1
|
Yorek M. Combination therapy is it in the future for successfully treating peripheral diabetic neuropathy? Front Endocrinol (Lausanne) 2024; 15:1357859. [PMID: 38812811 PMCID: PMC11133577 DOI: 10.3389/fendo.2024.1357859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
In 2022, the Center for Disease Control and Prevention reported that 11.3% of the United States population, 37.3 million people, had diabetes and 38% of the population had prediabetes. A large American study conducted in 2021 and supported by many other studies, concluded that about 47% of diabetes patients have peripheral neuropathy and that diabetic neuropathy was present in 7.5% of patients at the time of diabetes diagnosis. In subjects deemed to be pre-diabetes and impaired glucose tolerance there was a wide range of prevalence estimates (interquartile range (IQR): 6%-34%), but most studies (72%) reported a prevalence of peripheral neuropathy ≥10%. There is no recognized treatment for diabetic peripheral neuropathy (DPN) other than good blood glucose control. Good glycemic control slows progression of DPN in patients with type 1 diabetes but for patients with type 2 diabetes it is less effective. With obesity and type 2 diabetes at epidemic levels the need of a treatment for DPN could not be more important. In this article I will first present background information on the "primary" mechanisms shown from pre-clinical studies to contribute to DPN and then discuss mono- and combination therapies that have demonstrated efficacy in animal studies and may have success when translated to human subjects. I like to compare the challenge of finding an effective treatment for DPN to the ongoing work being done to treat hypertension. Combination therapy is the recognized approach used to normalize blood pressure often requiring two, three or more drugs in addition to lifestyle modification to achieve the desired outcome. Hypertension, like DPN, is a progressive disease caused by multiple mechanisms. Therefore, it seems likely as well as logical that combination therapy combined with lifestyle adjustments will be required to successfully treat DPN.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
4
|
Hossain MJ, Kendig MD, Letton ME, Morris MJ, Arnold R. Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions. Diabetes Metab J 2022; 46:198-221. [PMID: 35385634 PMCID: PMC8987683 DOI: 10.4093/dmj.2021.0347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the 'Neurodiab' criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Meg E. Letton
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise and Rehabilitation, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, Australia
- Corresponding author: Ria Arnold https://orcid.org/0000-0002-7469-6587 Department of Exercise Physiology, School of Health Sciences, UNSW Sydney, Sydney, NSW 2052, Australia E-mail:
| |
Collapse
|
5
|
Yorek M. Treatment for Diabetic Peripheral Neuropathy: What have we Learned from Animal Models? Curr Diabetes Rev 2022; 18:e040521193121. [PMID: 33949936 PMCID: PMC8965779 DOI: 10.2174/1573399817666210504101609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Animal models have been widely used to investigate the etiology and potential treatments for diabetic peripheral neuropathy. What we have learned from these studies and the extent to which this information has been adapted for the human condition will be the subject of this review article. METHODS A comprehensive search of the PubMed database was performed, and relevant articles on the topic were included in this review. RESULTS Extensive study of diabetic animal models has shown that the etiology of diabetic peripheral neuropathy is complex, with multiple mechanisms affecting neurons, Schwann cells, and the microvasculature, which contribute to the phenotypic nature of this most common complication of diabetes. Moreover, animal studies have demonstrated that the mechanisms related to peripheral neuropathy occurring in type 1 and type 2 diabetes are likely different, with hyperglycemia being the primary factor for neuropathology in type 1 diabetes, which contributes to a lesser extent in type 2 diabetes, whereas insulin resistance, hyperlipidemia, and other factors may have a greater role. Two of the earliest mechanisms described from animal studies as a cause for diabetic peripheral neuropathy were the activation of the aldose reductase pathway and increased non-enzymatic glycation. However, continuing research has identified numerous other potential factors that may contribute to diabetic peripheral neuropathy, including oxidative and inflammatory stress, dysregulation of protein kinase C and hexosamine pathways, and decreased neurotrophic support. In addition, recent studies have demonstrated that peripheral neuropathy-like symptoms are present in animal models, representing pre-diabetes in the absence of hyperglycemia. CONCLUSION This complexity complicates the successful treatment of diabetic peripheral neuropathy, and results in the poor outcome of translating successful treatments from animal studies to human clinical trials.
