1
|
Wijetunga NA, Yahalom J, Imber BS. The art of war: using genetic insights to understand and harness radiation sensitivity in hematologic malignancies. Front Oncol 2025; 14:1478078. [PMID: 40191738 PMCID: PMC11968681 DOI: 10.3389/fonc.2024.1478078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
It is well established that hematologic malignancies are often considerably radiosensitive, which enables usage of far lower doses of therapeutic radiotherapy. This review summarizes the currently known genomic landscape of hematologic malignancies, particularly as it relates to radiosensitivity and the field of radiation oncology. By tracing the historical development of the modern understanding of radiosensitivity, we focus on the discovery and implications of pivotal mutated genes in hematologic malignancies such as TP53, ATM, and other genes critical to DNA repair pathways. These genetic insights have contributed significantly to the advancement of personalized medicine, aiming to enhance treatment precision and outcomes, and there is an opportunity to extend these insights to personalized radiotherapy. We explore the transition from early discoveries to the current efforts in integrating comprehensive genomic data into clinical practice. Specific examples from Hodgkin lymphoma, non-Hodgkin lymphoma, and plasma cell neoplasms illustrate how genetic mutations could influence radiosensitivity and impact subsequent radiotherapeutic response. Despite the advancements, challenges remain in translating these genetic insights into routine clinical practice, particularly due to the heterogeneity of alterations and the complex interactions within cancer signaling pathways. We emphasize the potential of radiogenomics to address these challenges by identifying genetic markers that predict radiotherapy response and toxicity, thereby refining treatment strategies. The need for robust decision support systems, standardized protocols, and ongoing education for healthcare providers is critical to the successful integration of genomic data into radiation therapy. As research continues to validate genetic markers and explore novel therapeutic combinations, the promise of personalized radiotherapy becomes increasingly attainable, offering the potential to significantly improve outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- N. Ari Wijetunga
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, United States
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brandon S. Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
3
|
Dias JSM, Ferreira-Silva GA, Viana RB, de Araujo Neto JH, Ellena J, Corrêa RS, Barbosa MIF, Ionta M, Doriguetto AC. Ruthenium(II) Complex with 1-Hydroxy-9,10-Anthraquinone Inhibits Cell Cycle Progression at G0/G1 and Induces Apoptosis in Melanoma Cells. Pharmaceuticals (Basel) 2025; 18:63. [PMID: 39861126 PMCID: PMC11768811 DOI: 10.3390/ph18010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma. OBJECTIVES Thus, two new ruthenium complexes with 1-hydroxy-9,10-anthraquinone were obtained: trans-[Ru(HQ)(PPh3)2(bipy)]PF6 (1) and cis-[RuCl2(HQ)(dppb)] (2), where HQ = 1-hydroxy-9,10-anthraquinone, PPh3 = triphenylphospine, bipy = 2,2'-bipyridine, PF6 = hexafluorophosphate, and dppb = 1,4-bis(diphenylphosphine)butane. METHODS The complexes were characterized by infrared (IR), UV-vis, 1H, 13C{1H}, and 31P{1H} NMR spectroscopies, molar conductivity, cyclic voltammetry, and elemental analysis. Furthermore, density functional theory (DFT) calculations were performed. RESULTS Compound (2) was determined by single-crystal X-ray diffraction, which confirms the bidentate coordination mode of HQ through the carbonyl and phenolate oxygens. Additionally, DNA-binding experiments yielded constants of 105 M-1 (Kb = 6.93 × 105 for (1) and 1.60 × 105 for (2)) and demonstrate that both complexes can interact with DNA through intercalation, electrostatic attraction, or hydrogen bonding. CONCLUSIONS The cytotoxicity profiles of the compounds were evaluated in human melanoma cell lines (SK-MEL-147, CHL-1, and WM1366), revealing greater cytotoxic activity for (1) on the CHL-1 cell line with an IC50 of 14.50 ± 1.09 µM. Subsequent studies showed that (1) inhibits the proliferation of CHL-1 cells and induces apoptosis, associated at least in part with the pro-oxidant effect and cell cycle arrest at the G1/S transition.
Collapse
Affiliation(s)
- Júlia S. M. Dias
- Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil; (J.S.M.D.); (M.I.F.B.)
| | - Guilherme A. Ferreira-Silva
- Departamento de Ciências Biomédicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil;
| | - Rommel B. Viana
- Departamento de Química, Universidade Estadual do Ceará (UECE), Limoeiro do Norte 62930-000, CE, Brazil;
| | | | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Rodrigo S. Corrêa
- Departamento de Química, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil;
| | - Marília I. F. Barbosa
- Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil; (J.S.M.D.); (M.I.F.B.)
| | - Marisa Ionta
- Departamento de Ciências Biomédicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil;
| | - Antônio C. Doriguetto
- Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil; (J.S.M.D.); (M.I.F.B.)
