1
|
Cao J, Feng H, Li L, Ling W, Wang H. High-frequency ultrasound for assessing the renal characteristics of spontaneous type 2 diabetes mellitus db/db mice. Exp Anim 2025; 74:151-159. [PMID: 39462547 PMCID: PMC12044364 DOI: 10.1538/expanim.24-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
There are few ultrasonographic studies on the spontaneous type 2 diabetes mellitus db/db mouse. Our objective was to dynamically investigate and assess renal morphological and hemodynamic changes in spontaneous T2DM db/db mice through high-frequency ultrasound. Eighteen male db/db mice (the model group) and twelve male db/+ mice (the control group) were included. Body weight and fasting blood glucose were measured at the ages of 8, 16 and 32 weeks. High-frequency ultrasound examinations were conducted at the same ages. Compared with those in the control group, hematoxylin-eosin and Masson staining revealed pathological changes in the renal tissue of the db/db mice at 16 weeks of age, and the lesions were significantly aggravated at 32 weeks of age. The body mass of the mice in the model group increased significantly at 8, 16 and 32 weeks of age, and the kidney volume measured by ultrasound also increased with age. Compared with those of the control group, the blood flow scores determined via power Doppler were significantly different. The peak systolic velocity (PSV), end diastolic velocity (EDV), and resistive index (RI) of the renal artery and the PSV, EDV, and RI of the segmental artery were significantly different at the sixteenth week compared with those that at the eighth week. The results of high-frequency ultrasound revealed that the renal hemodynamics of db/db mice changed at the sixteenth weeks.
Collapse
Affiliation(s)
- Jiazhi Cao
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu 610041, P.R. China
| | - Hao Feng
- West China Clinical Medical College of Sichuan University, 37 Guoxuexiang, Chengdu 610041, P.R. China
| | - Lutong Li
- West China Clinical Medical College of Sichuan University, 37 Guoxuexiang, Chengdu 610041, P.R. China
| | - Wenwu Ling
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu 610041, P.R. China
| | - Hong Wang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxuexiang, Chengdu 610041, P.R. China
| |
Collapse
|
2
|
Gargiulo S, Barone V, Bonente D, Tamborrino T, Inzalaco G, Gherardini L, Bertelli E, Chiariello M. Integrated Ultrasound Characterization of the Diet-Induced Obesity (DIO) Model in Young Adult c57bl/6j Mice: Assessment of Cardiovascular, Renal and Hepatic Changes. J Imaging 2024; 10:217. [PMID: 39330437 PMCID: PMC11433005 DOI: 10.3390/jimaging10090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney. Long-term WD feeding increased mice body weight (BW), liver/BW ratio and body condition score (BCS), transaminases, glucose and insulin, and caused dyslipidemia and insulin resistance. Echocardiography revealed subtle cardiac remodeling in WD-fed mice, highlighting a significant age-diet interaction for some left ventricular morphofunctional parameters. Qualitative and parametric HFUS analyses of the liver in WD-fed mice showed a progressive increase in echogenicity and echotexture heterogeneity, and equal or higher brightness of the renal cortex. Furthermore, renal circulation was impaired in WD-fed female mice. The ultrasound and histopathological findings were concordant. Overall, HFUS can improve the translational value of preclinical DIO models through an integrated approach with conventional methods, enabling a comprehensive identification of early stages of diseases in vivo and non-invasively, according to the 3Rs.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Giovanni Inzalaco
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| |
Collapse
|
3
|