Collapse
Affiliation(s)
- Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242 USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, 52246 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242 USA
| |
Collapse
|
6
|
Wang X, Li Q, Han X, Gong M, Yu Z, Xu B. Electroacupuncture Alleviates Diabetic Peripheral Neuropathy by Regulating Glycolipid-Related GLO/AGEs/RAGE Axis. Front Endocrinol (Lausanne) 2021; 12:655591. [PMID: 34295304 PMCID: PMC8290521 DOI: 10.3389/fendo.2021.655591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus (DM) and affects over one-third of all patients. Neuropathic pain and nerve dysfunction induced by DM is related to the increase of advanced glycation end products (AGEs) produced by reactive dicarbonyl compounds in a hyperglycemia environment. AGEs induce the expression of pro-inflammatory cytokines via the main receptor (RAGE), which has been documented to play a crucial role in the pathogenesis of diabetic peripheral neuropathy. Electroacupuncture (EA) has been reported to have a positive effect on paralgesia caused by various diseases, but the mechanism is unclear. In this study, we used high-fat-fed low-dose streptozotocin-induced rats as a model of type 2 diabetes (T2DM). Persistent metabolic disorder led to mechanical and thermal hyperalgesia, as well as intraepidermal nerve fiber density reduction and nerve demyelination. EA improved neurological hyperalgesia, decreased the pro-inflammatory cytokines, reduced the generation of AGEs and RAGE, and regulated the glyoxalase system in the EA group. Taken together, our study suggested that EA plays a role in the treatment of T2DM-induced DPN, and is probably related to the regulation of metabolism and the secondary influence on the GLO/AGE/RAGE axis.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Yu
- *Correspondence: Zhi Yu, ; Bin Xu,
| | - Bin Xu
- *Correspondence: Zhi Yu, ; Bin Xu,
| |
Collapse
|
7
|
Coppey L, Obrosov A, Shevalye H, Davidson E, Paradee W, Yorek MA. Characterization of Mice Ubiquitously Overexpressing Human 15-Lipoxygenase-1: Effect of Diabetes on Peripheral Neuropathy and Treatment with Menhaden Oil. J Diabetes Res 2021; 2021:5564477. [PMID: 33816635 PMCID: PMC7987465 DOI: 10.1155/2021/5564477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
To rigorously explore the role of omega-3 polyunsaturated fatty acids (PUFA) in the treatment of diabetic peripheral neuropathy (DPN), we have created a transgenic mouse utilizing a Cre-lox promoter to control overexpression of human 15-lipoxygenase-1 (15-LOX-1). In this study, we sought to determine the effect of treating type 2 diabetic wild-type mice and transgenic mice ubiquitously overexpressing 15-LOX-1 with menhaden oil on endpoints related to DPN. Wild-type and transgenic mice on a C57Bl/6J background were divided into three groups. Two of each of these groups were used to create a high-fat diet/streptozotocin model for type 2 diabetes. The remaining mice were control groups. Four weeks later, one set of diabetic mice from each group was treated with menhaden oil for twelve weeks and then evaluated using DPN-related endpoints. Studies were also performed using dorsal root ganglion neurons isolated from wild-type and transgenic mice. Wild-type and transgenic diabetic mice developed DPN as determined by slowing of nerve conduction velocity, decreased sensory nerve fibers in the skin and cornea, and impairment of thermal and mechanical sensitivity of the hindpaw compared to their respective control mice. Although not significant, there was a trend for the severity of these DPN-related deficits to be less in the diabetic transgenic mice compared to the diabetic wild-type mice. Treating diabetic wild-type and transgenic mice with menhaden oil improved the DPN-related endpoints with a trend for greater improvement or protection by menhaden oil observed in the diabetic transgenic mice. Treating dorsal root ganglion neurons with docosahexanoic acid but not eicosapentaenoic acid significantly increased neurite outgrowth with greater efficacy observed with neurons isolated from transgenic mice. Targeting pathways that will increase the production of the anti-inflammatory metabolites of omega-3 PUFA may be an efficacious approach to developing an effective treatment for DPN.
