1
|
Nguyen LAM, Simons CW, Thomas R. Nootropic foods in neurodegenerative diseases: mechanisms, challenges, and future. Transl Neurodegener 2025; 14:17. [PMID: 40176115 PMCID: PMC11967161 DOI: 10.1186/s40035-025-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's and Parkinson's disease are increasing globally and represent a significant cause of age-related death in the population. Recent studies emphasize the strong association between environmental stressors, particularly dietary factors, and brain health and neurodegeneration unsatisfactory outcomes. Despite ongoing efforts, the efficiency of current treatments for NDDs remains wanting. Considering this, nootropic foods with neuroprotective effects are of high interest as part of a possible long-term therapeutic strategy to improve brain health and alleviate NDDs. However, since it is a new and emerging area in food and neuroscience, there is limited information on mechanisms and challenges to consider for this to be a successful intervention. Here, we seek to address these gaps by presenting a comprehensive review of possible pathways or mechanisms including mutual interactions governing nootropic food metabolism, linkages of the pathways with NDDs, intake, and neuroprotective properties of nootropic foods. We also discuss in-depth intervention with nootropic compounds and dietary patterns in NDDs, providing a detailed exploration of their mechanisms of action. Additionally, we analyze the demand, challenges, and future directions for successful development of nootropic foods targeting NDDs.
Collapse
Affiliation(s)
- Le Anh Minh Nguyen
- Biology Department, Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A 3K7, Canada.
| | | | - Raymond Thomas
- Biology Department, Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A 3K7, Canada.
| |
Collapse
|
2
|
Cui JG, Zhang H, Chen MS, Wang JX, Zhao Y, Li JL. Calcium homeostasis imbalance mediates DEHP induced mitochondrial damage in cerebellum and the antagonistic effect of lycopene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176351. [PMID: 39299314 DOI: 10.1016/j.scitotenv.2024.176351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Phthalates (PAEs), especially di (2-ethylhexyl) phthalate (DEHP), are generally considered to have adverse impact on nervous system. The residue of DEHP in the environment has gradually become a widely concerned environmental problem due to its widespread use in plastic items. Lycopene (LYC) as the readily available natural antioxidant is considered to have the potential to alleviate exogenous poisons-induced nerve damage. However, there is currently a lack of strategies to alleviate the neurotoxicity caused by DEHP, and it is also unknown whether LYC can alleviate the neurotoxicity caused by DEHP. The experiment demonstrated that LYC had the potential to mitigate DEHP-induced mitochondrial damage in cerebellum. DEHP induced the disorder of Ca2+ transport in cerebellum, thereby resulting in the imbalance of protein homeostasis. Such disruption in protein homeostasis further results in the overactivation of mitochondrial unfolded protein response (UPRmt) and mitochondrial injury. Mechanistically, LYC could alleviate the imbalance of calcium homeostasis and protein homeostasis induced by DEHP via regulating inositol 1, 4, 5-trisphosphate receptor type1 (IP3R1) and sarco/endoplasmic reticulum Ca (2+)-ATPase 2 (SERCA2), further alleviating mitochondrial damage in cerebellum. Subsequently, the present study suggested the mechanism of cerebellar injury induced by DEHP, and provided a novel approach to treating DEHP-induced neurotoxicity.
Collapse
Affiliation(s)
- Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Ling Y, Ramalingam M, Lv X, Niu D, Zeng Y, Qiu Y, Si Y, Guo T, Ni Y, Zhang J, Wang Z, Kim HW, Hu J. Human neural stem cell secretome relieves endoplasmic reticulum stress-induced apoptosis and improves neuronal functions after traumatic brain injury in a rat model. J Mol Histol 2024; 55:329-348. [PMID: 38609527 DOI: 10.1007/s10735-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Neural stem cell secretome (NSC-S) plays an important role in neuroprotection and recovery. Studies have shown that endoplasmic reticulum stress (ER stress) is involved in the progression of traumatic brain injury (TBI) and is a crucial cause of secondary damage and neuronal death after brain injury. Whether NSC-S is engaged in ER stress and ER stress-mediated neuronal apoptosis post-TBI has not been investigated. In the study, the Feeney SD male rat model was established. The results showed that NSC-S treatment significantly improved the behavior of rats with TBI. In addition, NSC-S relieved ER stress in TBI rats and was observed by transmission electron microscopy and western blot. The specific mechanism was further elucidated that restoration was achieved by alleviating the PERK-eIF2α pathway and thus protecting neurons from apoptosis. Notably, the discovery of calumenin (CALU) in NSC-S by liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) may be related to the protective effect of NSC-S on ER stress in neurons. Also, the mechanism by which it functions may be related to ubiquitination. In summary, NSC-S improved prognosis and ER stress in TBI rats and might be a promising treatment for relieving TBI.
