1
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
2
|
Luo Y, Jia X, Wu X, Diao L, Zhao Y, Liu X, Peng Y, Zhong W, Xing M, Lyu G. Bacteria-activated macrophage membrane coated ROS-responsive nanoparticle for targeted delivery of antibiotics to infected wounds. J Nanobiotechnology 2024; 22:781. [PMID: 39702152 DOI: 10.1186/s12951-024-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial infections and antibiotic resistance represent significant global public health challenges, necessitating the development of innovative antibacterial agents with targeted delivery capabilities. Our study utilized macrophages' natural ability to recognize bacteria and the increased reactive oxygen species (ROS) at infection sites to develop a novel nanoparticle for targeted delivery and controlled release. We prepared bacteria-activated macrophage membranes triggered by Staphylococcus aureus (Sa-MMs), which showed significantly higher expression of Toll-like receptors (TLRs), compared to normal macrophage membranes (MMs). These Sa-MMs were then used to coat vancomycin-loaded amphiphilic nanoparticles with ROS responsiveness (Van-NPs), resulting in the novel targeted delivery system Sa-MM@Van-NPs. Studies both In vitro and in vivo demonstrated that biocompatible Sa-MM@Van-NPs efficiently targeted infected sites and released vancomycin to eliminate bacteria, facilitating faster wound healing. By combining targeted delivery to infected sites and ROS-responsive antibiotic release, this approach might represent a robust strategy for precise infection eradication and enhanced wound healing.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xing Liu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yi Peng
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
- National Research Center for Emergency Medicine, Beijing, 100000, China.
| |
Collapse
|
3
|
Adewale OO, Wińska P, Piasek A, Cieśla J. The Potential of Plant Polysaccharides and Chemotherapeutic Drug Combinations in the Suppression of Breast Cancer. Int J Mol Sci 2024; 25:12202. [PMID: 39596268 PMCID: PMC11594611 DOI: 10.3390/ijms252212202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. The associated morbidity and mortality have been on the increase while available therapies for its treatment have not been totally effective. The most common treatment, chemotherapy, sometimes has dangerous side effects because of non-specific targeting, in addition to poor therapeutic indices, and high dose requirements. Consequently, agents with anticancer effects are being sought that can reduce the side effects induced by chemotherapy while increasing its cytotoxicity to cancer cells. This is possible using natural compounds that are safe and biologically active. There are many reports on plant polysaccharides due to their bioactive and anticancer properties. The use of plant polysaccharide together with a conventional cytotoxic drug may offer wide benefits in cancer therapy, producing synergistic effects, thereby reducing drug dose and, so, its associated side effects. In this review, we highlight an overview of the use of plant polysaccharides and chemotherapeutic drugs in breast cancer preclinical studies, including their mechanisms of anticancer activities. The findings emphasize the potential of plant polysaccharides to improve chemotherapeutic outcomes in breast cancer, paving the way for more effective and safer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.O.A.); (P.W.); (A.P.)
| |
Collapse
|
4
|
Zhang L, Zhu T, Wang Y, Zhang B, Zhang H, Han L, Liu E, Fu Z. Effects of in vitro simulated digestion and fecal fermentation on the structure and regulating the glucose and lipid activity of a polysaccharide from Mori Folium. Int J Biol Macromol 2024; 280:135595. [PMID: 39276886 DOI: 10.1016/j.ijbiomac.2024.135595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mori folium, as a homologous drug-food, has hypoglycemic and lipid-lowering activity. Polysaccharides are the main bioactive ingredient of the Mori folium that exhibit diverse biological activities. In this study, a homogeneous polysaccharide (MP4) was purified and characterized from Mori folium. The changes of MP4 affected by saliva, simulated gastrointestinal juice, and human fecal fermentation, including physicochemical property or its bioactivity, were systematically investigated. Meanwhile, the influence of fermentation on the bioactivity were evaluated. The results showed that the backbone of MP4 is mainly composed of →4)-α-D-GalpA-(1→ residues. The molecular weight, the levels of reducing sugar content and free monosaccharides of MP4 exhibited no significant differences indicating that gastrointestinal digestion has a minimal effect on the physicochemical characteristics of MP4. However, during in vitro gut microbiota fermentation, MP4 are significantly degraded and utilized by gut microbiota, showing increased the production of short-chain fatty acids, notably acetic acid and propionic acid. The relative abundance of beneficial bacteria such as Bacteroidetes and Actinobacteria were significantly increased, whereas the levels of pathogenic bacteria such as Fusobacteria and Megamonas were significantly decreased, which changed the composition of the gut microbiota. The Firmicutes/Bacteroides ratio was also decreased significantly. Interestingly, after in vitro fermentation, the α-glucosidase inhibitory activity was increased, the lipase inhibitory activity and cholesterol adsorption activity was decreased. Correlation analysis showed that the relative abundance of some bacteria was significantly correlated with the bioactivities. These results provide a basis for the development of Mori folium polysaccharides as functional probiotic products.