Collapse
Affiliation(s)
- Lawrence Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander Obrosov
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William Paradee
- The Genome Editing and Viral Vector Cores, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veteran Affairs, Iowa City Health Care System, Iowa City, IA 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes 2020; 27:115-123. [PMID: 32073426 PMCID: PMC11533224 DOI: 10.1097/med.0000000000000533] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in our understanding of the impact of dyslipidemia on microvascular complications in type 2 diabetes (T2D), with an emphasis on peripheral neuropathy and nephropathy. RECENT FINDINGS Mounting evidence suggests that rigorous glycemic control only mitigates certain microvascular complications in T2D patients. Particularly, well regulated blood glucose levels only marginally improve peripheral neuropathy in the T2D setting. Dyslipidemia, an abnormal lipid profile, is emerging as a key factor in peripheral neuropathy. Furthermore, although glycemic control may prevent or slow nephropathy, recent developments demonstrate that dyslipidemia can also affect kidney outcomes in normoglycemic patients. Transcriptomic, epigenomic, and lipidomic investigations, as well as integrative approaches, are shedding light on potential pathomechanisms. These molecular studies are identifying possible targets for therapeutic intervention. Complementing molecular research, lifestyle interventions are on-going to assess whether dietary choices and/or exercise, weight-loss, or surgical interventions, such as bariatric surgery, can ameliorate peripheral neuropathy and nephropathy in T2D patients. SUMMARY Dyslipidemia is an emerging mechanism in microvascular complications in T2D. Elucidating the molecular pathomechanisms may pinpoint potential lipid-centric treatments. Interventional studies of dietary changes, exercise, or weight-loss surgery may also positively impact these highly prevalent and morbid complications.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
9
|
O'Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, Hayes JM, Mendelson FE, Hur J, Feldman EL. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech 2020; 13:dmm.042101. [PMID: 31822493 PMCID: PMC6994925 DOI: 10.1242/dmm.042101] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mouse models of prediabetes and type 2 diabetes that develop peripheral neuropathy display increased levels of nerve triglycerides, which return to normal upon dietary reversal, suggesting that altered lipids are involved in disease.
Collapse
Affiliation(s)
- Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
10
|
Andreasen LJ, Kirk RK, Fledelius C, Yorek MA, Lykkesfeldt J, Akerstrom T. Insulin Treatment Attenuates Small Nerve Fiber Damage in Rat Model of Type 2 Diabetes. J Diabetes Res 2020; 2020:9626398. [PMID: 32832565 PMCID: PMC7424504 DOI: 10.1155/2020/9626398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Current clinical guidelines for management of diabetic peripheral neuropathy (DPN) emphasize good glycemic control. However, this has limited effect on prevention of DPN in type 2 diabetic (T2D) patients. This study investigates the effect of insulin treatment on development of DPN in a rat model of T2D to assess the underlying causes leading to DPN. METHODS Twelve-week-old male Sprague-Dawley rats were allocated to a normal chow diet or a 45% kcal high-fat diet. After eight weeks, the high-fat fed animals received a mild dose of streptozotocin to induce hyperglycemia. Four weeks after diabetes induction, the diabetic animals were allocated into three treatment groups receiving either no insulin or insulin-releasing implants in a high or low dose. During the 12-week treatment period, blood glucose and body weight were monitored weekly, whereas Hargreaves' test was performed four, eight, and 12 weeks after treatment initiation. At study termination, several blood parameters, body composition, and neuropathy endpoints were assessed. RESULTS Insulin treatment lowered blood glucose in a dose-dependent manner. In addition, both doses of insulin lowered lipids and increased body fat percentage. High-dose insulin treatment attenuated small nerve fiber damage assessed by Hargreaves' test and intraepidermal nerve fiber density compared to untreated diabetes and low-dose insulin; however, neuropathy was not completely prevented by tight glycemic control. Linear regression analysis revealed that glycemic status, circulating lipids, and sciatic nerve sorbitol level were all negatively associated with the small nerve fiber damage observed. CONCLUSION In summary, our data suggest that high-dose insulin treatment attenuates small nerve fiber damage. Furthermore, data also indicate that both poor glycemic control and dyslipidemia are associated with disease progression. Consequently, this rat model of T2D seems to fit well with progression of DPN in humans and could be a relevant preclinical model to use in relation to research investigating treatment opportunities for DPN.
