1
|
Edres HA, Elmassry IH, Lebda MA, Othman SI, El-Karim DRSG, Rudayni HA, Ebied SKM, Allam AA, Hashem AE. Berberine and Cyperus rotundus extract nanoformulations protect the rats against Staphylococcus-induced mastitis via antioxidant and anti-inflammatory activities: role of MAPK signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01628-8. [PMID: 39707026 DOI: 10.1007/s12013-024-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Berberine (BER) and Cyperus rotundus rhizomes extract (CRE) are phytochemicals characterized by broad-spectrum pharmacological activity that could tackle the side effects of conventional mastitis therapies, however, they undergo a modest bioavailability. In the current study, nanoformulations of BER and CRE chitosan hydrogel (BER/CH-NPs, CRE/CH-NPs) were investigated for their antibacterial, antioxidant, anti-inflammatory and anti-apoptotic effects against S. aureus-induced mastitis in a rat model. The experiment was conducted on 80 early lactating female albino rats allocated into 6 groups; control, mastitis, BER/CH-NPs (1 and 0.5 mg), CRE/CH-NPs (0.5 and 0.25 mg), BER/CH-NPs + CRE/CH-NPs (0.5 + 0.25 and 0.25 + 0.125 mg). The nanoparticles were given by oral gavage once every other day from day 2 to day 12 after parturition. On the 13th day, intra-mammary inoculation with 100 µl of S. aureus suspension containing 2.1 × 108 CFU/ml in all groups except the control group. The results expressed the effect of BER/CH-NPs and CRE/CH-NPs on mammary gland tissue including significantly diminished viable bacterial load as well as attenuated the levels of MPO, MDA, caspase-3 with elevating Nrf2 level, and modulating glutathione redox. Also, the nanoformulations resulted in attenuation of the mRNA expression of TLR2, NOD2, Keap-1 and MAPK signaling pathway additional to the immune reactivity of NF-κB P65 and p-ERK as well as the preservation of the regular alveolar architecture. The supplementation of the berberine and Cyperus rotundus extract nanoformulations could be a prospective protective approach against Staphylococcal mastitis via their antibacterial, antioxidant, antiapoptotic, anti-inflammatory and modulation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Hanan A Edres
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt.
| | - Sarah I Othman
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Sawsan Kh M Ebied
- Bacteriology Unit, Animal Health Research Institute, Alexandria Province, Alexandria, 21944, Egypt
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Aml E Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
2
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Xiong Y, Shen T, Lou P, Yang J, Kastelic JP, Liu J, Xu C, Han B, Gao J. Colostrum-derived extracellular vesicles: potential multifunctional nanomedicine for alleviating mastitis. J Nanobiotechnology 2024; 22:627. [PMID: 39407245 PMCID: PMC11481564 DOI: 10.1186/s12951-024-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Taiyu Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610213, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
He X, Wang J, Sun L, Ma W, Li M, Yu S, Zhou Q, Jiang J. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling. Cell Stress Chaperones 2023; 28:989-999. [PMID: 37910344 PMCID: PMC10746643 DOI: 10.1007/s12192-023-01391-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Mastitis is a disease involved in inflammation of breast which affects human and animals. Wogonin is one bioactive compound from many Chinese herbal medicines, which have multiple properties, including anti-inflammatory activity. However, the roles of wogonin in mastitis progression are largely undefined. Mastitis models were established using LPS-treated mice and mammary epithelial cells (MECs). Infiltration of inflammatory cells was analyzed by hematoxylin-eosin staining and myeloperoxidase (MPO) activity. Inflammatory cytokine (TNF-α and IL-1β) levels were detected via ELISA. The