1
|
Song J, Chang W, Wang Y, Gao P, Zhang J, Xiao Z, An F, Yan C. Inhibitors of the Wnt pathway in osteoporosis: A review of mechanisms of action and potential as therapeutic targets. BIOMOLECULES & BIOMEDICINE 2025; 25:511-524. [PMID: 39606935 PMCID: PMC12010972 DOI: 10.17305/bb.2024.11200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
The Wnt signaling pathway is one of the most important and critical signaling pathways for maintaining cellular functions, such as cell proliferation and differentiation. Increasing evidence substantiates that the Wnt signaling pathway also plays a significant role in the regulation of bone formation in osteoporosis. Accordingly, inhibitors of this pathway, such as sclerostin, Dickkopf-1 (DKK1), WNT inhibitory factor 1 (WIF1), and secreted frizzled-related proteins (SFRPs), have a negative regulatory role in bone formation and may serve as effective therapeutic targets for osteoporosis. This review examines the mechanisms of action of Wnt signaling pathway inhibitors in osteoporosis, the relationship between the Wnt pathway and its inhibitors, and new molecular targets for osteoporosis treatment. Overall, the regulatory mechanisms of Wnt pathway inhibitors are summarized to provide scientific and theoretical guidance for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Liu Y, Zhao L, He X, Shen Y, Wang N, Hu S, Xu J, Zhao Q, Zhang Q, Qin L, Zhang Q. Jintiange proteins promote osteogenesis and inhibit apoptosis of osteoblasts by enhancing autophagy via PI3K/AKT and ER stress pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116399. [PMID: 36997131 DOI: 10.1016/j.jep.2023.116399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiger bone, which had long been used in traditional Chinese medicine, had the action of removing wind and alleviating pain, strengthening the sinews and bones, and often used to treat bone impediment, and atrophic debility of bones in TCM clinical practice. As a substitute of natural bone tiger, artificial tiger bone Jintiange (JTG), has been approved by the State Food and Drug Administration of China for relief the symptom of osteoporosis, such as lumbago and back pain, lassitude in loin and legs, flaccidity and weakness legs, and walk with difficulty based on TCM theory. JTG has similar chemical profile to natural tiger bone, and contains mineral substance, peptides and proteins, and has been shown to protect bone loss in ovariectomized mice and exert the regulatory effects on osteoblast and osteoclast activities. But how the peptides and proteins in JTG modulate bone formation remains unclear. AIM To investigate the stimulating effects of JTG proteins on osteogenesis and explore the possible underlying mechanisms. MATERIALS AND METHODS JTG proteins were prepared from JTG Capsules by extracting calcium, phosphorus and other inorganic elements using SEP-PaktC18 desalting column. MC3T3-E1 cells were treated with JTG proteins to evaluate their effects and explore the underlying mechanisms. Osteoblast proliferation was detected by CCK-8 method. ALP activity was detected using a relevant assay kit, and bone mineralized nodules were stained with alizarin red-Tris-HCl solution. Cell apoptosis was analyzed by flow cytometry. Autophagy was observed by MDC staining, and autophagosomes were observed by TEM. Nuclear translocations of LC3 and CHOP were detected by immunofluorescence and observed under a laser confocal microscope. The expression of key proteins related to osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways was analyzed by Western Blot analysis. RESULTS JTG proteins improved osteogenesis as evidenced by the alteration of proliferation, differentiation and mineralization of MC3T3-E1 osteoblasts, inhibited their apoptosis, and enhanced autophagosome formation and autophagy. They also regulated the expression of key proteins of PI3K/AKT and ER stress pathways. In addition, PI3K/AKT and ER stress pathway inhibitors could reverse the regulatory effects of JTG proteins on osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways. CONCLUSION JTG proteins increased the osteogenesis and inhibited osteoblast apoptosis by enhancing autophagy via PI3K/AKT and ER stress signaling pathways.
Collapse
Affiliation(s)
- Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luying Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xinyunxi He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, China
| | - Sijing Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinlong Xu
- The 969th Hospital of the PLA Joint Logistics Support Forces, Hohhot, 010051, China
| | - Qiming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Zhang G, Liu Z, Li Z, Zhang B, Yao P, Qiao Y. Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation. Front Genet 2023; 14:1182363. [PMID: 37287533 PMCID: PMC10242146 DOI: 10.3389/fgene.2023.1182363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Osteoporosis (OP) is a metabolic disease that affects bone, resulting in a progressive decrease in bone mass, quality, and micro-architectural degeneration. Natural products have become popular for managing OP in recent years due to their minimal adverse side effects and suitability for prolonged use compared to chemically synthesized products. These natural products are known to modulate multiple OP-related gene expressions, making epigenetics an important tool for optimal therapeutic development. In this study, we investigated the role of epigenetics in OP and reviewed existing research on using natural products for OP management. Our analysis identified around twenty natural products involved in epigenetics-based OP modulation, and we discussed potential mechanisms. These findings highlight the clinical significance of natural products and their potential as novel anti-OP therapeutics.