Collapse
Affiliation(s)
- Lingyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Tongtong Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China
| | - Ying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
5
|
Hu X, Li X, Ye N, Zhou Z, Li G, Jiang F. Association of serum soluble α‑klotho with risk of kidney stone disease: a population-based cross-sectional study. World J Urol 2024; 42:219. [PMID: 38587631 DOI: 10.1007/s00345-024-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The aim of the study was to explore the association of serum soluble klotho with kidney stone disease (KSD) in the general population over the age of 40 years in the United States. METHODS We integrated the data in National Health and Nutrition Examination Survey from 2007 to 2016 years. The relationship between serum soluble α‑klotho and prevalence of KSD was analyzed by constructing weighted multivariable logistic regression model, restricted cubic spline (RCS) curve, and subgroup analyses. RESULTS In the study, a total of 13,722 individuals were included in our study. A U-shaped association between serum soluble klotho and the risk of KSD was shown by the RCS curve (P value for nonlinear < 0.05). In the full adjusted model, compared with the lowest quartile of serum soluble α‑klotho, the adjusted odd ratios (95% confidence intervals) for KSD across the quartiles were (0.999 (0.859, 1.164), 1.005 (0.858, 1.176), and 1.061 (0.911, 1.235)). Subgroup analyses also showed that the U-shaped association of serum soluble α‑klotho with KSD was found among subjects who were age < 60 years, female or male, with or without hypertension, and BMI ≥ 30 kg/m2. CONCLUSIONS Our findings suggested that serum klotho levels had a U-shaped correlation with risk of KSD. When the Klotho level is at 818.66 pg/mL, prevalence of KSD is lowest. Therefore, maintaining a certain level of serum soluble α‑klotho could prevent the occurrence of KSD.
Collapse
Affiliation(s)
- Xudong Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Road, Hefei, 230000, Anhui, China
- Department of Urology, Anhui Public Health Clinical Center, 100 Huaihai Road, Hefei, 230000, Anhui, China
| | - Xiang Li
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Nan Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Road, Hefei, 230000, Anhui, China
- Department of Urology, Anhui Public Health Clinical Center, 100 Huaihai Road, Hefei, 230000, Anhui, China
| | - Zhenwen Zhou
- Department of Urology, Anqing First People's Hospital of Anhui Province, 42 Xiaosu Road, Anqing, 246000, Anhui, China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Road, Hefei, 230000, Anhui, China.
- Department of Urology, Anhui Public Health Clinical Center, 100 Huaihai Road, Hefei, 230000, Anhui, China.
| | - Fang Jiang
- Department of Urology, Anqing First People's Hospital of Anhui Province, 42 Xiaosu Road, Anqing, 246000, Anhui, China.
| |
Collapse
|
6
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
7
|
Xu QS, Wu ZJ, Sun JM, Liu JH, Huang WB, Ouyang JM. Different Degrees of Sulfated Laminaria Polysaccharides Recovered Damaged HK-2 Cells and Inhibited Adhesion of Nano-COM and Nano-COD Crystals. Bioinorg Chem Appl 2024; 2024:8843214. [PMID: 38204734 PMCID: PMC10776190 DOI: 10.1155/2024/8843214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (-OSO3-) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with -OSO3- contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high -OSO3- content may be a potential drug to prevent kidney stones.