phosphorylation and total of Akt and NF-κB levels and content of Nrf2 and HO-1 were measured via western blot. Cell viability was examined by CCK-8 assay. Oxidative stress was assessed by ROS generation and levels of MDA, GSH, and SOD. Wogonin attenuated LPS-induced infiltration of inflammatory cells, increase of MPO activity and levels of TNF-α and IL-1β, and activation of the Akt/NF-κB pathway in murine mammary gland tissues, and promoted activation of Nrf2/HO-1 signaling. Wogonin did not affect MEC viability, but mitigated LPS-induced inflammation in MECs by reducing TNF-α and IL-1β levels. Wogonin relieved LPS-induced oxidative stress in MECs through decreasing ROS generation and MDA level and increasing GSH and SOD levels. Wogonin repressed LPS-induced activation of the Akt/NF-κB pathway in MECs and increased Nrf2/HO-1 signaling activation. Activated Akt/NF-κB signaling or Nrf2/HO-1 signaling inactivation reversed the suppressive effects of wogonin on LPS-induced inflammation and oxidative stress in MECs. Wogonin mitigates LPS-induced inflammation and oxidative stress of MECs via suppressing activation of the Akt/NF-κB signaling and activating Nrf2/HO-1 pathway, indicating the therapeutic potential of wogonin in mastitis.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
5
|
Vaezi H, Rabbani S, Mortazavi SA, Kamalinejad M, Haeri A. Fabrication, in Vitro, and in Vivo Characterization of Mucoadhesive Berberine-Loaded Blended Wafers for Treatment of Chemotherapy-Induced Oral Mucositis. AAPS PharmSciTech 2022; 24:19. [DOI: 10.1208/s12249-022-02476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
|
6
|
S R, P G, P B, Hn Y, Ak D. Solid lipid nanoformulation of berberine attenuates Doxorubicin triggered in vitro inflammation in H9c2 rat cardiomyocytes. Comb Chem High Throughput Screen 2022; 25:1695-1706. [PMID: 35718970 DOI: 10.2174/1386207325666220617113744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
AIM To evaluate berberine solid lipid nanoparticles' efficacy against doxorubicin-induced cardiotoxicity. BACKGROUND Berberine (Ber) is cardioprotective, but its oral bioavailability is low and its effect in chemotherapy-induced cardiotoxicity has not been studied. OBJECTIVE Solid lipid nanoparticles (SLNs) of berberine chloride were prepared, characterized and evaluated in vitro against Doxorubicin induced cardiomyocyte injury. METHODOLOGY Berberine loaded SLNs (Ber-SLNs) were synthesized using water-in-oil microemulsion technique with tripalmitin, Tween 80 and poloxamer 407. Ber-SLNs were evaluated for preventive effect against toxicity of Doxorubicin in H9c2 cells. The culture was pre-treated (24 h) with Ber (10 µM) and Ber-SLNs (1 and 10 µM) and exposed to 1 µM of Doxorubicin (Dox) was added for 3 h. The cell viability (LDH (Lactate dehydrogenase) assay and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)), levels of Creatine kinase-MB (CK-MB), Nitrite, MDA (Malondialdehyde), ROS (Reactive oxygen species) generation and apoptotic DNA (Deoxyribonucleic acid) content were assessed. RESULTS Ber-SLNs had a mean particle size of 13.12±1.188 nm, zeta potential of -1.05 ± 0.08 mV, poly-dispersity index (PDI) of 0.317 ± 0.05 and entrapment efficiency of 50 ± 4.8%. Cell viability was 81 0.17% for Ber-SLNs (10 µM) and 73.22 0.83% for Ber (10 µM) treated cells in MTT assay. Percentage cytotoxicity calculated from LDH release was 58.91 0.54% after Dox, 40.3 1.3% with Ber (10 µM) and 40.7 1.3% with Ber-SLNs (1 µM) (p<0.001). Inflammation and oxidative stress markers were lower with Ber and Ber-SLNs. Attenuation of ROS generation and apoptosis of cardiomyocytes were noted on fluorescence microscopy. CONCLUSION Ber loaded SLNs effectively prevented Doxorubicin-induced inflammation and oxidative stress in rat cardiomyocytes. The results demonstrate that microemulsion is a simple, cost-effective technique to prepare Ber-SLNs and may be considered as a drug delivery vehicle for berberine.