| |
Collapse
|
4
|
Zaib S, Javed H, Rana N, Zaib Z, Iqbal S, Khan I. Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways. Curr Med Chem 2025; 32:923-938. [PMID: 38275065 DOI: 10.2174/0109298673276871231205043417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, 22010, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
5
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
6
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int J Mol Sci 2024; 25:10604. [PMID: 39408933 PMCID: PMC11477161 DOI: 10.3390/ijms251910604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Post Doctoral Department, Eudoxia Research University, New Castle, DE 19808, USA;
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India;
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - G. Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN Deemed to be University, Bangalore 560069, India;
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur 303121, India;
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur 303012, India;
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, India;
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam 531162, India;
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
7
|
Li X, Yang C, Wu H, Chen H, Gao X, Zhou S, Zhang TC, Ma W. DSB-induced oxidative stress: Uncovering crosstalk between DNA damage response and cellular metabolism. DNA Repair (Amst) 2024; 141:103730. [PMID: 39018963 DOI: 10.1016/j.dnarep.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Xinyu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hengyu Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Gao
- Qilu Institute of Technology, Shandong, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Tong-Cun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
8
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
9
|
Xie D, Yang K, Xu Y, Li Y, Liu C, Dong Y, Chi J, Yin X. N6-methyladenosine demethylase fat mass and obesity-associated protein suppresses hyperglycemia-induced endothelial cell injury by inhibiting reactive oxygen species formation via autophagy promotion. J Diabetes Complications 2024; 38:108801. [PMID: 38935979 DOI: 10.1016/j.jdiacomp.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Hyperglycemia-induced endothelial cell injury is one of the main causes of diabetic vasculopathy. Fat mass and obesity-associated protein (FTO) was the first RNA N6-methyladenosine (m6A) demethylase identified; it participates in the pathogenesis of diabetes. However, the role of FTO in hyperglycemia-induced vascular endothelial cell injury remains unclear. MATERIALS AND METHODS The effects of FTO on cellular m6A, autophagy, oxidative stress, proliferation, and cytotoxicity were explored in human umbilical vein endothelial cells (HUVECs) treated with high glucose (33.3 mmol/mL) after overexpression or pharmacological inhibition of FTO. MeRIP-qPCR and RNA stability assays were used to explore the molecular mechanisms by which FTO regulates autophagy. RESULTS High glucose treatment increased m6A levels and reduced FTO protein expression in HUVECs. Wild-type overexpression of FTO markedly inhibited reactive oxygen species generation by promoting autophagy, increasing endothelial cell proliferation, and decreasing the cytotoxicity of high glucose concentrations. The pharmacological inhibition of FTO showed the opposite results. Mechanistically, we identified Unc-51-like kinase 1 (ULK1), a gene responsible for autophagosome formation, as a downstream target of FTO-mediated m6A modification. FTO overexpression demethylated ULK1 mRNA and inhibited its degradation in an m6A-YTHDF2-dependent manner, leading to autophagy activation. CONCLUSIONS Our study demonstrates the functional importance of FTO-mediated m6A modification in alleviating endothelial cell injury under high glucose conditions and indicates that FTO may be a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Di Xie
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Kelaier Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, China
| | - Yang Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunnan Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanghong Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinyu Chi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Cardiology, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
11
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Kavaliauskas P, Grybaitė B, Sapijanskaite-Banevič B, Anusevičius K, Jonuškienė I, Stankevičienė R, Petraitienė R, Petraitis V, Grigalevičiūtė R, Meškinytė E, Stankevičius R, Mickevičius V. Identification of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Anticancer Candidates with Promising Antioxidant Properties. Molecules 2024; 29:3125. [PMID: 38999077 PMCID: PMC11243380 DOI: 10.3390/molecules29133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Various cancer-associated morbidities remain a growing global health challenge, resulting in a significant burden on healthcare systems worldwide due to high mortality rates and a frequent lack of novel therapeutic options for advanced and localized disease. Reactive oxygen species (ROS) play an important role in cancer pathogenesis and response to chemotherapeutics; therefore, it is crucial to develop novel compounds with both antioxidant and anticancer activity. In this study, a series of previously reported 3-((4-hydroxyphenyl)amino)propanoic acid derivatives (compounds 1-36) were evaluated for their anticancer and antioxidant activities. Compounds 12, 20-22, and 29 were able to reduce A549 cell viability by 50% and suppress A549 cell migration in vitro. These compounds also showed favorable cytotoxicity properties towards noncancerous Vero cells. The most promising candidate, compound 20, exhibited potent antioxidant properties in the DPPH radical scavenging assay. These results demonstrate that 3-((4-hydroxyphenyl)amino)propanoic acid could be further explored as an attractive scaffold for the development of novel anticancer and antioxidant candidates.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Birute Sapijanskaite-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rima Stankevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| | - Rūta Petraitienė
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
| | - Vidmantas Petraitis
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Edita Meškinytė
- Center of Animal Production Research and Innovation, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (B.G.); (B.S.-B.); (K.A.); (I.J.); (R.S.); (V.M.)
| |
Collapse
|
14
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
15
|
Jain S, Rana M. From the discovery of helminths to the discovery of their carcinogenic potential. Parasitol Res 2023; 123:47. [PMID: 38095695 DOI: 10.1007/s00436-023-08022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Cancer involves a major aberration in the normal behaviour of cells, making them divide continuously, which interferes with the normal physiology of the body. The link between helminths and their cancer-inducing potential has been proposed in the last century. The exact pathway is still not clear but chronic inflammation in response to the deposited eggs, immune response against soluble egg antigens, and co-infection with a third party (a bacteria, a virus, or infection leading to a change in microbiome) seems to be the reasons for cancer induction. This review looks into the historical outlook on helminths along with their epidemiology, morphology, and life cycle. It then focuses on providing correlations between helminth infection and molecular mechanism of carcinogenesis by elaborating upon epidemiological, clinical, and surgical studies. While the cancer-inducing potential has been convincingly established only for a few helminths and studies point out towards possible cancer-inducing ability of the rest of the helminths elucidated in this work, however, more insights into the immunobiology of helminths as well as infected patients are required to conclusively comment upon this ability of the latter.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India.