Collapse
Affiliation(s)
- Qiu-Shi Xu
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Zhi-Jian Wu
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Jian-Ming Sun
- Department of Urology, The First People's Hospital of Chenzhou, Hunan, Chenzhou 423000, China
| | - Jing-Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Wen L, Wu ZW, Lin LW, Al-Romaima A, Peng XR, Qiu MH. Structural characterizations and α-glucosidase inhibitory activities of four Lepidium meyenii polysaccharides with different molecular weights. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:18. [PMID: 37278859 DOI: 10.1007/s13659-023-00384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Four polysaccharides (MCPa, MCPb, MCPc, MCPd) were obtained from Lepidium meyenii Walp. Their structures were characterized by chemical and instrumental methods including total sugar, uronic acid and protein content determination, UV, IR and NMR spectroscopy, as well as monosaccharide composition determination and methylation analyses. Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa, and shared a similar backbone chain consisting of (1→4)-glucose linkages with branches attached to C-3 and C-6. Furthermore, bioactivity assay showed that MCPs had concentration-dependent inhibitory activity on α-glucosidase. MCPb (Mw = 10.1 kDa) and MCPc (Mw = 5.62 kDa) with moderate molecular weights exhibited higher inhibitory activity compared with MCPa and MCPd.
Collapse
Affiliation(s)
- Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Li-Wu Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
9
|
Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081703. [PMID: 36015329 PMCID: PMC9414761 DOI: 10.3390/pharmaceutics14081703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.
Collapse
|
10
|
Yao J, Liu H, Ma C, Pu L, Yang W, Lei Z. A Review on the Extraction, Bioactivity, and Application of Tea Polysaccharides. Molecules 2022; 27:molecules27154679. [PMID: 35897856 PMCID: PMC9329993 DOI: 10.3390/molecules27154679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Tea is a non-alcoholic drink containing various active ingredients, including tea polysaccharides (TPSs). TPSs have various biological activities, such as antioxidant, anti-tumor, hypoglycemic, and anti-cancer activities. However, TPSs have a complex composition, which significantly limits the extraction and isolation methods, thus limiting their application. This paper provides insight into the composition, methodological techniques for isolation and extraction of the components, biological activities, and functions of TPSs, as well as their application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiwei Lei
- Correspondence: ; Tel.: +86-851-83761972
| |
Collapse
|
11
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
12
|
Xu A, Lai W, Chen P, Awasthi MK, Chen X, Wang Y, Xu P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Fan M, Qian Y, Yue W, Yang Y, Zhang X, Ma S, Xu Y, Wang D. Preparation and characterization of metal-tea polysaccharide complexes and their inhibition on α-glucosidase. J Food Biochem 2021; 45:e13689. [PMID: 33817815 DOI: 10.1111/jfbc.13689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
The preparation method and the sources of metal elements may affect the activity of the metal-polysaccharide complex. In this study, four Fe-tea polysaccharide complexes were prepared and three tea polysaccharides (TPSs) from different seasons were extracted. Moreover, the binding mode of TPSs with internal and external metallic elements as well as their inhibitory effect on α-glucosidase was explored. The results revealed that the binding mode (-C-O-Fe and -C-Fe) of the Fe-TPS complex prepared at pH 5.0 was closer to TPS with internal metallic elements. The TPS with the least amount of internal metallic elements (61.72 mg/g) exhibited a high inhibitory activity on α-glucosidase (37.90%). The inhibitory activity of Fe-TPS on α-glucosidase was lower than that without Fe. But the quenching effect and the inhibition type of TPSs on α-glucosidase were not affected by metallic elements. Therefore, the metallic elements have the potential to reduce the hypoglycemic activity of TPS. PRACTICAL APPLICATIONS: In this paper, TPS was extracted from crude tea in different seasons, and the effects of metallic elements in TPS on hypoglycemic activity, physicochemical properties, and structure of TPS were discussed. TPS metal complexes were prepared by adding Fe3+ or removing metallic elements, and the differences of internal metallic elements in TPS were discussed. It is of great academic significance to use tea pruned leaves and crude tea as potential resources to develop polysaccharide hypoglycemic products and to reveal the relationship between TPS metal ions and their structure and activity. In addition, it has guiding value for consumers to choose tea-producing regions and growers to choose chemical fertilizer.