Collapse
Affiliation(s)
- Rawal S
- Department of Pharmacology, AIIMS, New Delhi
| | - Gupta P
- Department of Pharmacology, AIIMS, New Delhi
| | - Bhatnagar P
- Department of Pharmacology, AIIMS, New Delhi
| | - Yadav Hn
- Department of Pharmacology, AIIMS, New Delhi
| | - Dinda Ak
- Department of Pathology, AIIMS, New Delhi
| |
Collapse
|
7
|
Zhao T, Zhang K, Shi G, Ma K, Wang B, Shao J, Wang T, Wang C. Berberine Inhibits the Adhesion of Candida albicans to Vaginal Epithelial Cells. Front Pharmacol 2022; 13:814883. [PMID: 35295335 PMCID: PMC8918845 DOI: 10.3389/fphar.2022.814883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an inflammatory disease of the vagina mainly caused by Candida albicans (C. albicans), which affects around three-quarters of all women during their reproductive age. Although some antifungal drugs such as azoles have been applied clinically for many years, their therapeutic value is very limited due to the emergence of drug-resistant strains. Previous studies have shown that the adhesion of C. albicans to vaginal epithelial cells is essential for the pathogenesis of VVC. Therefore, preventing the adhesion of C. albicans to vaginal epithelial cells may be one of the most effective strategies for the treatment of VVC. Berberine (BBR) is a biologically active herbal alkaloid that was used to treat VVC. However, so far, its mechanism has remained unclear. This study shows BBR significantly inhibits the adhesion of C. albicans to vaginal epithelial cells by reducing the expressions of ICAM-1, mucin1, and mucin4 in vaginal epithelial cells, which play the most important role in modulating the adhesion of C. albicans to host cells, and balancing IL-2 and IL-4 expressions, which play a key effect on regulating the inflammatory response caused by C. albicans infection. Hence, our findings demonstrate that BBR may be a potential therapeutic agent for VVC by interfering with the adhesion of C. albicans to vaginal epithelial cells and represents a new pathway for developing antifungal therapies agents from natural herbs.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kelong Ma
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Benfan Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| |
Collapse
|
8
|
Balkrishna A, Verma S, Sakat S, Joshi K, Solleti SK, Bhattacharya K, Varshney A. Comprehensive Phytochemical Profiling of Polyherbal Divya-Kayakalp-Vati and Divya-Kayakalp-Oil and Their Combined Efficacy in Mouse Model of Atopic Dermatitis-Like Inflammation Through Regulation of Cytokines. Clin Cosmet Investig Dermatol 2022; 15:293-312. [PMID: 35237058 PMCID: PMC8882669 DOI: 10.2147/ccid.s342227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Atopic dermatitis (AD) is a chronic inflammatory disease that varies in signs and symptoms in different individuals. General symptoms include dryness of the skin, itching, and development of red to brownish-gray patches. Divya-Kayakalp-Vati (DKV) and -Oil (DKO) are Indian polyherbal compositions prescribed for treating inflammatory skin diseases. In the present study, we evaluated the anti-inflammatory efficacy of DKV and DKO co-treatment (DKV-O) in ameliorating Oxazolone (OXA)-stimulated AD-like inflammation and pro-inflammatory cytokine release in a Swiss albino mouse model. METHODS Phytochemical profiling of the DKV and DKO were done using Liquid Chromatography-Mass Spectroscopy (LC-MS) QToF. Swiss albino mice were sensitized for 7 days and treated with OXA in their ear region. Stimulated and control animals were orally treated with DKV and topically with DKO. Anti-inflammatory efficacy of DKV-O was determined in OXA-treated animals through physiological, histopathological, and biochemical parameter analysis. RESULTS DKV and DKO formulations individually contained 39 and 59 phytochemicals, respectively. Many of the phytochemicals have been reported to have anti-inflammatory activities. In the OXA-sensitized Swiss albino mice, combined treatment with DKV-O, and separately with Dexamethasone (positive control) significantly reduced the OXA-stimulated ear edema, biopsy weight, and epidermal thickness. DKV-O further reduced OXA-stimulated induction of inflammatory lesions, neutrophil influx, and release of Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and myeloperoxidase. CONCLUSION Finally, DKV-O co-treatment showed good pharmacological effects in ameliorating AD-like inflammation through the modulation of inflammatory cell influx and release of soluble mediators. Therefore, DKV-O treatment can be used as a suitable polyherbal therapeutic against AD-like inflammatory diseases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali YogPeeth, Haridwar, 249 405, Uttarakhand, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