| | - Meenakshi Rana
- Dyal Singh College, University of Delhi, Lodhi Road, Pragati Vihaar, New Delhi, India
| |
Collapse
|
16
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
17
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
18
|
Bateman G, Guo-Parke H, Rodgers AM, Linden D, Bailey M, Weldon S, Kidney JC, Taggart CC. Airway Epithelium Senescence as a Driving Mechanism in COPD Pathogenesis. Biomedicines 2023; 11:2072. [PMID: 37509711 PMCID: PMC10377597 DOI: 10.3390/biomedicines11072072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest triggered by various intrinsic and extrinsic stressors. Cellular senescence results in impaired tissue repair and remodeling, loss of physiological integrity, organ dysfunction, and changes in the secretome. The systemic accumulation of senescence cells has been observed in many age-related diseases. Likewise, cellular senescence has been implicated as a risk factor and driving mechanism in chronic obstructive pulmonary disease (COPD) pathogenesis. Airway epithelium exhibits hallmark features of senescence in COPD including activation of the p53/p21WAF1/CIP1 and p16INK4A/RB pathways, leading to cell cycle arrest. Airway epithelial senescent cells secrete an array of inflammatory mediators, the so-called senescence-associated secretory phenotype (SASP), leading to a persistent low-grade chronic inflammation in COPD. SASP further promotes senescence in an autocrine and paracrine manner, potentially contributing to the onset and progression of COPD. In addition, cellular senescence in COPD airway epithelium is associated with telomere dysfunction, DNA damage, and oxidative stress. This review discusses the potential mechanisms of airway epithelial cell senescence in COPD, the impact of cellular senescence on the development and severity of the disease, and highlights potential targets for modulating cellular senescence in airway epithelium as a potential therapeutic approach in COPD.
Collapse
Affiliation(s)
- Georgia Bateman
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Aoife M Rodgers
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Melanie Bailey
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
19
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|
20
|
Meng X, Liu H, Zhao N, Yang Y, Zhao K, Dai Y. Molecular Dynamics Study of the Effect of Charge and Glycosyl on Superoxide Anion Distribution near Lipid Membrane. Int J Mol Sci 2023; 24:10926. [PMID: 37446103 DOI: 10.3390/ijms241310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
To examine the effects of membrane charge, the electrolyte species and glycosyl on the distribution of negatively charged radical of superoxide anion (·O2-) around the cell membrane, different phospholipid bilayer systems containing ·O2- radicals, different electrolytes and phospholipid bilayers were constructed through Charmm-GUI and Amber16. These systems were equilibrated with molecular dynamics by using Gromacs 5.0.2 to analyze the statistical behaviors of ·O2- near the lipid membrane under different conditions. It was found that in the presence of potassium rather than sodium, the negative charge of the phospholipid membrane is more likely to rarefy the superoxide anion distribution near the membrane surface. Further, the presence of glycosyl significantly reduced the density of ·O2- near the phospholipid bilayer by 78.3% compared with that of the neutral lipid membrane, which may have a significant contribution to reducing the lipid peroxidation from decreasing the ·O2- density near the membrane.
Collapse
Affiliation(s)
- Xuan Meng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huiyu Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Zhao
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kai Zhao
- Hebei Kingsci Pharmaceutical Technology Co., Ltd., Shijiazhuang 050035, China
- Jangxi Ourshi Pharmaceutical Co., Ltd., Xinyu 338012, China
| | - Yujie Dai
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
22
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
23
|
Nunes EA, Silva HCD, Duarte NDAA, de Lima LE, Maraslis FT, Araújo MLD, Pedron T, Lange C, Freire BM, Matias AC, Batista BL, Barcelos GRM. Impact of DNA repair polymorphisms on DNA instability biomarkers induced by lead (Pb) in workers exposed to the metal. CHEMOSPHERE 2023:138897. [PMID: 37182709 DOI: 10.1016/j.chemosphere.2023.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 μg dL-1 (mean 20 ± 12 μg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1, XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.
Collapse
Affiliation(s)
- Emilene Arusievicz Nunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Heliton Camargo da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Nathália de Assis Aguilar Duarte
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Tatiana Pedron
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Bruna Moreira Freire
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Andreza Cândido Matias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, CEP 05508-000, São Paulo, Brazil.
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| |
Collapse
|
24
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
25
|
Benzeid R, Gihbid A, Benchekroun N, Tawfiq N, Benider A, Attaleb M, Filali Maltouf A, El Mzibri M, Khyatti M, Chaoui I. Recent Advances in Nasopharyngeal Cancer Management: From Diagnosis
to Theranostics. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2023; 20:13-26. [DOI: 10.2174/1875692120666230213111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 01/03/2025]
Abstract
Abstract:
Nasopharyngeal cancer (NPC) is one of the most common head and neck cancers.
NPC differs significantly from other cancers in its etiology, epidemiology, clinical behavior,
and treatment. Being highly radiosensitive, the standard treatment for NPC is radiotherapy.