Collapse
Affiliation(s)
- Yating Ling
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Nanjing Red Cross Blood Center, Nanjing, 210003, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Xiaorui Lv
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongdong Niu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Zeng
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yun Qiu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yu Si
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tao Guo
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yinying Ni
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingwen Zhang
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co., Ltd. Ningbo, Zhejiang, 315042, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Jiabo Hu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
8
|
Alidoust L, Akhoondian M, Atefi AH, Keivanlou MH, Hedayati Ch M, Jafari A. Stem cell-conditioned medium is a promising treatment for Alzheimer's disease. Behav Brain Res 2023; 452:114543. [PMID: 37311523 DOI: 10.1016/j.bbr.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD), a prevalent progressive neurodegenerative disease, is mainly characterized by dementia, memory loss, and cognitive disorder. Rising research was performed to develop pharmacological or non-pharmacological approaches to treat or improve AD complications. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. Recent evidence suggested that some of the therapeutic effects of MSCs are mediated by the secreted paracrine factors. These paracrine factors, called MSC- conditioned medium (MSC-CM), may stimulate endogenous repair, promote angio- and artery genesis, and reduce apoptosis through paracrine mechanisms. The current study aims to systematically review the advantages of MSC-CM to the development of research and therapeutic concepts for AD management. MATERIAL AND METHODS The present systematic review was performed using PubMed, Web of Science, and Scopus from April 2020 to May 2022 following the "Preferred Reporting Items for Systematic Reviews" (PRISMA) guidelines. The keywords, including "Conditioned medium OR Conditioned media OR Stem cell therapy" AND "Alzheimer's," was searched, and finally, 13 papers were extracted. RESULTS The obtained data revealed that MSC-CMs might positively affect neurodegenerative diseases prognosis, especially AD, through various mechanisms, including a decrease in neuro-inflammation, reduction of oxidative stress and Aβ formation, modulation of Microglia function and count, reduction of apoptosis, induction of synaptogenesis and neurogenesis. Also, the results showed that MSC-CM administration could significantly improve cognitive and memory function, increase the expression of neurotrophic factors, decrease the production of pro-inflammatory cytokines, improve mitochondrial function, reduce cytotoxicity, and increase neurotransmitter levels. CONCLUSION While inhibiting the induction of neuroinflammation could be considered the first therapeutic effect of CMs, the prevention of apoptosis could be regarded as the most crucial effect of CMs on AD improvement.
Collapse
Affiliation(s)
- Leila Alidoust
- Department of Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Akhoondian
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Homayoun Atefi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mojtaba Hedayati Ch
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Microbial Toxins Physiology Group (MTPG), Universal Scientific Education Research Network (USERN), Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
Kapoor B, Gulati M, Rani P, Kochhar RS, Atanasov AG, Gupta R, Sharma D, Kapoor D. Lycopene: Sojourn from kitchen to an effective therapy in Alzheimer's disease. Biofactors 2022; 49:208-227. [PMID: 36318372 DOI: 10.1002/biof.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Reports on a significant positive correlation between consumption of carotenoid-rich food and prevention of Alzheimer's disease (AD) led to the investigation of carotenoids for the treatment and prevention of AD. More than 1100 types of carotenoids are found naturally, out of which only around 50 are absorbed and metabolized in human body. Lycopene is one of the most commonly ingested members of fat-soluble carotenoid family that gives vegetables and fruits their red, yellow, or orange color. Lycopene has established itself as a promising therapy for AD owing to its neuroprotective activities, including antioxidant, anti-inflammatory, and antiamyloidogenic properties. In this review, we highlight the various in vitro and preclinical studies demonstrating the neuroprotective effect of lycopene. Also, some epidemiological and interventional studies investigating the protective effect of lycopene in AD have been discussed. Diving deeper, we also discuss various significant mechanisms, through which lycopene exerts its remissive effects in AD. Finally, to overcome the issue of poor chemical stability and bioavailability of lycopene, some of the novel delivery systems developed for lycopene have also been briefly highlighted.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Sharma
- Institute of Nanoscience and Technology, Mohali, Punjab, India
| | - Deepak Kapoor
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Punjab State Council for Science & Technology (PSCST), Chandigarh, India
| |
Collapse
|
12
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
13
|
Unravelling the neuroprotective mechanisms of carotenes in differentiated human neural cells: Biochemical and proteomic approaches. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100088. [PMID: 35415676 PMCID: PMC8991711 DOI: 10.1016/j.fochms.2022.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Total mixed carotenes (TMC) protect differentiated human neural cells against 6-hydroxydopamine-induced toxicity. TMC elevated the antioxidant enzymes activities and suppressed generation of reactive oxygen species. TMC augmented the dopamine and tyrosine hydroxylase levels. TMC exerted differential protein expression in human neural cells.
Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/β isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- 6-hydroxydopamine
- AD, Alzheimer’s disease
- BCM, beta-carotene-15,15′-monooxygenase
- CAT, catalase
- DRD2, dopamine receptor D2
- Dopamine
- ER, endoplasmic reticulum
- GO, gene ontology
- HSP, Heat shock protein
- HSPA9, Heat shock protein family A (HSP70) member 9
- HSPD1, Heat shock protein family D (HSP60) member 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS/MS, liquid chromatography-double mass spectrometry
- LDH, lactate dehydrogenase
- MCODE, minimal common oncology data elements
- MS, mass spectrometry
- Mixed carotene
- PD, Parkinson's disease
- PDI, protein disulphide isomerases
- PHB2, prohibitin 2
- PPI, protein–protein interaction
- RAN, Ras-related nuclear protein
- ROS, reactive oxygen species
- RPs, ribosomal proteins
- SH-SY5Y neuroblastoma cells
- SOD, superoxide dismutase
- TH, tyrosine hydroxylase
- TMC, total mixed carotene complex
Collapse
|
14
|
Wang ZB, Wang ZT, Sun Y, Tan L, Yu JT. The future of stem cell therapies of Alzheimer's disease. Ageing Res Rev 2022; 80:101655. [PMID: 35660003 DOI: 10.1016/j.arr.2022.101655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) places a heavy burden on the global economy. There is no effective disease-modifying treatment available at present. Since the advent of induced pluripotent stem cells (iPSCs) reprogrammed from human somatic cells, new approaches using iPSC-derived products provided novel insights into AD pathogenesis and drug candidates for the AD treatment. Multiple recent studies using animal models have increased the possibility of reducing pathology and improving cognitive function by cell replacement therapies. In this review, we summarized the advantages, limitations, and future directions of cell replacement therapy, discussed the safety and ethical concerns of this novel therapeutic approach and the possibility of translation to clinical practice.
Collapse
|
15
|
Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. Int J Mol Sci 2022; 23:ijms23041990. [PMID: 35216103 PMCID: PMC8877331 DOI: 10.3390/ijms23041990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.
Collapse
Affiliation(s)
- Sylwia Pietrasik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| |
Collapse
|
16
|
TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase. Int J Mol Sci 2021; 22:ijms22168359. [PMID: 34445066 PMCID: PMC8393965 DOI: 10.3390/ijms22168359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.
Collapse
|
17
|
Sovrani V, Bobermin LD, Schmitz I, Leipnitz G, Quincozes-Santos A. Potential Glioprotective Strategies Against Diabetes-Induced Brain Toxicity. Neurotox Res 2021; 39:1651-1664. [PMID: 34258694 DOI: 10.1007/s12640-021-00393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabolism disorder-induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these deleterious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
18
|
Peng Z, Bedi S, Mann V, Sundaresan A, Homma K, Gaskey G, Kowada M, Umar S, Kulkarni AD, Eltzschig HK, Doursout MF. Neuroprotective Effects of Asparagus officinalis Stem Extract in Transgenic Mice Overexpressing Amyloid Precursor Protein. J Immunol Res 2021; 2021:8121407. [PMID: 34046506 PMCID: PMC8128539 DOI: 10.1155/2021/8121407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
To mimic Alzheimer's disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.