Beck L, Su J, Comerma-Steffensen S, Pinilla E, Carlsson R, Hernanz R, Sheykhzade M, Danielsen CC, Simonsen U. Endothelial Dysfunction and Passive Changes in the Aorta and Coronary Arteries of Diabetic db/db Mice. Front Physiol 2020; 11:667. [PMID: 32655412 PMCID: PMC7324802 DOI: 10.3389/fphys.2020.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell dysfunction and vessel stiffening are associated with a worsened prognosis in diabetic patients with cardiovascular diseases. The present study hypothesized that sex impacts endothelial dysfunction and structural changes in arteries from diabetic mice. In diabetic (db/db) and normoglycaemic (db/db+) mice, the mechanical properties were investigated in pressurized isolated left anterior descending coronary arteries and aorta segments that were subjected to tensile testing. Functional studies were performed on wire-mounted vascular segments. The male and female db/db mice were hyperglycaemic and had markedly increased body weight. In isolated aorta segments without the contribution of smooth muscle cells, load to rupture, viscoelasticity, and collagen content were decreased suggesting larger distensibility of the arterial wall in both male and female db/db mice. In male db/db aorta segments with smooth muscle cell contribution, lumen diameter was smaller and the passive stretch-tension curve was leftward-shifted, while they were unaltered in female db/db aorta segments versus control db/db+ mice. In contrast to female db/db mice, coronary arteries from male db/db mice had altered stress-strain relationships and increased distensibility. Transthoracic echocardiography revealed a dilated left ventricle with unaltered cardiac output, while aortic flow velocity was decreased in male db/db mice. Impairment of acetylcholine relaxation was aggravated in aorta from female db/db compared to control and male db/db mice, while impairment of sodium nitroprusside relaxations was only observed in aorta from male db/db mice. The remodeling in the coronary arteries and aorta suggests an adaptation of the arterial wall to the reduced flow velocity with sex-specific differences in the passive properties of aorta and coronary arteries. The findings of less distensible arteries and more pronounced endothelial dysfunction in female compared to male diabetic mice may have implications for the observed higher incidence of macrovascular complications in diabetic women.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Junjing Su
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences/Animal Physiology, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Rune Carlsson
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl Christian Danielsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Cheng H, Lu T, Wang J, Xia Y, Chai X, Zhang M, Yao Y, Zhou N, Zhou S, Chen X, Su W, Liu C, Yi W, Chen Y, Yao L. HuangqiGuizhiWuwu Decoction Prevents Vascular Dysfunction in Diabetes via Inhibition of Endothelial Arginase 1. Front Physiol 2020; 11:201. [PMID: 32269530 PMCID: PMC7109290 DOI: 10.3389/fphys.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia induces vascular endothelial dysfunction, which contributes to the development of vascular complication of diabetes. A classic prescription of traditional medicine, HuangqiGuizhiWuwu Decoction (HGWWD) has been used for the treatment of various cardiovascular and cerebrovascular diseases, which all are related with vascular pathology. The present study investigated the effect of HGWWD treatment in streptozocin (STZ)-induced vascular dysfunction in mouse models. In vivo studies were performed using wild type mice as well as arginase 1 knockout specific in endothelial cells (EC-A1-/-) of control mice, diabetes mice and diabetes mice treated with HGWWD (60 g crude drugs/kg/d) for 2 weeks. For in vitro studies, aortic tissues were treated with mice serum containing HGWWD with or without adenoviral arginase 1 (Ad-A1) transduction in high glucose (HG) medium. We found that HGWWD treatment restored STZ-induced impaired mean velocity and pulsatility index of mouse left femoral arteries, aortic pulse wave velocity and vascular endothelial relaxation accompanied by elevated NO production in the aorta and plasma, as well as reduced endothelial arginase activity and aortic arginase 1 expression. The protective effect of HGWWD is reversed by an inhibitor of nitric oxide synthesis. Meanwhile, the preventive effect of serum containing HGWWD in endothelial vascular dysfunction is completely blocked by Ad-A1 transduction in HG incubated aortas. HGWWD treatment further improved endothelial vascular dysfunction in STZ induced EC-A1-/- mice. This study demonstrates that HGWWD improved STZ-induced vascular dysfunction through arginase 1 - NO signaling, specifically targeting endothelial arginase 1.