| | - Sachin Sakat
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
| | - Kheemraj Joshi
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
| | - Siva K Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249 405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali YogPeeth, Haridwar, 249 405, Uttarakhand, India
| |
Collapse
|
9
|
Mombeini MA, Kalantar H, Sadeghi E, Goudarzi M, Khalili H, Kalantar M. Protective effects of berberine as a natural antioxidant and anti-inflammatory agent against nephrotoxicity induced by cyclophosphamide in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:187-194. [PMID: 34994821 DOI: 10.1007/s00210-021-02182-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Cyclophosphamide is an alkylating agent with nephrotoxicity that constrains its clinical application. Berberine is an isoquinoline derivative alkaloid with biological functions like antioxidant and anti-inflammatory. The current research intended to examine the nephroprotective impacts of berberine against cyclophosphamide-stimulated nephrotoxicity. METHODS Forty animal subjects were randomly separated into five categories of control (Group I), cyclophosphamide (200 mg/kg, i.p., on 7th day) (Group II), and groups III and IV that received berberine 50 and 100 mg/kg orally for seven days and a single injection of cyclophosphamide on 7th day. Group V as berberine (100 mg/kg, alone). On day 8, blood samples were drawn from the retro-orbital sinus to determine serum levels of blood urea nitrogen (BUN), creatinine (Cr), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) as biomarkers for kidney injury. Nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities as oxidative stress factors, tumor necrosis factor-α (TNF-α) and interleukin 1 beta (IL-1β) levels as inflammatory mediators were assessed in kidney tissue. RESULTS The results of this study demonstrated that berberine was able to protect remarkably the kidney from CP-induced injury through decreasing the level of BUN, Cr, NGAL, KIM-1, NO, MDA TNF-α, IL-1β and increasing the level of GSH, CAT, SOD, and GPx activities. CONCLUSION Berberine may be employed as a natural agent to prevent cyclophosphamide-induced nephrotoxicity through anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mohammad Amin Mombeini
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Sadeghi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
10
|
Bakshi J, Lathar P, Mehra M, Grewal S, Dhingra D, Kumari S. Evaluation of anti-inflammatory response of berberine-loaded gum nanocomplexes in carrageenan-induced acute paw edema in rats. Pharmacol Rep 2022; 74:392-405. [PMID: 34984656 DOI: 10.1007/s43440-021-00350-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Berberine is a natural plant alkaloid and has been reported to possess anti-inflammatory activity. However, berberine's poor bioavailability and low solubility have limited its clinical applicability. Nanoencapsulation of berberine using a suitable carrier can be a promising strategy to improve its efficacy. Therefore, this study aimed to produce berberine-loaded gum nanocomplexes to evaluate their therapeutic effects in a carrageenan-induced rat model. METHODS Berberine-loaded gum nanocomplexes were prepared by the ionic complexation between the negative charges of the gums (tragacanth and acacia gum) using a cross-linker for loading cationic berberine and their anti-inflammatory activity was evaluated against carrageenan-induced paw edema in rats. ELISA and qRT-PCR were employed to measure the concentration and mRNA expression level of inflammatory mediators in plasma and paw tissue, respectively. RESULTS Berberine nanocomplexes were characterized for particle size (219.5 nm), zeta potential by the dynamic light scattering (DLS), and for entrapment efficiency (93.2%) Infrared spectroscopy affirmed the loading of berberine in gum nanocomplexes. Transmission electron microscopy of formulation showed the spherical shape of nanocomplexes and small particle size (100-150 nm). Pretreatment of rats with berberine nanocomplexes significantly reduced the paw edema in inflamed rat paws, decreased the production of nitrite and TNF-α in plasma and repressed the mRNA expression levels of TNF-α and IL-1β in paw tissue in comparison to berberine per se treated rats. CONCLUSION The obtained berberine-loaded gum nanocomplexes produced a better anti-inflammatory effect as compared to berberine alone and hence can be used as an efficient candidate in the treatment of inflammation. The schematic representation of the preparation of the preparation of berberine-loaded tragacanth/acacia gum nanocomplexes and the evaluation in vivo for anti-inflammatory effects.
