1
|
Huang Z, Meng FY, Lu LZ, Guo QQ, Lv CJ, Tan NH, Deng Z, Chen JY, Zhang ZS, Zou B, Long HP, Zhou Q, Tian S, Mei S, Tian XF. Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer. World J Gastroenterol 2024; 30:3511-3533. [PMID: 39156500 PMCID: PMC11326087 DOI: 10.3748/wjg.v30.i29.3511] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood.
AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.
METHODS This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.
RESULTS This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity.
CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway, contributing to the suppression of liver cancer growth.
Collapse
Affiliation(s)
- Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Fan-Ying Meng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Lin-Zhu Lu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qian-Qian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Chang-Jun Lv
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Nian-Hua Tan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Department of Hepatology, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jun-Yi Chen
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zi-Shu Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Bo Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Sha Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Si Mei
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
2
|
Teng YJ, Deng Z, Ouyang ZG, Zhou Q, Mei S, Fan XX, Wu YR, Long HP, Fang LY, Yin DL, Zhang BY, Guo YM, Zhu WH, Huang Z, Zheng P, Ning DM, Tian XF. Xihuang pills induce apoptosis in hepatocellular carcinoma by suppressing phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin pathway. World J Gastrointest Oncol 2022; 14:872-886. [PMID: 35582102 PMCID: PMC9048534 DOI: 10.4251/wjgo.v14.i4.872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin (PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills (XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma (HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHP-associated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.
AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.
METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS). Cell-based experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP (0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay. Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction (RT-qPCR), respectively. Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway. Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.
RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry: Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625 mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose- and time-dependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract (0.625 mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins (e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.
CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3. Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.
Collapse
Affiliation(s)
- Yong-Jie Teng
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhao-Guang Ouyang
- Department of Preventive Dentistry, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510132, Guangdong Province, China
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yong-Rong Wu
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Le-Yao Fang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Dong-Liang Yin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Bo-Yu Zhang
- College of Acupuncture and Massage, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yin-Mei Guo
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Wen-Hao Zhu
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhen Huang
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Piao Zheng
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Di-Min Ning
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
3
|
Zeng Q, Luo C, Cho J, Lai D, Shen X, Zhang X, Zhou W. Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:245-266. [PMID: 33151167 DOI: 10.2478/acph-2021-0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 01/19/2023]
Abstract
Tryptanthrin is an indole quinazoline alkaloid from the indigo-bearing plants, such as Isatis indigotica Fort. Typically, this natural compound shows a variety of pharmacological activities such as antitumor, antibacterial, anti-inflammatory and antioxidant effects. This study was conducted to assess the antitumor activity of tryptanthrin in breast cancer models both in vitro and in vivo, and to explore the important role of the inflammatory tumor microenvironment (TME) in the antitumor effects of tryptanthrin. Human breast adenocarcinoma MCF-7 cells were used to assess the antitumor effect of tryptanthrin in vitro. MTT assay and colony formation assay were carried out to monitor the antiproliferative effect of tryptanthrin (1.56~50.0 μmol L-1) on inhibiting the proliferation and colony formation of MCF-7 cells, respectively. The migration and invasion of MCF-7 cells were evaluated by wound healing assay and Transwell chamber assay, respectively. Moreover, the 4T1 murine breast cancer model was established to examine the pharmacological activity of tryptanthrin, and three groups with different doses of tryptanthrin (25, 50 and 100 mg kg-1) were set in study. Additionally, tumor volumes and organ coefficients were measured and calculated. After two weeks of tryptanthrin treatment, samples from serum, tumor tissue and different organs from tumor-bearing mice were collected, and the enzyme-linked immunosorbent assay (ELISA) was performed to assess the regulation of inflammatory molecules in mouse serum. Additionally, pathological examinations of tumor tissues and organs from mice were evaluated through hematoxylin and eosin (H&E) staining. The expression of inflammatory proteins in tumor tissues was measured by immunohistochemistry (IHC) and Western blotting. Tryptanthrin inhibited the proliferation, migration and invasion of MCF-7 cells, up-regulated the protein level of E-cadherin, and down-regulated those of MMP-2 and Snail, as suggested by the MCF-7 cell experiment. According to the results from in vivo experiment, tryptanthrin was effective in inhibiting tumor growth, and it showed favorable safety without inducing the fluctuations of body mass and organ coefficient (p > 0.05). In addition, tryptanthrin also suppressed the expression levels of NOS1, COX-2 and NF-κB in mouse tumor tissues, and regulated those of IL-2, IL-10 and TNF-α in the serum of tumor cells-transplanted mice. Tryptanthrin exerted its anti-breast cancer activities through modulating the inflammatory TME both in vitro and in vivo.