Collapse
Affiliation(s)
- Hong Cheng
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Lu
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingya Wang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucen Xia
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoshu Chai
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sisi Zhou
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cunzhi Liu
- Acupuncture Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Yi
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- School of Pharmaceutical Sciences, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Madonna R, Doria V, Görbe A, Cocco N, Ferdinandy P, Geng YJ, Pierdomenico SD, De Caterina R. Co-expression of glycosylated aquaporin-1 and transcription factor NFAT5 contributes to aortic stiffness in diabetic and atherosclerosis-prone mice. J Cell Mol Med 2020; 24:2857-2865. [PMID: 31970899 PMCID: PMC7077545 DOI: 10.1111/jcmm.14843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023] Open
Abstract
Increased stiffness characterizes the early change in the arterial wall with subclinical atherosclerosis. Proteins inducing arterial stiffness in diabetes and hypercholesterolaemia are largely unknown. This study aimed at determining the pattern of protein expression in stiffening aorta of diabetic and hypercholesterolaemic mice. Male Ins2+/Akita mice were crossbred with ApoE−/− (Ins2+/Akita: ApoE−/−) mice. Relative aortic distension (relD) values were determined by ultrasound analysis and arterial stiffness modulators by immunoblotting. Compared with age‐ and sex‐matched C57/BL6 control mice, the aortas of Ins2+/Akita, ApoE−/− and Ins2+/Akita:ApoE−/− mice showed increased aortic stiffness. The aortas of Ins2+/Akita, ApoE−/− and Ins2+/Akita:ApoE−/− mice showed greater expression of VCAM‐1, collagen type III, NADPH oxidase and iNOS, as well as reduced elastin, with increased collagen type III‐to‐elastin ratio. The aorta of Ins2+/Akita and Ins2+/Akita:ApoE−/− mice showed higher expression of eNOS and cytoskeletal remodelling proteins, such as F‐actin and α‐smooth muscle actin, in addition to increased glycosylated aquaporin (AQP)‐1 and transcription factor NFAT5, which control the expression of genes activated by high glucose‐induced hyperosmotic stress. Diabetic and hypercholesterolaemic mice have increased aortic stiffness. The association of AQP1 and NFAT5 co‐expression with aortic stiffness in diabetes and hypercholesterolaemia may represent a novel molecular pathway or therapeutic target.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Center of Excellence on Aging and Regenerative Medicine (CeSI-Met), "G. d'Annunzio" University Chieti, Chieti, Italy.,Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vanessa Doria
- Center of Excellence on Aging and Regenerative Medicine (CeSI-Met), "G. d'Annunzio" University Chieti, Chieti, Italy
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Nino Cocco
- Tor Vergata University Hospital, Rome, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Yong-Jian Geng
- Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | |
Collapse
|
6
|
Wang Z, Fu Z, Yang Y, Xing W, Zhang X, Wang J, Li Y, Yuan L, Gao F. A novel methodology for rat aortic pulse wave velocity assessment by Doppler ultrasound: validation against invasive measurements. Am J Physiol Heart Circ Physiol 2019; 317:H1376-H1387. [PMID: 31702970 DOI: 10.1152/ajpheart.00382.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is still lack of a simple, accurate, and noninvasive method for rat aortic pulse wave velocity (PWV) measurement, especially the transit distance cannot be accurately measured. Thus, we aimed to derive an equation for aortic transit distance as a function of the nose-to-rump length (L) and to test the hypothesis that aortic PWV measured by new equation combined with Doppler ultrasound (the "equation method") may have stronger correlation with invasive measurements than traditional "body surface method." Two-hundred male Sprague-Dawley (SD) rats (age ranged 5-24 wk) were included in protocol 1, and the aortic transit distances were measured postmortem. In protocol 2, heart-femoral PWV and carotid-femoral PWV were measured by equation method (hfPWVE, cfPWVE) and also by traditional body surface method (hfPWVS, cfPWVS) in another 30 young and 28 old rats. These measurements were then validated against invasively measured hfPWVI and cfPWVI from the same animal. Protocol 1 showed that the heart-femoral transit distance could be calculated by 0.6086 × L - 1.6523, and the carotid-femoral transit distance by 0.4614 × L + 1.8335. In protocol 2, in young rats, the Pearson r between hfPWVE, cfPWVE, hfPWVS, and cfPWVS and their corresponding invasive measurement were 0.8962, 0.8509, 0.8387, and 0.7828, respectively (all P < 0.0001). In the old group, the results were 0.8718, 0.7999, 0.8330, and 0.7112, respectively (all P < 0.0001). The hfPWVE and cfPWVE showed better agreement with hfPWVI and cfPWVI and lower intra- and interobserver variability compared with hfPWVS and cfPWVS in both groups. These findings demonstrate that this novel methodology provides a simple and reliable method for rat noninvasive aortic PWV measurement.NEW & NOTEWORTHY First, when measuring aortic PWV in SD rat models, the heart-femoral transit distance can be estimated by 0.6086 × L - 1.6523, and the carotid-femoral distance transit distance can be estimated by 0.4614 × L + 1.8335, where L (in mm) is nose-to-rump length. Second, this novel methodology for aortic PWV measurement was validated with a closer correlation with the invasive measurements than traditional approach in young and old rats. Third, this study provides a simple and reliable method for rat noninvasive aortic PWV measurement.
Collapse
Affiliation(s)
- Zhen Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Zihao Fu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yong Yang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiaping Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yongzhi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|