Collapse
Affiliation(s)
- Jyoti Bakshi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Prity Lathar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Meenakshi Mehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sapna Grewal
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Dinesh Dhingra
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Santosh Kumari
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| |
Collapse
|
11
|
Shabani E, Kalantari H, Kalantar M, Goudarzi M, Mansouri E, Kalantar H. Berberine ameliorates testosterone-induced benign prostate hyperplasia in rats. BMC Complement Med Ther 2021; 21:301. [PMID: 34930229 PMCID: PMC8690423 DOI: 10.1186/s12906-021-03472-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a major urologic problem that mostly develops in older males. Oxidative stress and inflammation influence the occurrence of BPH. Berberine (BBR) is a natural ingredient that has antioxidant and anti-inflammatory properties. The current research aims at examining the effects of BBR on testosterone-stimulated BPH in rats. METHODS Animals were randomly categorized to six groups. In the control group, normal saline and olive oil were injected as the vehicle. BPH group: received testosterone (3 mg/kg, subcutaneous, 28 days), BPH + BBR groups; received BBR (25 and 50 mg/kg, p.o, 28 days), BPH + finasteride groups: received finasteride (1 mg/kg, p.o, 28 days), BBR (50 mg/kg, p.o, alone) was administered for subjects in the BBR group. On the 29th day, after anesthesia, cervical dislocation was used to kill the subjects. Serum concentration of testosterone and dihydrotestosterone was measured and prostate tissues were excised and used for biochemical, inflammation, and histological analysis. RESULTS BBR prevented increased serum concentrations of testosterone and dihydrotestosterone. BBR considerably reduced BPH-stimulated oxidative stress and inflammation through preventing the rise in lipid peroxidation and nitrite concentration and declined the accumulations of pro-inflammatory cytokines (e.g. interleukin 1β and tumor necrosis factor α) and declining the depletion rate of GSH and the function of catalase and superoxide dismutase. Histopathological investigations reported that administration of BBR could suppress testosterone-stimulated BPH. CONCLUSION This study demonstrated that BBR could significantly prevent the development of BPH in rats.
Collapse
Affiliation(s)
- Ehsan Shabani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Kalantar
- Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Shi J, Xu H, Cavagnaro MJ, Li X, Fang J. Blocking HMGB1/RAGE Signaling by Berberine Alleviates A1 Astrocyte and Attenuates Sepsis-Associated Encephalopathy. Front Pharmacol 2021; 12:760186. [PMID: 34867376 PMCID: PMC8634440 DOI: 10.3389/fphar.2021.760186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
As a life-threatening multiple organ dysfunction attributable to maladjusted host immune responses to infection, sepsis is usually the common pathway to serious prognosis and death for numerous infectious diseases all over the world. Sepsis-associated encephalopathy (SAE) is frequently complicated by septic conditions, and is one of the most important reasons for increased mortality and poor outcomes in septic patients which is still an urgent clinical problem need to be solved. In this research, a conspicuously discovery of treatment-related translational use for berberine was elaborated. The results revealed that berberine treatment significantly restored cognitive impairment in sepsis mice. Reduced expression levels of TNF-α, IL-1α, and C1qA were exhibited in the hippocampus of the berberine treatment group, and attenuated effect of declining neo-neuron, activation of microglia and astrocytes in the hippocampus of mice with sepsis were also found. Moreover, berberine inhibits microglia-stressed A1 astrocytes by inhibiting HMGB1 signaling was revealed, then the molecular mechanism of HMGB1/RAGE signaling inhibition leads to the better outcome of SAE was elucidated. To summarize, this research indicated that berberine targets HMGB1/RAGE signaling to inhibit microglia-stressed A1 astrocyte and neo-neuron decline, which consequently alleviates sepsis-induced cognitive impairment. Collectively, berberine may serve as potential therapeutic drug and HMGB1/RAGE signaling would be a novel target for medicine development for treating SAE.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Xingmei Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Jia Fang
- The Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Dai J, Huang X, Zhang C, Luo X, Cao S, Wang J, Liu B, Gao J. Berberine regulates lipid metabolism via miR-192 in porcine oocytes matured in vitro. Vet Med Sci 2021; 7:950-959. [PMID: 33818910 PMCID: PMC8136937 DOI: 10.1002/vms3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background The berberine (Ber) is an isoquinoline alkaloid compound extracted from Rhizoma coptidis and has the effect that reduces adipose. MicroRNA‐192 (miR‐192) is related to fat metabolism. However, the relevant mechanism of berberine on lipid metabolism during in vitro maturation (IVM) of porcine oocytes remains unclear. Objectives In this study, we investigated the molecular mechanism by which berberine promotes the IVM and lipid metabolism of porcine oocytes via miR‐192. Methods Ber was added to IVM medium of porcine oocytes. MiR‐192 agomir, miR‐192 antagomir and negative control fragment were microinjected into the cytoplasm of oocytes without Ber. Rates of oocyte IVM and embryonic development in each group were observed. The content of lipid droplets in IVM oocytes in each group was analyzed by Nile red staining. Expression levels of miR‐192 and FABP3, SREBF1 and PPARG, were detected by qPCR and western blotting. The target genes of miR‐192 were determined by luciferase reporter assays. Results and Conclusions We found that Ber significantly increased the rate of oocytes IVM and blastocyst development, and decreased the area and numbers of lipid droplets in IVM oocytes. Ber significantly increased the expression of miR‐192 in IVM oocytes, and significantly decreased the expression of SREBF1 and PPARG, which were target genes of miR‐192. This study indicates that Ber promotes lipid metabolism in porcine oocytes by activating the expression of miR‐192 and down‐regulating SREBF1 and PPARG, thus, improving IVM of porcine oocytes.