However, radioresistance hampers the success of treatment and may cause local recurrence
and distant metastases in NPC patients. In this review, we discuss the updated protocols
for NPC diagnosis and treatment based on recent literature with an emphasis on the
mechanisms of radioresistance at the molecular level with a special focus on genetic and epigenetic
events, affecting genes involved in xenobiotic detoxification and DNA repair. We
also highlight the importance of some cellular and Epstein Barr viral miRNAs targeting
specific DNA repair factors and consequently promoting NPC radioresistance. These molecular
markers may serve as promising tools for diagnosis, prognosis, and radioresistance
prediction to guide theranostics of patients with NPC in the future.
Collapse
Affiliation(s)
- Rajaa Benzeid
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
- Department of Molecular Biology, Mohammed V University, Rabat, Morocco
| | - Amina Gihbid
- Department of Virology,
Institut Pasteur du MAroc, Casablanca, Morocco
| | - Nadia Benchekroun
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Nezha Tawfiq
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Abdellatif Benider
- Department of Radiotherapy, Mohammed VI Center for
Treatment of Cancer, Ibn Rochd Hospital Center, Casablanca, Morocco
| | - Mohammed Attaleb
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| | - Meriem Khyatti
- Department of Virology,
Institut Pasteur du MAroc, Casablanca, Morocco
| | - Imane Chaoui
- Department of Life Sciences, National Centre for Nuclear Energy, Science and Technology, Rabat, Morocco
| |
Collapse
|
26
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
27
|
Vélez-Vargas LC, Santa-González GA, Uribe D, Henao-Castañeda IC, Pedroza-Díaz J. In Vitro and In Silico Study on the Impact of Chlorogenic Acid in Colorectal Cancer Cells: Proliferation, Apoptosis, and Interaction with β-Catenin and LRP6. Pharmaceuticals (Basel) 2023; 16:276. [PMID: 37259421 PMCID: PMC9960681 DOI: 10.3390/ph16020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer mortality rate and highly altered proteins from the Wnt/β-catenin pathway increase the scientific community's interest in finding alternatives for prevention and treatment. This study aims to determine the biological effect of chlorogenic acid (CGA) on two colorectal cancer cell lines, HT-29 and SW480, and its interactions with β-catenin and LRP6 to elucidate a possible modulatory mechanism on the Wnt/β-catenin pathway. These effects were determined by propidium iodide and DiOC6 for mitochondrial membrane permeability, MitoTracker Red for mitochondrial ROS production, DNA content for cell distribution on cell cycle phases, and molecular docking for protein-ligand interactions and binding affinity. Here, it was found that CGA at 2000 µM significantly affects cell viability and causes DNA fragmentation in SW480 cells rather than in HT-29 cells, but in both cell lines, it induces ROS production. Additionally, CGA has similar affinity and interactions for LRP6 as niclosamide but has a higher affinity for both β-catenin sites than C2 and iCRT14. These results suggest a possible modulatory role of CGA over the Wnt/β-catenin pathway in colorectal cancer.
Collapse
Affiliation(s)
- Laura Catalina Vélez-Vargas
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Diego Uribe
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| | - Isabel C. Henao-Castañeda
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 050010, Colombia
| | - Johanna Pedroza-Díaz
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellin 050012, Colombia
| |
Collapse
|
28
|
The regulation loop of MARVELD1 interacting with PARP1 in DNA damage response maintains genome stability and promotes therapy resistance of cancer cells. Cell Death Differ 2023; 30:922-937. [PMID: 36750717 PMCID: PMC10070477 DOI: 10.1038/s41418-023-01118-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
The DNA damage response (DDR) plays crucial roles in cancer prevention and therapy. Poly(ADP-ribose) polymerase 1 (PARP1) mediates multiple signal transduction in the DDR as a master regulator. Uncovering the regulatory factors of PARP1 contributes to a more comprehensive view of tumorigenesis and treatment strategies. Here, we reveal that MARVELD1 acts as a mediator of DDR to perform early events and maintain genome stability. Mechanistically, PARP1 PARylates MARVELD1 at D102, D118 and D130, and in turn, MARVELD1 stabilizes PARP1 by enhancing NAA50-mediated acetylation, thus forming a positive feedback loop. MARVELD1 knockout mice and their embryo fibroblasts exhibit genomic instability and shorter half-life of PARP1. Moreover, MARVELD1 partnering with PARP1 facilitates resistance to genotoxic drugs and disrupts PARP inhibitor (PARPi) effect in PDX model of colorectal cancer (CRC). Overall, our results underline the link between MARVELD1 and PARP1 in therapeutic resistance based on DDR and provide new insights for clinical tumor therapy of PARPi.