Collapse
Affiliation(s)
- Guokai Zhang
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Li
- The First Affiliated Hospital of Shandong First Medical University Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Bing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengyu Yao
- Shandong Laboratory of Engineering Technology Suzhou Biomedical Engineering and Technology Chinese Academy of Sciences, Jinan, China
- Jinan Guoke Medical Engineering and Technology Development Company, Jinan, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Chou HC, Lin SY, Chou LY, Ho ML, Chuang SC, Cheng TL, Kang L, Lin YS, Wang YH, Wei CW, Chen CH, Wang CZ. Ablation of Discoidin Domain Receptor 1 Provokes an Osteopenic Phenotype by Regulating Osteoblast/Osteocyte Autophagy and Apoptosis. Biomedicines 2022; 10:biomedicines10092173. [PMID: 36140274 PMCID: PMC9496360 DOI: 10.3390/biomedicines10092173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen receptor that belongs to the receptor tyrosine kinase family. We have previously shown that DDR1 plays a crucial role during bone development, resulting in dwarfism and a short stature in osteoblast-specific knockout mice (OKO mice). However, the detailed pathophysiological effects of DDR1 on bone development throughout adulthood have remained unclear. This study aims to identify how DDR1 regulates osteoblast and osteocyte functions in vivo and in vitro during bone development in adulthood. The metabolic changes in bone tissues were analyzed using Micro-CT and immunohistochemistry staining (IHC) in vivo; the role of DDR1 in regulating osteoblasts was examined in MC3T3-E1 cells in vitro. The Micro-CT analysis results demonstrated that OKO mice showed a 10% reduction in bone-related parameters from 10 to 14 weeks old and a significant reduction in cortical thickness and diameter compared with flox/flox control mice (FF) mice. These results indicated that DDR1 knockout in OKO mice exhibiting significant bone loss provokes an osteopenic phenotype. The IHC staining revealed a significant decrease in osteogenesis-related genes, including RUNX2, osteocalcin, and osterix. We noted that DDR1 knockout significantly induced osteoblast/osteocyte apoptosis and markedly decreased autophagy activity in vivo. Additionally, the results of the gain- and loss-of-function of the DDR1 assay in MC3T3-E1 cells indicated that DDR1 can regulate the osteoblast differentiation through activating autophagy by regulating the phosphorylation of the mechanistic target of rapamycin (p-mTOR), light chain 3 (LC3), and beclin-1. In conclusion, our study highlights that the ablation of DDR1 results in cancellous bone loss by regulating osteoblast/osteocyte autophagy. These results suggest that DDR1 can act as a potential therapeutic target for managing cancellous bone loss.
Collapse
Affiliation(s)
- Hsin-Chiao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Liang-Yin Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ling Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Wang Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| |
Collapse
|
5
|
Wang F, Deng H, Chen J, Wang Z, Yin R. LncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting miR-150-5p. Bioengineered 2022; 13:6343-6352. [PMID: 35282774 PMCID: PMC9208443 DOI: 10.1080/21655979.2021.2011632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Osteoporosis (OP) is a systemic bone metabolic disease with complicated pathogenesis and is difficult to cure clinically. The regulatory mechanisms of OP are needed to be further investigated. In the present study, we focused on the role of myocardial infarction-associated transcript (MIAT) in OP development and examined the underlying mechanism. The serum expression levels of MIAT in samples from patients with OP and healthy controls were compared using quantitative reverse transcription-PCR (qRT-PCR). The dual-luciferase reporter assay was used to confirm the relationship between MIAT and its potential target microRNA, i.e., miR-150-5p. Moreover, bone marrow-derived mesenchymal stem cells (BMSCs) were cultured and transfected with MIAT shRNA, with or without miR-150-5p inhibitor. EdU staining and colony formation analysis were performed to determine the proliferation ability of these cells. Furthermore, the TUNEL assay and flow cytometry were used to assess BMSC apoptosis. Finally, RT-PCR and Western blot assays were employed to assess the expression of osteogenic differentiation biomarkers. Compared with controls, the expression of MIAT was significantly increased, whereas that of miR-150-5p was markedly decreased in patients with OP. MIAT and miR-150-5p expression levels exhibited a strong negative correlation. Furthermore, osteogenic differentiation indicators were suppressed in serum of OP patients. MIAT was downregulated, and miR-150-5p was upregulated in induced to osteogenic differentiation BMSCs. Furthermore, downregulation of MIAT dramatically promoted osteogenic differentiation, increased proliferation, and inhibited apoptosis in BMSCs; miR-150-5p inhibitor abrogated the effects of MIAT. In conclusion, lncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Fei Wang
- Department of Orthopedics, China-Japan Union Hospital, Changchun, China
| | - Huimin Deng
- Jilin Medical Products Administration, Changchun, China
| | - Jimin Chen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaobin Wang
- Department of Orthopedics, Liaohe Hospital, Liaoyuan, China
| | - Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital, Changchun, China
| |
Collapse
|
6
|
Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis 2021; 12:156. [PMID: 33542183 PMCID: PMC7862274 DOI: 10.1038/s41419-021-03430-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to reduce healing time and treat nonunion in fracture patients. In this study, bone marrow MSCs-derived extracellular vesicles (B-EVs) were firstly extracted and identified. CD9-/- and normal mice were enrolled for the establishment of fracture models and then injected with B-EVs. Osteoblast differentiation and fracture recovery were estimated. The levels of osteoblast-related genes were detected, and differentially expressed microRNAs (miRs) in B-EVs-treated normal fracture mice were screened and verified. The downstream mechanisms of miR were predicted and assessed. The loss-of functions of miR-335 in B-EV and gain-of-functions of VapB were performed in animal and cell experiments to evaluate their roles in bone fracture. Collectively, B-EVs promoted bone fracture recovery and osteoblast differentiation by releasing miR-335. miR-335 downregulation in B-EVs impaired B-EV functions in fracture recovery and osteoblast differentiation. miR-335 could target VapB, and VapB overexpression reversed the effects of B-EVs on osteoblast differentiation. B-EV treatment activated the Wnt/β-catenin pathway in fracture mice and osteoblasts-like cells. Taken together, the study suggested that B-EVs carry miR-335 to promote bone fracture recovery via VapB and the Wnt/β-catenin pathway. This study may offer insights into bone fracture treatment.