Collapse
Affiliation(s)
- JiaGe Dai
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - XiaoMeng Huang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - XiaoFei Luo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - SuYing Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - JunLi Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - JianMing Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
14
|
Effects of Abiotic Elicitors on Expression and Accumulation of Three Candidate Benzophenanthridine Alkaloids in Cultured Greater Celandine Cells. Molecules 2021; 26:molecules26051395. [PMID: 33807597 PMCID: PMC7962051 DOI: 10.3390/molecules26051395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/13/2023] Open
Abstract
Efforts to develop the necessary biotechnologies in Greater Celandine (Chelidonium majus L.), a leading plant resource for the development of plant-derived medicines, have been hampered by the lack of knowledge about transcriptome and metabolome regulations of its medicinal components. Therefore, this study aimed to examine the effect of abiotic elicitors, methyl jasmonate (MJ) and salicylic acid (SA), at different time courses (12, 24, 48, and 72 h), on expression and metabolome of key benzophenanthridine alkaloids (BPAs) in an optimized in vitro culture. Gene expression analysis indicated the upregulation of CFS (cheilanthifoline synthase) to 2.62, 4.85, and 7.28 times higher than the control at 12, 24, and 48 h respectively, under MJ elicitation. Besides, MJ upregulated the expression of TNMT (tetrahydroprotoberberine N-methyltransferase) to 2.79, 4.75, and 7.21 times at 12, 24, and 48 h respectively, compared to the control. Investigation of BPAs revealed a significant enhancement in the chelidonine content (9.86 µg/mg) after 72 h of MJ elicitation. Additionally, sanguinarine content increased to its highest level (3.42 µg/mg) after 24 h of MJ elicitation; however, no significant enhancement was detected in its content in shorter elicitation time courses. Generally, higher gene expression and BPAs’ level was observed through longer elicitation courses (48 and 72 h). Our findings take part in improving the understanding of transcription and metabolic regulation of BPAs in cultured Greater Celandine cells.
Collapse
|
15
|
Wang L, Jia Z, Wang B, Zhang B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:902-909. [PMID: 33626003 DOI: 10.5152/tjg.2020.19568] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS This study aimed to explore the therapeutic effects and underlying mechanism of berberine (BBR) on the non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD). MATERIALS AND METHODS Rats were randomly divided into the following 4 groups: control (normal diet), model (HFD), polyene phosphatidylcholine HFD+PPC, and BBR (HFD+BBR) group. The NAFLD models were prepared by feeding with HFD for 12 weeks. The liver tissues were observed by oil red O staining. H-E staining was used to detect pathological changes in the liver tissues. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were detected by an automatic biochemical analyzer. ELISA was performed to observe the inflammatory cytokines (TNF-α, IL-6, and IL-1β) expressions. The levels of TLR4, MyD88, and NF-κB p65 were analyzed using western blot and qRT-PCR, respectively. The nuclear translocation levels of NF-κB in the primary liver cells were measured using flow cytometry. RESULTS BBR could significantly alleviate the liver tissue steatosis and inflammatory cell infiltration; reduce the NAFLD activity scores and serum levels of ALT, AST, TC, and LDL-C; decrease the levels of TNF-α, IL-6, and IL-1β, and reduce the expression of TLR4, MyD88, and NF-κB in the liver tissues. BBR could also reverse the nuclear translocation of NF-κB in the primary liver cells. CONCLUSION BBR alleviated the progress of NAFLD and liver damage, which might contribute to inhibit the nuclear translocation of NF-κB via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Lingling Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Zhandong Jia
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bangcai Wang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Bin Zhang
- Ningbo Affiliated TCM Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| |
Collapse
|
16
|
The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci 2021; 22:ijms22041653. [PMID: 33562110 PMCID: PMC7915290 DOI: 10.3390/ijms22041653] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apoptosis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition, and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a therapeutic target of cancer treatment.