Collapse
Affiliation(s)
- Laura J. Andreasen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Rikke K. Kirk
- Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Mark A. Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | |
Collapse
|
11
|
Rumora AE, LoGrasso G, Hayes JM, Mendelson FE, Tabbey MA, Haidar JA, Lentz SI, Feldman EL. The Divergent Roles of Dietary Saturated and Monounsaturated Fatty Acids on Nerve Function in Murine Models of Obesity. J Neurosci 2019; 39:3770-3781. [PMID: 30886017 PMCID: PMC6510336 DOI: 10.1523/jneurosci.3173-18.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathy is the most common complication of prediabetes and diabetes and presents as distal-to-proximal loss of peripheral nerve function in the lower extremities. Neuropathy progression and disease severity in prediabetes and diabetes correlates with dyslipidemia in man and murine models of disease. Dyslipidemia is characterized by elevated levels of circulating saturated fatty acids (SFAs) that associate with the progression of neuropathy. Increased intake of monounsaturated fatty acid (MUFA)-rich diets confers metabolic health benefits; however, the impact of fatty acid saturation in neuropathy is unknown. This study examines the differential effect of SFAs and MUFAs on the development of neuropathy and the molecular mechanisms underlying the progression of the complication. Male mice Mus musculus fed a high-fat diet rich in SFAs developed robust peripheral neuropathy. This neuropathy was completely reversed by switching the mice from the SFA-rich high-fat diet to a MUFA-rich high-fat diet; nerve conduction velocities and intraepidermal nerve fiber density were restored. A MUFA oleate also prevented the impairment of mitochondrial transport and protected mitochondrial membrane potential in cultured sensory neurons treated with mixtures of oleate and the SFA palmitate. Moreover, oleate also preserved intracellular ATP levels, prevented apoptosis induced by palmitate treatment, and promoted lipid droplet formation in sensory neurons, suggesting that lipid droplets protect sensory neurons from lipotoxicity. Together, these results suggest that MUFAs reverse the progression of neuropathy by protecting mitochondrial function and transport through the formation of intracellular lipid droplets in sensory neurons.SIGNIFICANCE STATEMENT There is a global epidemic of prediabetes and diabetes, disorders that represent a continuum of metabolic disturbances in lipid and glucose metabolism. In the United States, 80 million individuals have prediabetes and 30 million have diabetes. Neuropathy is the most common complication of both disorders, carries a high morbidity, and, despite its prevalence, has no treatments. We report that dietary intervention with monounsaturated fatty acids reverses the progression of neuropathy and restores nerve function in high-fat diet-fed murine models of peripheral neuropathy. Furthermore, the addition of the monounsaturated fatty acid oleate to sensory neurons cultured under diabetic conditions shows that oleate prevents impairment of mitochondrial transport and mitochondrial dysfunction through a mechanism involving formation of axonal lipid droplets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
12
|
Azmi S, Petropoulos IN, Ferdousi M, Ponirakis G, Alam U, Malik RA. An update on the diagnosis and treatment of diabetic somatic and autonomic neuropathy. F1000Res 2019; 8. [PMID: 30828432 PMCID: PMC6381801 DOI: 10.12688/f1000research.17118.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common chronic complication of diabetes. It poses a significant challenge for clinicians as it is often diagnosed late when patients present with advanced consequences such as foot ulceration. Autonomic neuropathy (AN) is also a frequent and under-diagnosed complication unless it is overtly symptomatic. Both somatic and autonomic neuropathy are associated with increased mortality. Multiple clinical trials have failed because of limited efficacy in advanced disease, inadequate trial duration, lack of effective surrogate end-points and a lack of deterioration in the placebo arm in clinical trials of DPN. Multifactorial risk factor reduction, targeting glycaemia, blood pressure and lipids can reduce the progression of DPN and AN. Treatment of painful DPN reduces painful symptoms by about 50% at best, but there is limited efficacy with any single agent. This reflects the complex aetiology of painful DPN and argues for improved clinical phenotyping with the use of targeted therapy, taking into account co-morbid conditions such as anxiety, depression and sleep disturbance.
Collapse
Affiliation(s)
- Shazli Azmi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Diabetes Centre, Manchester University Foundation Trust, Manchester, UK
| | | | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Georgios Ponirakis
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Uazman Alam
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, UK
| | - Rayaz A Malik
- Institute of Cardiovascular Sciences, University of Manchester and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review will summarize recent findings of the effect of supplemental fatty acids, with an emphasis on omega-3 polyunsaturated fatty acids, as a treatment for diabetic peripheral neuropathy. RECENT FINDINGS Pre-clinical studies have provided evidence that treating diabetic rodents with δ linolenic acid (omega-6 18:3) and to a greater extent with eicosapentaenoic and docosahexaenoic acids (omega-3 20:5 and 22:6, respectively) improve and even reverse vascular and neural deficits. Additional studies have shown resolvins, metabolites of eicosapentaenoic and docosahexaenoic acids, can induce neurite outgrowth in neuron cultures and that treating type 1 or type 2 diabetic mice with resolvin D1 or E1 provides benefit for peripheral neuropathy similar to fish oil. Omega-3 polyunsaturated fatty acids derived from fish oil and their derivatives have anti-inflammatory properties and could provide benefit for diabetic peripheral neuropathy. However, clinical trials are needed to determine whether this statement is true.
Collapse
Affiliation(s)
- Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Room 127, Building 41, Iowa City, IA, 52246, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|