Collapse
Affiliation(s)
- Haifeng Hu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiyang Yin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyu He
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonghong Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
A critical assessment of the potential of pharmacological modulation of aldehyde dehydrogenases to treat the diseases of bone loss. Eur J Pharmacol 2020; 886:173541. [PMID: 32896553 DOI: 10.1016/j.ejphar.2020.173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Chronic alcoholism (CA) decreases bone mass and increases the risk of hip fracture. Alcohol and its main metabolite, acetaldehyde impairs osteoblastogenesis by increasing oxidative stress. Aldehyde dehydrogenase (ALDH) is the rate-limiting enzyme in clearing acetaldehyde from the body. The clinical relevance of ALDH in skeletal function has been established by the discovery of single nucleotide polymorphism, SNP (rs671) in the ALDH2 gene giving rise to an inactive form of the enzyme (ALDH2*2) that causes increased serum acetaldehyde and osteoporosis in the affected individuals. Subsequent mouse genetics studies have replicated human phenotype in mice and confirmed the non-redundant role of ALDH2 in bone homeostasis. The activity of ALDH2 is amenable to pharmacological modulation. ALDH2 inhibition by disulfiram (DSF) and activation by alda-1 cause reduction and induction of bone formation, respectively. DSF also inhibits peak bone mass accrual in growing rats. On the other hand, DSF showed an anti-osteoclastogenic effect and protected mice from alcohol-induced osteopenia by inhibiting ALDH1a1 in bone marrow monocytes. Besides DSF, there are several classes of ALDH inhibitors with disparate skeletal effects. Alda-1, the ALDH2 activator induced osteoblast differentiation by increasing bone morphogenic protein 2 (BMP2) expression via ALDH2 activation. Alda-1 also restored ovariectomy-induced bone loss. The scope of structure-activity based studies with ALDH2 and the alda-1-like molecule could lead to the discovery of novel osteoanabolic molecules. This review will critically discuss the molecular mechanism of the ethanol and its principal metabolite, acetaldehyde in the context of ALDH2 in bone cells, and skeletal homeostasis.
Collapse
|
8
|
Gossypol Promotes Wnt/ β-Catenin Signaling through WIF1 in Ovariectomy-Induced Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8745487. [PMID: 31139657 PMCID: PMC6500658 DOI: 10.1155/2019/8745487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/23/2023]
Abstract
Osteoporosis is one of the most frequent diseases related with age. Previously, we have reported a novel potential drug, gossypol, for the treatment of osteoporosis through its regulation of Wnt/β-catenin signaling. This study aims to identify the detailed mechanism of gossypol in human osteoporosis. Mice injected with gossypol were subjected for RNA-seq analysis and the transcription level of WIF1 was shown to be decreased dramatically in gossypol-treated mice, which was further confirmed by qRT-PCR and western blot analysis. Luciferase reporter assay showed gossypol inhibited the activity of WIF1 and the methylation of WIF1 was significantly upregulated, evidenced by ChIP assay. Cell viability assays demonstrated that gossypol promoted cell proliferation while cotreatment with WIF1 expressing plasmid reversed the effect in a dose- and time-dependent manner. Similarly, cell apoptotic assays and TUNEL assays showed gossypol suppressed cell apoptosis, which was revised by WIF1 overexpression. The mouse model suggested gossypol injection ameliorated osteoporosis, while coinjection of AAV5-WIF1 eliminated the protection effects of gossypol, as evidenced by H&E staining, serum osteocalcin level, serum OPG level, serum RANKL level, bone density, ultimate strength, and postyield displacement. This study is a supplement to the former publication, which reinforced the protection effect of gossypol in human osteoporosis.
Collapse
|