Collapse
Affiliation(s)
- Zhanglong Peng
- Department of Anesthesiology, McGovern Medical Houston, TX, USA
| | - Supinder Bedi
- Pediatric Surgery, McGovern Medical Houston, TX, USA
| | - Vivek Mann
- Department of Biology, Texas Southern University, Houston, TX, USA
| | | | | | - Gregory Gaskey
- Department of Anesthesiology, McGovern Medical Houston, TX, USA
| | | | - Shahid Umar
- Department of Surgery, University of Kansas, Kansas City, KS, USA
| | | | | | | |
Collapse
|
19
|
Xu Z, Liu C, Wang R, Gao X, Hao C, Liu C. A combination of lycopene and human amniotic epithelial cells can ameliorate cognitive deficits and suppress neuroinflammatory signaling by choroid plexus in Alzheimer's disease rat. J Nutr Biochem 2020; 88:108558. [PMID: 33249184 DOI: 10.1016/j.jnutbio.2020.108558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/09/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to be correlated with cognitive deficits in Alzheimer's disease (AD). Previously, some studies have demonstrated that lycopene (LYCO) or human amniotic epithelial cells (HAECs) could attenuate inflammation in AD. Specifically, the choroid plexus (CP), an epithelial layer that forms the blood-cerebrospinal fluid barrier, is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, it is unclear if LYCO can interact with HAECs to improve neuroinflammation at the CP. Thus, this study chose the region of interest, considered the feasibility of using a combination of LYCO and HAECs, as a therapeutic agent for immunomodulatory effects at the CP in an acutely induced AD rat model. Results showed that oral administration of LYCO, HAECs transplantation, and their combination significantly improved cognitive deficits in water maze test, decreased the level of proinflammatory mediators (TNF-α and IL-1β), increased the level of anti-inflammatory mediators (IL-10 and TGF-β1) in the cerebro-spinal fluid, and hippocampal tissue. Interestingly, LYCO administration, HAECs transplantation and their combination reversed the Aβ1-42 induced up-regulation of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein expressions at the CP. This study provided the novel experimental evidence for the influence of co-treatment with LYCO and HAECs on immunomodulatory capabilities of CP. It could also warrant therapeutic window for the pathophysiology of AD and the associated underlying mechanisms at the CP.
Collapse
Affiliation(s)
- Zhiguo Xu
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China.
| | - Chao Liu
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China.
| | - Rui Wang
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China.
| | - Xiren Gao
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China
| | - Chao Hao
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China
| | - Chongbin Liu
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
20
|
Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem Int 2020; 140:104823. [DOI: 10.1016/j.neuint.2020.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
|
21
|
Huang C, Wen C, Yang M, Li A, Fan C, Gan D, Li Q, Zhao J, Zhu L, Lu D. Astaxanthin Improved the Cognitive Deficits in APP/PS1 Transgenic Mice Via Selective Activation of mTOR. J Neuroimmune Pharmacol 2020; 16:609-619. [PMID: 32944864 DOI: 10.1007/s11481-020-09953-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/26/2020] [Indexed: 01/20/2023]
Abstract
Astaxanthin (Ast) is an effective neuroprotective and antioxidant compound used to treat Alzheimer's disease (AD); however, the underlying in vivo molecular mechanisms remain unknown. In this study, we report that Ast can activate the mammalian target of rapamycin (mTOR) pathway in the 8-month-old APP/PS1 transgenic mouse model of AD. Our results suggest that Ast could ameliorate the cognitive defects in APP/PS1 mice by activating the mTOR pathway. Moreover, mTOR activation perturbed the mitochondrial dynamics, increased the synaptic plasticity after 21 days of treatment with Ast (10 mg/kg/day), and increased the expression of Aβ-degrading enzymes, mitochondrial fusion, and synapse-associated proteins and decreased the expression of mitochondrial fission proteins. Intraperitoneal injection of the mTOR inhibitor, rapamycin, abolished the effects of Ast. In conclusion, Ast activates the mTOR pathway, which is necessary for mitochondrial dynamics and synaptic plasticity, leading to improved learning and memory. Our results support the use of Ast for the treatment of cognitive deficits. Graphical abstract In summary, Ast ameliorates cognitive deficits via facilitating the mTOR-dependent mitochondrial dynamics and synaptic damage, and reducing Aβ accumulation. This model supports the use of Ast for the treatment of cognitive deficits.
Collapse
Affiliation(s)
- Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
El Morsy EM, Ahmed M. Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol 2020; 39:1066-1078. [PMID: 32153214 DOI: 10.1177/0960327120909882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is used to produce polycarbonate plastic and epoxy resins which are used in many consumer products. Most people encounter BPA in their daily routines. However, it has been heavily reported that BPA has a neurotoxic effect. The present study aimed to investigate the effect of lycopene on cognitive deficits induced by a high dose of BPA focusing on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, oxidative stress, apoptosis, and memory retrieval in adult male rats. Therefore, 72 rats were divided into four groups: control group, BPA group (50 mg/kg body weight (bw)) 3 days a week for 42 days, lycopene group (10 mg/kg bw) daily for 42 days, and lycopene + BPA group. Concurrent treatment of lycopene with BPA improved the learning and cognition memory in Morris water maze and novel object recognition tests along with an increase in acetylcholine esterase activity as well as inhibition of oxidative stress by restoring reduced glutathione and suppressing malondialdehyde hippocampal level to their normal levels. Mechanistically, lycopene upregulated the protein expression of tyrosine receptor kinase B, which resulted in an upsurge in its downstream cascades MAPK/ERK1/2/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus of BPA-intoxicated rats. Furthermore, concurrent treatment of lycopene with BPA prevented apoptosis by marked decrease in Bcl-2 associated X protein (Bax) gene expression and caspase 3 activity while restoring B-cell leukemia/lymphoma-2 (Bcl-2) gene expression. In conclusion, the present study provided evidence that lycopene exerted a neuroprotective effect against BPA intoxication in hippocampi of rats via its antioxidant properties, activation of MAPK/ERK pathway, and inhibiting a neuronal apoptosis which reflected on improving the learning and cognition memory.