Collapse
|
29
|
Kciuk M, Kołat D, Kałuzińska-Kołat Ż, Gawrysiak M, Drozda R, Celik I, Kontek R. PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023; 12:530. [PMID: 36831197 PMCID: PMC9954559 DOI: 10.3390/cells12040530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The application of immunotherapy for cancer treatment is rapidly becoming more widespread. Immunotherapeutic agents are frequently combined with various types of treatments to obtain a more durable antitumor clinical response in patients who have developed resistance to monotherapy. Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR) frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases the tumor's susceptibility to combined therapies. Here we review the recent advances in how the DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum compounds on the anti-tumor immune response.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, 91-347 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
30
|
Khan A, Waqas M, Tufail M, Halim SA, Murad W, Ahmad SU, Faheem M, Uddin J, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. In silico scanning of structural and functional deleterious nsSNPs in Arabidopsis thaliana's SOG1 protein, using molecular dynamic simulation approaches. J Biomol Struct Dyn 2023; 41:11629-11646. [PMID: 36734218 DOI: 10.1080/07391102.2023.2174187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023]
Abstract
Suppressor of gamma response 1 (SOG1) is a member of the NAC domain family transcription factors of the DNA damage response (DDR) signaling in the plant's genome. SOG1 is directly involved in transcriptional response to DNA damage, cell cycle checkpoints and ATR or ATM-mediated activation of the DNA damage responses and repair functioning in programmed cell death and regulation of end reduplication. Different mutations in the SOG1 protein lead to severe diseases and, ultimately, cell death. Single nucleotide polymorphisms (SNPs) are an important type of genetic alteration that cause different diseases or programmed cell death. The current study applied different computational approaches to Arabidopsis thaliana L. SOG1 protein to identify the potential deleterious nsSNPs and monitor their impact on the structure, function and protein stability. Various bioinformatics tools were applied to analyze the retrieved 34 nsSNPs and interestingly extracted four deleterious nsSNPs, that is, ensvath13968004 (Q166L), tmp18998388 (P159L), ensvath01103049 (K199N) and tmp18998295 (Y190F). For example, homology modeling, conservation and conformational analysis of the mutant's models were considered to scrutinize the deviations of these variants from the native SOG1 structure. All atoms molecular dynamic simulation confirmed the significance of these mutations on the protein stability, residual and structural conformation, compactness, surface conformation, dominant motion, Gibbs free energy distribution and dynamic effects. Similarly, protein-protein interaction revealed that SOG1 operates as a hub-linking cluster of various proteins, and any changes in the SOG1 might result in the disassociation of several signal transduction cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asif Khan
- Laboratory of Phytochemistry, Department of Botany, University of São Paulo, São Paulo, Brazil
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, Pakistan
| | - Muhammad Tufail
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Dhodial, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
31
|
Fu Y, Li X, Pan B, Niu Y, Zhang B, Zhao X, Nie J, Yang J. Effects of H19/SAHH/DNMT1 on the oxidative DNA damage related to benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11706-11718. [PMID: 36098921 DOI: 10.1007/s11356-022-22936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms that long noncoding RNA (lncRNA) H19 binding to S-adenosylhomocysteine hydrolase (SAHH) interacted with DNA methyltransferase 1 (DNMT1) and then regulated DNA damage caused by polycyclic aromatic hydrocarbons (PAHs) remain unclear. A total of 146 occupational workers in a Chinese coke-oven plant in 2014 were included in the final analyses. We used high-performance liquid chromatography mass spectrometry (HPLC-MS) equipped to detect urine biomarkers of PAHs exposure, including 2-hydroxynaphthalene (2-NAP), 2-hydroxyfluorene (2-FLU), 9-hydroxyphenanthrene (9-PHE) and 1-hydroxypyrene (1-OHP). The levels of SAM and SAH in plasma were detected by HPLC-ultraviolet. By constructing various BEAS-2B cell models exposed to 16 μM benzo[a]pyrene (BaP) for 24 h, toxicological parameters reflecting distinct mechanisms were evaluated. We documented that urinary 1-hydroxypyrene (1-OHP) levels were positively associated with blood H19 RNA expression (OR: 1.51, 95% CI: 1.03-2.19), but opposite to plasma SAHH activity (OR: 0.63, 95% CI: 0.41-0.98) in coke oven workers. Moreover, by constructing various BEAS-2B cell models exposed to benzo[a]pyrene (BaP), we investigated that H19 binding to SAHH exaggerated DNMT1 expressions and activity. Suppression of H19 enhanced the interaction of SAHH and DNMT1 in BaP-treated cells, decreased eight-oxoguanine DNA glycosylase 1 (OGG1) methylation, reduced oxidative DNA damage and lessened S phase arrest. However, SAHH or DNMT1 single knockdown and SAHH/DNMT1 double knockdown showed the opposite trend. A H19/SAHH/DNMT1 axis was involved in OGG1 methylation, oxidative DNA damage and cell cycle arrest by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| |
Collapse
|
32
|
Yu H, Song X, Yang F, Wang J, Sun M, Liu G, Ahmad N, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Jiang X, Fu P, Chen G, Li J, Zhuang J, Sun M. Combined effects of vitamin C and cold atmospheric plasma-conditioned media against glioblastoma via hydrogen peroxide. Free Radic Biol Med 2023; 194:1-11. [PMID: 36436726 DOI: 10.1016/j.freeradbiomed.2022.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.