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Wei Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yuqi Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Xin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Shuang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
14
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
15
|
Kim J, Choi H, Choi DH, Park K, Kim HJ, Park M. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci Rep 2021; 11:2232. [PMID: 33500561 PMCID: PMC7838266 DOI: 10.1038/s41598-021-81989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 02/05/2023] Open
Abstract
Airborne fine dust particles (FDPs) have been identified as major toxins in air pollution that threaten human respiratory health. While searching for an anti-FDP reagent, we found that green tea extract (GTE) and fractions rich in flavonol glycosides (FLGs) and crude tea polysaccharides (CTPs) had protective effects against FDP-stimulated cellular damage in the BEAS-2B airway epithelial cell line. The GTE, FLGs, and CTPs significantly increased viability and lowered oxidative stress levels in FDP-treated cells. Combined treatment with GTE, FLGs, and CTPs also exerted synergistic protective effects on cells and attenuated FDP-induced elevations in inflammatory gene expression. Moreover, the green tea components increased the proportion of ciliated cells and upregulated ciliogenesis in the airway in FDP-stimulated BEAS-2B cells. Our findings provide insights into how natural phytochemicals protect the airway and suggest that green tea could be used to reduce FDP-induced airway damage as an ingredient in pharmaceutical, nutraceutical, and also cosmeceutical products.
Collapse
Affiliation(s)
- Juewon Kim
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea.
| | - Hyunjung Choi
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Kyuhee Park
- Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Hyung-June Kim
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea
| | - Miyoung Park
- R&D Unit, Amorepacific Corporation, Yongin, 17074, Republic of Korea.
| |
Collapse
|
16
|
Fernandes-Negreiros MM, Batista LANC, Silva Viana RL, Araujo Sabry D, Paiva AAO, Paiva WS, Machado RIA, de Sousa Junior FL, de Lima Pontes D, Vitoriano JDO, Alves Junior C, Lanzi Sassaki G, Rocha HAO. Gallic Acid-Laminarin Conjugate Is a Better Antioxidant than Sulfated or Carboxylated Laminarin. Antioxidants (Basel) 2020; 9:antiox9121192. [PMID: 33260982 PMCID: PMC7759860 DOI: 10.3390/antiox9121192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
A 12.4 kDa laminarin (LM) composed of β(1→3)-glucan with β(1→6)-branches was extracted from brown seaweed Lobophora variegata and modified via carboxylation using dielectric barrier discharge (LMC), conjugation with gallic acid (LMG), and sulfation (LMS). Analyses of the chemical composition of LMC, LMG, and LMS yielded 11.7% carboxyl groups, 1.5% gallic acid, and 1.4% sulfate content, respectively. Antioxidant activities of native and modified laminarins were assessed using six different in vitro methods. Sulfation stopped the antioxidant activities of LM. On the other hand, carboxylation improved cooper chelation (1.2 times). LMG was found to be a more efficient antioxidant agent than LM in terms of copper chelation (1.3 times), reducing power (1.3 times), and total antioxidant capacity (80 times). Gallic acid conjugation was further confirmed using Fourier transform infrared spectroscopy (FT-IR) and one- and two-dimensional NMR spectroscopy analyses. LMG also did not induce cell death or affect the cell cycle of Madin–Darby canine kidney (MDCK) cells. On the contrary, LMG protected MDCK cells from H2O2-induced oxidative damage. Taken together, these results show that LMG has the potent antioxidant capacity, and, therefore, potential applications in pharmacological and functional food products.