Collapse
|
17
|
Dioscin Improves Pyroptosis in LPS-Induced Mice Mastitis by Activating AMPK/Nrf2 and Inhibiting the NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8845521. [PMID: 33488936 PMCID: PMC7790561 DOI: 10.1155/2020/8845521] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Dioscin, a natural steroid saponin, has been shown to have anti-inflammatory effects, but its protective mechanism against mastitis is still unknown. NLRP3 inflammasome and pyroptosis play important roles in the pathogenesis of many inflammatory diseases, including mastitis. The purpose of this study was to explore the effect of dioscin on lipopolysaccharide- (LPS-) induced mastitis in vivo and in vitro and its mechanism of action. In vivo experiments, dioscin can reduce the inflammatory lesions and neutrophil motility in mammary tissue. Moreover, dioscin also can reduce the production of proinflammatory factors such as interleukin-1 beta (IL-1β) and inhibit the activation of NLRP3 inflammasome in LPS-induced mice mastitis. In vitro experiments, the results showed that dioscin inhibited the inflammatory response and the activation of NLRP3 inflammasome, but the survival rate of mouse mammary epithelial cells (mMECs) induced by LPS+ATP is increased. Subsequently, the experiment convinces that dioscin can reduce LPS+ATP-induced mMEC pyroptosis by adding Ac-DEVD-CHO (a caspase-3 inhibitor). Further mechanistic studies demonstrate that dioscin can activate AMPK/Nrf2 to inhibit NLRP3/GSDMD-induced mMEC pyroptosis. In summary, this paper reveals a novel function of dioscin on mMEC pyroptosis and provides a new potential therapy of dioscin for the treatment and prevention of mastitis.
Collapse
|
18
|
Lee JH, Lim JY, Jo EH, Noh HM, Park S, Park MC, Kim DK. Chijabyukpi-Tang Inhibits Pro-Inflammatory Cytokines and Chemokines via the Nrf2/HO-1 Signaling Pathway in TNF-α/IFN-γ-Stimulated HaCaT Cells and Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions in Mice. Front Pharmacol 2020; 11:1018. [PMID: 32733250 PMCID: PMC7358535 DOI: 10.3389/fphar.2020.01018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Chijabyukpi-tang (CBT) is an oriental herbal formula consisting of three herbs (Gardeniae Fructus (Gardenia jasminoides J.Ellis.), Phellodendri Cortex (Phellodendron amurense Rupr.), Glycyrrhizae Radix (Glycyrrhiza uralensis Fisch. ex DC.) at the ratio of 2: 2: 1. CBT has traditionally been used to treat eczema with inflammation in Northeast Asia. The components of CBT have been shown to have anti-inflammatory and anti-oxidant properties, but the exact role and mechanism of CBT on atopic dermatitis (AD) remain unclear. In this study, we investigated the anti-inflammatory effect and mechanism of CBT in the HaCaT human keratinocyte cell line and investigated the anti-atopic effect in mice models of atopic dermatitis-like skin lesions. In the tumor necrosis factor alpha (TNF)-α/interferon (IFN)-γ-stimulated HaCaT cells, CBT inhibited the production of pro-inflammatory cytokines and chemokines and elevated the nuclear translocation of NF-E2 p45 related factors 2 (Nrf2) and subsequent production of heme oxygenase-1 (HO-1). CBT improved the symptoms of atopic dermatitis-like lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice by suppressing the levels of serum immunoglobulin E (IgE), and various pro-inflammatory cytokines and chemokines. The improvement effect of CBT on atopic dermatitis-like lesions can be predicted to be due to increased Nrf2 and HO-1 gene expression. These results suggest that CBT is an herbal medicine with the potential for use as a therapeutic agent for inflammatory skin diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, South Korea
| | - Ji-Ye Lim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, South Korea
| | - Eun Hee Jo
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, South Korea.,Department of Acupuncture and Moxibustion, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Hyeon Min Noh
- Korean Traditional Medicine Institute, Wonkwang University, Iksan, South Korea
| | - Sunggu Park
- Department of Korean Medical Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Min Cheol Park
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan, South Korea.,Department of Korean Medical Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
19
|
Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.
Collapse
|
20
|
Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, Song HJ, Bae GS, Park SJ. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep 2019; 21:258-266. [PMID: 31746359 PMCID: PMC6896374 DOI: 10.3892/mmr.2019.10823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.
Collapse
Affiliation(s)
- Dong-Gu Kim
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Won Choi
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|