Collapse
Affiliation(s)
- Huidan Yu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Xueyan Song
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Fan Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingjian Sun
- Measurement and Control Research Center Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangxin Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingmei Li
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Jie Zhuang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Minxuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
33
|
Dai X, Shen L, Zhang J. Cold atmospheric plasma: redox homeostasis to treat cancers? Trends Biotechnol 2023; 41:15-18. [PMID: 35985891 DOI: 10.1016/j.tibtech.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising therapeutic for highly aggressive malignancies given its unique safety and selectivity against redox imbalance and is characterized as a tumor microenvironment (TME) sensitizer, immunogenic cell death (ICD) inducer, and cancer stem cell (CSC) killer that functions through the regulation of cell redox homeostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Li Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jianying Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
34
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
35
|
Beebe J, Josephraj S, Wang CJ, Danielson J, Cui Q, Huang C, Barlow L, Zhang RH, Zhang T, Nakshatri H, Dong Z, Li X, Liu JY, Zhang JT. Therapeutic Activity of the Lansoprazole Metabolite 5-Hydroxy Lansoprazole Sulfide in Triple-Negative Breast Cancer by Inhibiting the Enoyl Reductase of Fatty Acid Synthase. J Med Chem 2022; 65:13681-13691. [PMID: 36257066 DOI: 10.1021/acs.jmedchem.2c00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid synthase (FASN), a sole cytosolic enzyme responsible for de-novo lipid synthesis, is overexpressed in cancer but not in normal non-lipogenic tissues. FASN has been targeted, albeit no such inhibitor has been approved. Proton pump inhibitors (PPIs), approved for digestive disorders, were found to inhibit FASN with anticancer activities in attempting to repurpose Food and Drug Administration-approved drugs. Indeed, PPI usage benefited breast cancer patients and increased their response rate. Due to structural similarity, we thought that their metabolites might extend anticancer effects of PPIs by inhibiting FASN. Here, we tested this hypothesis and found that 5-hydroxy lansoprazole sulfide (5HLS), the end lansoprazole metabolite, was more active than lansoprazole in inhibiting FASN function and regulation of NHEJ repair of oxidative DNA damage via PARP1. Surprisingly, 5HLS inhibits the enoyl reductase, whereas lansoprazole inhibits the thioesterase of FASN. Thus, PPI metabolites may contribute to the lasting anticancer effects of PPIs by inhibiting FASN.
Collapse
Affiliation(s)
- Jenny Beebe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sophia Josephraj
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Chao J Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jacob Danielson
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Qingbin Cui
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Lincoln Barlow
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ryan H Zhang
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Taolan Zhang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Zizheng Dong
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Xiaohong Li
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
36
|
Carlsen L, El-Deiry WS. Anti-cancer immune responses to DNA damage response inhibitors: Molecular mechanisms and progress toward clinical translation. Front Oncol 2022; 12:998388. [PMID: 36276148 PMCID: PMC9583871 DOI: 10.3389/fonc.2022.998388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage response inhibitors are widely used anti-cancer agents that have potent activity against tumor cells with deficiencies in various DNA damage response proteins such as BRCA1/2. Inhibition of other proteins in this pathway including PARP, DNA-PK, WEE1, CHK1/2, ATR, or ATM can sensitize cancer cells to radiotherapy and chemotherapy, and such combinations are currently being tested in clinical trials for treatment of many malignancies including breast, ovarian, rectal, and lung cancer. Unrepaired DNA damage induced by DNA damage response inhibitors alone or in combination with radio- or chemotherapy has a direct cytotoxic effect on cancer cells and can also engage anti-cancer innate and adaptive immune responses. DNA damage-induced immune stimulation occurs by a variety of mechanisms including by the cGAS/STING pathway, STAT1 and downstream TRAIL pathway activation, and direct immune cell activation. Whether or not the relative contribution of these mechanisms varies after treatment with different DNA damage response inhibitors or across cancers with different genetic aberrations in DNA damage response enzymes is not well-characterized, limiting the design of optimal combinations with radio- and chemotherapy. Here, we review how the inhibition of key DNA damage response enzymes including PARP, DNA-PK, WEE1, CHK1/2, ATR, and ATM induces innate and adaptive immune responses alone or in combination with radiotherapy, chemotherapy, and/or immunotherapy. We also discuss current progress in the clinical translation of immunostimulatory DNA-damaging treatment regimens and necessary future directions to optimize the immune-sensitizing potential of DNA damage response inhibitors.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI, United States
- *Correspondence: Wafik S. El-Deiry,
| |
Collapse
|
37
|
Intrinsic ROS Drive Hair Follicle Cycle Progression by Modulating DNA Damage and Repair and Subsequently Hair Follicle Apoptosis and Macrophage Polarization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8279269. [PMID: 35903712 PMCID: PMC9315455 DOI: 10.1155/2022/8279269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
Hair follicles (HFs) maintain homeostasis through the hair cycles; therefore, disrupting the hair cycle may lead to hair loss. Our previous study showed that apoptosis-inducing factor (AIF) nuclear translocation and poly [ADP-ribose] polymerase 1 (PARP1) upregulation induced apoptosis in mouse hair follicles during the hair cycle transition from anagen to catagen. However, the mechanism underlying this phenomenon remains unclear. In this study, we found that intrinsic ROS levels increased during the hair follicle cycle transition from anagen to catagen, followed by abrupt DNA breaks and activation of homologous recombinant and nonhomologous end joining DNA repair, along with the enhancement of apoptosis. Mice in different stages of the hair cycle were sacrificed, and the dorsal skins were collected. The results of western blot and histological staining indicated that AIF-PARP1 plays a key role in HF apoptosis, but their role in the regulation of the HF cycle is not clear. Mice were treated with inhibitors from anagen to catagen: treatment with BMN 673, a PARP1 inhibitor, increased DNA breaks and activated the cytochrome c/caspase-3-mediated apoptotic pathway, accelerating HF regression. Ac-DEVD-CHO (Ac), a caspase-3 inhibitor, attenuated HF degeneration by upregulating PARP1 expression, suggesting a seesaw relationship between cytochrome c-caspase-3- and AIF-PARP1-mediated apoptosis, wherein PARP1 may be the fulcrum. In addition, macrophages were involved in regulating the hair cycle, and the rate of M1 macrophages around HFs increased during catagen, while more M2 macrophages were found during anagen and telogen. Our results indicate that intrinsic ROS drive HF cycle progression through DNA damage and repair, followed by apoptosis. Intrinsic ROS drive hair follicle cycle progression by modulating DNA damage and repair, and consecutively, hair follicle apoptosis and macrophage polarization work together to promote the hair follicle cycle.