Collapse
Affiliation(s)
- Marília Medeiros Fernandes-Negreiros
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Lucas Alighieri Neves Costa Batista
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Rony Lucas Silva Viana
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Diego Araujo Sabry
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | | | - Weslley Souza Paiva
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Raynara Iusk Araujo Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
| | - Francimar Lopes de Sousa Junior
- Laboratório de Química de Coordenação e Polímeros-LQCPol, Instituto de Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal-RN 59.078-970, Brazil; (F.L.d.S.J.); (D.d.L.P.)
| | - Daniel de Lima Pontes
- Laboratório de Química de Coordenação e Polímeros-LQCPol, Instituto de Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal-RN 59.078-970, Brazil; (F.L.d.S.J.); (D.d.L.P.)
| | - Jussier de Oliveira Vitoriano
- Centro Integrado de Inovação Tecnológica do Semiárido (CiTED), Universidade Federal Rural do Semi-Árido, Mossoró 59.625-900, Brazil; (J.d.O.V.); (C.A.J.)
| | - Clodomiro Alves Junior
- Centro Integrado de Inovação Tecnológica do Semiárido (CiTED), Universidade Federal Rural do Semi-Árido, Mossoró 59.625-900, Brazil; (J.d.O.V.); (C.A.J.)
| | | | - Hugo Alexandre Oliveira Rocha
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59.078-970, Brazil; (M.M.F.-N.); (L.A.N.C.B.); (R.L.S.V.); (D.A.S.); (W.S.P.); (R.I.A.M.)
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
17
|
The Antioxidant Capacity In Vitro and In Vivo of Polysaccharides From Bergenia emeiensis. Int J Mol Sci 2020; 21:ijms21207456. [PMID: 33050354 PMCID: PMC7589108 DOI: 10.3390/ijms21207456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Polysaccharides from Bergenia emeiensis (PBE) showed a robust antioxidant ability on scavenging free radicals in vitro. However, the further antioxidant potential in cell level and in vivo was still unknown. Therefore, in this present study, the protective effect of PBE on human cervical carcinoma cell (Hela) cells and Caenorhabditis elegans against oxidative stress was evaluated. The results showed PBE could reduce the reactive oxygen species (ROS) level in Hela cells and promote the mitochondrial membrane potential. Then, the cell apoptosis was reduced. Moreover, PBE could enhance the survival of C. elegans under thermal stress to 13.44%, and significantly reduce the ROS level, which was connected with the overexpression of sod-3 and the increased nuclear localization of daf-16 transcription factor. Therefore, PBE exhibited a strong antioxidant capacity in the cellular level and for a whole organism. Thus, polysaccharides from B. emeiensis have natural potential to be a safe antioxidant.
Collapse
|
18
|
Regulation on Calcium Oxalate Crystallization and Protection on HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5057123. [PMID: 32454940 PMCID: PMC7243009 DOI: 10.1155/2020/5057123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
The regulation on calcium oxalate (CaOx) crystallization and protective effect on human proximal tubular epithelial cells (HK-2) of four green tea polysaccharides (TPSs) with molecular weights of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.3 kDa (TPS3) were comparatively studied. XRD, Fourier transform infrared spectroscopy, and scanning electron microscopy results revealed that TPS1, TPS2, and TPS3 can increase the percentage of the dihydrate crystalline phase in CaOx crystals and reduce the size of CaOx monohydrate crystals. TPSs increased the absolute value of the zeta potential of CaOx crystal and inhibited crystal nucleation and aggregation. The nucleation inhibition rates of TPS1, TPS2, and TPS3 to CaOx crystallization were 56.67%, 75.52%, and 52.92%, respectively, and their aggregation inhibition rates were 22.34%, 47.59%, and 21.59%, respectively. TPS preprotection can alleviate the oxidative damage of HK-2 cells caused by oxalate, increase cell viability, protect cell morphology, and reduce lactate dehydrogenase release and reactive oxygen species levels. The degraded TSPs, especially TPS2 with moderate molecular weight, may be used as a green drug to inhibit stone formation.