Collapse
Affiliation(s)
- E M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Mae Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
23
|
Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules 2020; 25:molecules25153453. [PMID: 32751250 PMCID: PMC7436041 DOI: 10.3390/molecules25153453] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis, programmed cell death type I, is a critical part of neurodegeneration in cerebral ischemia, Parkinson’s, and Alzheimer’s disease. Apoptosis begins with activation of pro-death proteins Bax and Bak, release of cytochrome c and activation of caspases, loss of membrane integrity of intracellular organelles, and ultimately cell death. Approaches that block apoptotic pathways may prevent or delay neurodegenerative processes. Carotenoids are a group of pigments found in fruits, vegetables, and seaweeds that possess antioxidant properties. Over the last several decades, an increasing number of studies have demonstrated a protective role of carotenoids in neurodegenerative disease. In this review, we describe functions of commonly consumed carotenoids including lycopene, β-carotene, lutein, astaxanthin, and fucoxanthin and their roles in neurodegenerative disease models. We also discuss the underlying cellular mechanisms of carotenoid-mediated neuroprotection, including their antioxidant properties, role as signaling molecules, and as gene regulators that alleviate apoptosis-associated brain cell death.
Collapse
|
24
|
Chan YC, Wu CS, Wu TC, Lin YH, Chang SJ. A Standardized Extract of Asparagus officinalis Stem (ETAS ®) Ameliorates Cognitive Impairment, Inhibits Amyloid β Deposition via BACE-1 and Normalizes Circadian Rhythm Signaling via MT1 and MT2. Nutrients 2019; 11:nu11071631. [PMID: 31319549 PMCID: PMC6683278 DOI: 10.3390/nu11071631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer’s disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid β (Aβ) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aβ deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Ci-Sian Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Tsai-Chen Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
25
|
Chen D, Huang C, Chen Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed Pharmacother 2019; 111:791-801. [DOI: 10.1016/j.biopha.2018.12.151] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
|
26
|
Jing Y, Zhang L, Xu Z, Chen H, Ju S, Ding J, Guo Y, Tian H. Phosphatase Actin Regulator-1 (PHACTR-1) Knockdown Suppresses Cell Proliferation and Migration and Promotes Cell Apoptosis in the bEnd.3 Mouse Brain Capillary Endothelial Cell Line. Med Sci Monit 2019; 25:1291-1300. [PMID: 30772888 PMCID: PMC6391858 DOI: 10.12659/msm.912586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The phosphatase actin regulator-1 (PHACTR-1) gene on chromosome 6 encodes an actin and protein phosphatase 1 (PP1) binding protein, Phactr-1, which is highly expressed in brain tissues. Phactr-1 expression is involved in physiological and pathological cerebral microvascular events. This study aimed to investigate the role of expression of Phactr-1 in a mouse brain capillary endothelial cell line, bEnd.3, by knockdown the PHACTR-1 gene. MATERIAL AND METHODS Three bEnd.3 cell groups were studied, CON (normal control cells), NC (control scramble transfected cells), and KD (cells with PHACTR-1 gene knockdown). The PHACTR-1 gene was knocked down using transfection with small hairpin RNA (shRNA). In the three cell groups cell proliferation, migration, and apoptosis were studied by MTT and colony formation assays, transwell and scratch assays, and flow cytometry. The related cell pathways of associated with Phactr-1 knockdown were studied by Western blot. RESULTS Phactr-1 knockdown suppressed bEnd.3 cell proliferation and migration, promoted cell apoptosis, and downregulated the expressions of migration-associated proteins, including matrix metalloproteinase (MMP)-2 and MMP-9 and upregulated apoptosis-associated proteins, including Bax, Bcl-2, cleaved caspase-3, and caspase-3. CONCLUSIONS Phactr-1 was shown to have a role in the inhibition of endothelial cell proliferation and migration, promoted cell apoptosis, and regulated matrix metalloproteinases and apoptosis-associated proteins. These findings indicate that the expression of the Phactr-1 should be studied further in the cerebral microvasculature, both in vitro and in vivo, regarding its potential as a diagnostic and therapeutic target for cerebral microvascular disease.
Collapse
|