Collapse
|
38
|
Pan Y, Cai W, Cheng A, Wang M, Chen S, Huang J, Yang Q, Wu Y, Sun D, Mao S, Zhu D, Liu M, Zhao X, Zhang S, Gao Q, Ou X, Tian B, Yin Z, Jia R. Duck Tembusu virus infection induces mitochondrial-mediated and death receptor-mediated apoptosis in duck embryo fibroblasts. Vet Res 2022; 53:53. [PMID: 35799206 PMCID: PMC9264590 DOI: 10.1186/s13567-022-01070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. Our previous study showed that DTMUV could induce duck embryo fibroblast (DEF) apoptosis, but the specific mechanism was not clear. In this study, we confirmed that DTMUV could induce the apoptosis of DEFs by DAPI staining and TUNEL staining. Furthermore, we found that the expression levels of cleaved-caspase-3/7/8/9 were significantly upregulated after DTMUV infection. After treatment of cells with an inhibitor of caspase-8 or caspase-9, DTMUV-induced apoptosis rates were significantly decreased, indicating that the caspase-8-mediated death receptor apoptotic pathway and caspase-9-mediated mitochondrial apoptotic pathway were involved in DTMUV-induced apoptosis. Moreover, we found that DTMUV infection not only caused the release of mitochondrial cytochrome C (Cyt C) and the downregulation of the apoptosis-inhibiting protein Bcl-2 but also reduced the mitochondrial membrane potential (MMP) and the accumulation of intracellular reactive oxygen species (ROS). Key genes in the mitochondrial apoptotic pathway and death receptor apoptotic pathway were upregulated to varying degrees, indicating the activation of the mitochondrial apoptosis pathway and death receptor apoptosis pathway. In conclusion, this study clarifies the molecular mechanism of DTMUV-induced apoptosis and provides a theoretical basis for revealing the pathogenic mechanism of DTMUV infection.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
39
|
Wang YZ, Cao CQ, Wang D. Physiological Responses of the Firefly Pyrocoelia analis (Coleoptera: Lampyridae) to an Environmental Residue From Chemical Pesticide Imidacloprid. Front Physiol 2022; 13:879216. [PMID: 35784886 PMCID: PMC9240607 DOI: 10.3389/fphys.2022.879216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Imidacloprid, a neonicotinoid insecticide, is widely applied to control insect pests across a broad spectrum. Though the impact of residues from this chemical pesticide on non-target organisms in the field has been reported, it was not well characterized across a wide range of ecosystems, especially for some species considered as environmental indicators that live in forests. The effects of sublethal dose of imidacloprid on firefly, Pyrocoelia analis, were analyzed physiologically and biochemically in this study to better understand the impact of chemical pesticide application on environmental indicators such as fireflies. After imidacloprid treatment, the midgut tissues of the larva presented an abnormal morphology featured as atrophy of fat body cells, shrinking cells, and the destruction of a midgut structure. The activities of antioxidant enzymes, superoxide dismutase, catalase, and peroxidase were noticeably increased during early exposure to sublethal imidacloprid and then decreased at later stages. The malondialdehyde content significantly increased after 12 h of exposure to imidacloprid compared with the control. Similarly, the enzyme activities of polyphenol oxidase and acetylcholinesterase were increased after the imidacloprid treatment and then decreased at the later stage. In summary, a sublethal dose of imidacloprid caused destructive change in the tissue structure, and this damage was followed by an excessive reactive oxygen species that could not be eliminated by antioxidant enzymes. Our results indicated that the residues of imidacloprid might cause severe toxicity to non-target insects in the environment even far away from the agro-ecosystem where the chemicals were applied.