Collapse
|
19
|
Li CY, Liu L, Zhao YW, Peng QL, Sun XY, Guo D, Ouyang JM. Repair of Tea Polysaccharide Promotes the Endocytosis of Nanocalcium Oxalate Monohydrate by Damaged HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2198976. [PMID: 32411321 PMCID: PMC7201800 DOI: 10.1155/2020/2198976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Endocytosis is a protective mechanism of renal epithelial cells to eliminate retained crystals. This research investigated the endocytosis of 100 nm calcium oxalate monohydrate crystals in human kidney proximal tubular epithelial (HK-2) cells before and after repair by four kinds of tea polysaccharides with molecular weights (MWs) of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3), respectively. When HK-2 cells were repaired by TPSs after oxalic acid injury, the cell viability, wound healing ability, mitochondrial membrane potential, percentage of cells with endocytosed crystals, and dissolution rate of the endocytosed crystals increased; the cell morphology recovered; and the reactive oxygen level and lactate dehydrogenase release decreased. Most of the endocytosed crystals were found in the lysosomes. The repair effects of the four TPSs were ranked in the following order: TPS2>TPS1>TPS3>TPS0. TPS2 with moderate MW presented the optimal repair ability and strongest ability to promote endocytosis.
Collapse
Affiliation(s)
- Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Li Liu
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Qian-Long Peng
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Zhao YW, Liu L, Li CY, Zhang H, Sun XY, Ouyang JM. Preprotection of Tea Polysaccharides with Different Molecular Weights Can Reduce the Adhesion between Renal Epithelial Cells and Nano-Calcium Oxalate Crystals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1817635. [PMID: 32411319 PMCID: PMC7199607 DOI: 10.1155/2020/1817635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
Crystal adhesion is an important link in the formation of kidney stones. This study investigated and compared the adhesion differences between nano-calcium oxalate monohydrate (COM) and human renal proximal tubule epithelial (HK-2) cells before and after treatment with tea polysaccharides (TPSs) TPS0, TPS1, TPS2, and TPS3 with molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively. TPS treatment effectively reduced the damage of COM to HK-2 cells, thereby resulting in increased cell activity, decreased release of lactate dehydrogenase, cell morphology recovery, decreased level of reactive oxygen species, increased mitochondrial membrane potential, increased lysosomal integrity, decreased expression of adhesion molecule osteopontin and eversion of phosphatidylserine, and decreased crystal adhesion. Among the TPSs, TPS2 with moderate molecular weight had the best protective effect on cells and the strongest effect on the inhibition of crystal adhesion. Thus, TPS2 may be a potential anticalculus drug.
Collapse
Affiliation(s)
- Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Li Liu
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, China
| | - Hui Zhang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Tong T, Liu YJ, Kang J, Zhang CM, Kang SG. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019; 24:E2917. [PMID: 31408939 PMCID: PMC6720624 DOI: 10.3390/molecules24162917] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study, we aimed to develop a novel fermented tea (NFT) product and to evaluate their in vitro antioxidant potential and chemical composition. We found that NFT contained a high level of total phenolic compounds (102.98 mg gallic acid equivalents/g extract) and exhibited diverse antioxidant activities, such as scavenging of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and hydroxyl radicals, as well as reducing power. The total catechins in NFT were comparable to those of Lipton black tea (LBT), but lower than those of Boseong green tea (BGT) or Tieguanyin oolong tea (TOT). Among all catechins tested, epigallocatechin (EGC) and epigallocatechin-3-O-gallate (EGCG) were the predominant compounds in NFT. In particular, the contents of total theaflavins (TFs), theaflavin (TF), theaflavin-3-gallate (TF3G), and theaflavin-3'-gallate (TF3'G) in NFT were significantly higher than that of BGT, TOT, or LBT. NFT had the highest level of total essential amino acid and γ-aminobutyric acid (GABA) compared with BGT, TOT and LBT. Furthermore, the sensory evaluation results showed that NFT had satisfactory color, aroma, taste, and overall acceptability scores. Our results highlight the potential usefulness of this novel fermented tea as a nutraceutical food/ingredient with special functional activities.
