gene Expression Signatures Identify Novel Therapeutics for Metastatic Pancreatic Neuroendocrine Tumors. Clin Cancer Res 2020; 26:2011-2021. [PMID: 31937620 PMCID: PMC7165057 DOI: 10.1158/1078-0432.ccr-19-2884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic neuroendocrine tumors (pNETs) are uncommon malignancies noted for their propensity to metastasize and comparatively favorable prognosis. Although both the treatment options and clinical outcomes have improved in the past decades, most patients will die of metastatic disease. New systemic therapies are needed. EXPERIMENTAL DESIGN Tissues were obtained from 43 patients with well-differentiated pNETs undergoing surgery. Gene expression was compared between primary tumors versus liver and lymph node metastases using RNA-Seq. Genes that were selectively elevated at only one metastatic site were filtered out to reduce tissue-specific effects. Ingenuity pathway analysis (IPA) and the Connectivity Map (CMap) identified drugs likely to antagonize metastasis-specific targets. The biological activity of top identified agents was tested in vitro using two pNET cell lines (BON-1 and QGP-1). RESULTS A total of 902 genes were differentially expressed in pNET metastases compared with primary tumors, 626 of which remained in the common metastatic profile after filtering. Analysis with IPA and CMap revealed altered activity of factors involved in survival and proliferation, and identified drugs targeting those pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A, protein kinase C, NF-kB, cyclin-dependent kinase, and histone deacetylase. Inhibitors of MEK and TOP2A were consistently the most active compounds. CONCLUSIONS We employed a complementary bioinformatics approach to identify novel therapeutics for pNETs by analyzing gene expression in metastatic tumors. The potential utility of these drugs was confirmed by in vitro cytotoxicity assays, suggesting drugs targeting MEK and TOP2A may be highly efficacious against metastatic pNETs. This is a promising strategy for discovering more effective treatments for patients with pNETs.
Collapse
Affiliation(s)
- Aaron T Scott
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Michelle Weitz
- College of Public Health, Department of Biostatistics, University of Iowa, Iowa City, IA
| | - Patrick J Breheny
- College of Public Health, Department of Biostatistics, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Benjamin Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bart J Brown
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Center for Bioinformatics and Computational Biology, College of Engineering, University of Iowa, Iowa City, IA
| | - Terry A Braun
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Center for Bioinformatics and Computational Biology, College of Engineering, University of Iowa, Iowa City, IA
| | - Guiying Li
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Shaikamjad Umesalma
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Courtney A Kaemmer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Chandra K Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Dawn E Quelle
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Pathology, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Andrew M Bellizzi
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Pathology, Carver College of Medicine University of Iowa, Iowa City, IA
| | - Chandrikha Chandrasekharan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Joseph S Dillon
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Thomas M O'Dorisio
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - James R Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| |
Collapse
|
13
|
Corrigendum to "SARC018_SPORE02: Phase II Study of Mocetinostat Administered with Gemcitabine for Patients with Metastatic Leiomyosarcoma with Progression or Relapse following Prior Treatment with Gemcitabine-Containing Therapy". Sarcoma 2019; 2019:7608743. [PMID: 31534435 PMCID: PMC6732588 DOI: 10.1155/2019/7608743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
|
14
|
A patient-derived orthotopic xenograft (PDOX) nude-mouse model precisely identifies effective and ineffective therapies for recurrent leiomyosarcoma. Pharmacol Res 2019; 142:169-175. [PMID: 30807865 DOI: 10.1016/j.phrs.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
Abstract
Leiomyosarcoma is a rare and recalcitrant disease. Doxorubicin (DOX) is usually considered first-line treatment for this disease, but frequently is ineffective. In order to individualize therapy for this and other cancers, we have developed the patient-derived orthotopic xenograft (PDOX) mouse model. In the present study, we implanted a recurrent leiomyosarcoma from a resected tumor from the patient's thigh into the femoral muscle of nude mice. The following drugs were tested on the leiomyosarcoma PDOX model: DOX, the combination of gemcitabine (GEM) and docetaxel (DOC), trabectedin (TRA), temozolomide (TEM), pazopanib (PAZ) and olaratumab (OLA). Of these agents GEM/DOC, TRA and TEM were highly effective in the leiomyosarcoma PDOX model, the other agents, including first-line therapy DOX, were ineffective. Thus the leiomyosarcoma PDOX model could precisely distinguish effective and ineffective drugs, demonstrating the potential of the PDOX model for leiomyosarcoma treatment.
Collapse
|