Collapse
Affiliation(s)
- Yi-zhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Cheng-quan Cao
- College of Life Science, Leshan Normal University, Leshan, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Dun Wang, ,
| |
Collapse
|
40
|
Behl T, Wadhwa M, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Mechanistic insights into the role of FOXO in diabetic retinopathy. Am J Transl Res 2022; 14:3584-3602. [PMID: 35836845 PMCID: PMC9274583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM), a metabolic disorder characterized by insulin-deficiency or insulin-resistant conditions. The foremost microvascular complication of diabetes is diabetic retinopathy (DR). This is a multifaceted ailment mainly caused by the enduring adverse effects of hyperglycaemia. Inflammation, oxidative stress, and advanced glycation products (AGES) are part and parcel of DR pathogenesis. In regulating many cellular and biological processes, the family of fork-head transcription factors plays a key role. The current review highlights that FOXO is a requisite regulator of pathways intricate in diabetic retinopathy on account of its effect on microvascular cells inflammatory and apoptotic gene expression, and FOXO also has the foremost province in regulating cell cycle, proliferation, apoptosis, and metabolism. Blockage of insulin turns into an exaggerated level of glucose in the bloodstream and can upshot into the exaggerated triggering of FOXO1, which can ultimately uplift the production of several factors of apoptosis and inflammation, such as TNF-α, NF-kB, and various others, as well as reactive oxygen species, which can also come up with diabetic retinopathy. The current review also focuses on various therapies which can be used in the future, like SIRT1 signalling, resveratrol, retinal VEGF, etc., which can be used to suppress FOXO over activation and can prevent the progression of diabetic complications viz. diabetic retinopathy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Muskan Wadhwa
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun-248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté UniversityFrance
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
41
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
42
|
Rahman M, Olson I, Mansour M, Carlstrom LP, Sutiwisesak R, Saber R, Rajani K, Warrington AE, Howard A, Schroeder M, Chen S, Decker PA, Sananikone EF, Zhu Y, Tchkonia T, Parney IF, Burma S, Brown D, Rodriguez M, Sarkaria JN, Kirkland JL, Burns TC. Selective Vulnerability of Senescent Glioblastoma Cells to BCL-XL Inhibition. Mol Cancer Res 2022; 20:938-948. [PMID: 35191501 PMCID: PMC9196639 DOI: 10.1158/1541-7786.mcr-21-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/19/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023]
Abstract
Glioblastoma (GBM) is a rapidly fatal malignancy typically treated with radiation and temozolomide (TMZ), an alkylating chemotherapeutic. These cytotoxic therapies cause oxidative stress and DNA damage, yielding a senescent-like state of replicative arrest in surviving tumor cells. Unfortunately, recurrence is inevitable and may be driven by surviving tumor cells eventually escaping senescence. A growing number of so-called "senolytic" drugs have been recently identified that are defined by their ability to selectively eliminate senescent cells. A growing inventory of senolytic drugs is under consideration for several diseases associated with aging, inflammation, DNA damage, as well as cancer. Ablation of senescent tumor cells after radiation and chemotherapy could help mitigate recurrence by decreasing the burden of residual tumor cells at risk of recurrence. This strategy has not been previously explored for GBM. We evaluated a panel of 10 previously described senolytic drugs to determine whether any could exhibit selective activity against human GBM persisting after exposure to radiation or TMZ. Three of the 10 drugs have known activity against BCL-XL and preferentially induced apoptosis in radiated or TMZ-treated glioma. This senolytic activity was observed in 12 of 12 human GBM cell lines. Efficacy could not be replicated with BCL-2 inhibition or senolytic agents acting against other putative senolytic targets. Knockdown of BCL-XL decreased survival of radiated GBM cells, whereas knockdown of BCL-2 or BCL-W yielded no senolytic effect. IMPLICATIONS These findings imply that molecularly heterogeneous GBM lines share selective senescence-induced BCL-XL dependency increase the significance and translational relevance of the senolytic therapy for latent glioma.
Collapse
Affiliation(s)
- Masum Rahman
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Moustafa Mansour
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Rujapope Sutiwisesak
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rehan Saber
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Karishma Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Adam Howard
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mark Schroeder
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Sisi Chen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Paul A. Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ian F. Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Sandeep Burma
- Department of Neurosurgery, Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Desmond Brown
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Moses Rodriguez
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Terry C. Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
44
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Sesquiterpene Lactones Potentiate Olaparib-Induced DNA Damage in p53 Wildtype Cancer Cells. Int J Mol Sci 2022; 23:ijms23031116. [PMID: 35163037 PMCID: PMC8835362 DOI: 10.3390/ijms23031116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Despite notable advances in utilising PARP inhibitor monotherapy, many cancers are not PARP inhibitor-sensitive or develop treatment resistance. In this work, we show that the two structurally-related sesquiterpene lactones, a 2-bromobenzyloxy derivative of dehydrosantonin (BdS) and alantolactone (ATL) sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose treatment with the PARP inhibitor, olaparib. Exposure to combination treatments of olaparib with BdS or ATL induces cell-cycle changes, chromosomal instability, as well as considerable increases in nuclear area. Mechanistically, we uncover that mitotic errors likely depend on oxidative stress elicited by the electrophilic lactone warheads and olaparib-mediated PARP-trapping, culminating in replication stress. Combination treatments exhibit moderately synergistic effects on cell survival, probably attenuated by a p53-mediated, protective cell-cycle arrest in the G2 cell-cycle phase. Indeed, using a WEE1 inhibitor, AZD1775, to inhibit the G2/M cell-cycle checkpoint further decreased cell survival. Around half of all cancers diagnosed retain p53 functionality, and this proportion could be expected to increase with improved diagnostic approaches in the clinic. Utilising sublethal oxidative stress to sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose PARP-trapping could therefore serve as the basis for future research into the treatment of cancers currently refractory to PARP inhibition.
Collapse
|
46
|
Mohammadzadeh M, Alizadeh Z, Khodabakhsh R, Pazhang Y, Mohammadi S. Monte Carlo simulation for assessing absorbed dose effects of low-dose β-radiation ( 90Sr/ 90Y) on cytotoxicity and apoptotic death in K562 cells. J Cancer Res Ther 2022; 18:200-208. [DOI: 10.4103/jcrt.jcrt_909_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
48
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
49
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
50
|
Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021; 9:1340. [PMID: 34680457 PMCID: PMC8533434 DOI: 10.3390/biomedicines9101340] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Mariya V. Marsova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|