Collapse
Affiliation(s)
- Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ya-Juan Liu
- Department of Food Engineering, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, Jeonnam 534-729, Korea
| | - Jinhong Kang
- College of Pharmacy, Korea University, Sejong 30019, Korea,
| | - Cheng-Mei Zhang
- Department of Food Engineering, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, Jeonnam 534-729, Korea
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, Jeonnam 534-729, Korea.
| |
Collapse
|
22
|
Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. Repair Effects of Astragalus Polysaccharides with Different Molecular Weights on Oxidatively Damaged HK-2 Cells. Sci Rep 2019; 9:9871. [PMID: 31285477 PMCID: PMC6614371 DOI: 10.1038/s41598-019-46264-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigated the repair effects of three Astragalus polysaccharides (APSs) with different molecular weights (Mws) on injured human renal proximal tubular epithelial (HK-2) cells to reveal the effect of Mw of polysaccharide on cell repair. A damage model was established by injuring HK-2 cells with 2.6 mM oxalate, and APS0, APS1, and APS2 with Mw of 11.03, 4.72, and 2.61 KDa were used to repair the damaged cells. After repair by APSs, the morphology of damaged HK-2 cells gradually returned to normal, the destruction of intercellular junctions recovered, intracellular reactive oxygen species production amount decreased, and their mitochondrial membrane potential increased. In addition, the cell cycle progression gradually normalized, lysosome integrity increased, and cell apoptotic rates obviously declined in the repaired cells. All three APSs could promote the expression of Keap1, Nrf2, SOD1, and CAT. In addition, the expression levels of inflammation markers containing MCP-1 and IL-6 decreased after APS repair. We deduced that APSs exert their repair function by activating the Nrf2-Keap1 signaling pathway and inhibiting inflammation. Among the APSs, APS1 with a moderate Mw provided the strongest repair effect. APSs may have a preventive effect on kidney stones.
Collapse
Affiliation(s)
- Jin Han
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| | - Bao-Song Gui
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
23
|
Zhang H, Sun XY, Ouyang JM. Effects of Porphyra yezoensis Polysaccharide with Different Molecular Weights on the Adhesion and Endocytosis of Nanocalcium Oxalate Monohydrate in Repairing Damaged HK-2 Cells. ACS Biomater Sci Eng 2019; 5:3974-3986. [PMID: 33443420 DOI: 10.1021/acsbiomaterials.9b00410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hui Zhang
- Institute of Biomineralization and Lithiasis Research, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou 510632, China
| |
Collapse
|
24
|
Zhao YW, Guo D, Li CY, Ouyang JM. Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides. Int J Nanomedicine 2019; 14:4277-4292. [PMID: 31239679 PMCID: PMC6559723 DOI: 10.2147/ijn.s198644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Kidney stone formation is closely related to renal epithelial cell damage and the adhesion of calcium oxalate crystals to cells. Methods: In this research, the adhesion of human kidney proximal tubular epithelial cells (HK-2) to calcium oxalate monohydrate crystals with a size of approximately 100 nm was studied. In addition, the inhibition of crystal adhesion by four tea polysaccharides (TPS0, TPS1, TPS2, and TPS3) with the molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively were compared. Results: When oxalic acid-damaged HK-2 cells were repaired, cell viability increased. By contrast, reactive oxygen species level, phosphatidylserine eversion, and osteopontin expression decreased, thus indicating that tea polysaccharides have a repairing effect on damaged HK-2 cells. Moreover, after repairing the damaged cells, the amount of adherent crystals was reduced. The repair effect of tea polysaccharides is closely related to molecular weight, and TPS2 with the moderate molecular weight displayed the best repair effect. Conclusion: These results suggest that tea polysaccharides, especially TPS2, may inhibit the formation and recurrence of calcium oxalate kidney stones.
Collapse
Affiliation(s)
- Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|