Collapse
Affiliation(s)
- Qingfang Zeng
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Cairong Luo
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Junlae Cho
- Faculty of Medicine and Life Science, The University of Sydney, NSW, 2006, Australia
| | - Donna Lai
- Faculty of Medicine and Life Science, The University of Sydney, NSW, 2006, Australia
| | - Xiangchun Shen
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Xiaoyan Zhang
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Wei Zhou
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
| |
Collapse
|
4
|
Chen X, Jin Y, Gong L, He D, Cheng Y, Xiao M, Zhu Y, Wang Z, Cao K. Bioinformatics Analysis Finds Immune Gene Markers Related to the Prognosis of Bladder Cancer. Front Genet 2020; 11:607. [PMID: 32655621 PMCID: PMC7324668 DOI: 10.3389/fgene.2020.00607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system that seriously threatens the health of a population. In recent years, the application of immunotherapy has significantly changed the treatment of bladder cancer, but only some patients can benefit from the treatment with immune-checkpoint inhibitors. Many problems are unsolved in the field of bladder cancer immunotherapy, especially in the search for genes that are critical to the level of immune cell infiltration and new effective therapeutic targets. We attempted to use bioinformatics analysis to identify immune gene markers related to the prognosis of bladder cancer and to establish a prognostic signature for bladder cancer patients based on their immune gene expression profiles. We used univariate Cox proportional hazards regression analysis, the least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox proportional hazards regression analysis from The Cancer Genome Atlas bladder cancer cohort (TCGA-BLCA). Fifteen genes related to prognosis were screened using the survival analysis, correlation analysis, cancer and adjacent cancer differential expression analysis, and mutation analysis. The potential biological role of these genes was determined using survival analysis and principal component analysis (PCA). The receiver operating characteristic (ROC) curve assesses the prognostic value of the predictive signature. The gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), Gene set enrichment analysis (GSEA), and other methods were used to reveal the differential gene enrichment in the signaling pathways and cellular processes of high- and low-risk groups. The single-sample GSEA (ssGSEA) method was used to quantify the infiltration levels of 24 immune cells in the tumor immune microenvironment and these immune genes were found to be closely related to the tumor immune microenvironment. In summary, we screened 15 immune genes that were closely related to bladder cancer overall survival (OS) and may be potential prognostic indicators of bladder cancer. They may have research and clinical application value in bladder cancer immunotherapy. We used 15 immune genes to construct a new immune-related gene signature that was verified and could be helpful in improving individualized prognosis of patients with bladder cancer.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Jin
- Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - YaXing Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Yang K, Zeng L, Ge A, Bao T, Xu T, Xie X, Liu L. Exploring the Regulation Mechanism of Xihuang Pill, Olibanum and β-Boswellic Acid on the Biomolecular Network of Triple-Negative Breast Cancer Based on Transcriptomics and Chemical Informatics Methodology. Front Pharmacol 2020; 11:825. [PMID: 32595497 PMCID: PMC7300251 DOI: 10.3389/fphar.2020.00825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Xihuang Pill (XHP) is mainly used to treat “Ru Yan (breast cancer)”. Evidence-based medical evidence and showed that XHP improves the efficacy of chemotherapy and reduced chemotherapy-induced toxicity in breast cancer patients. However, the mechanism of XHP against breast cancer is not clear. Methods The effect of XHP extract on cell half-inhibitory concentration (IC50) and cell viability of MD-MB-231 cells was detected by CCK-8 method. The cell inhibition rate of MDA-MB-453 cells were detected by MTT method. Apoptosis was detected by flow cytometry, cell transfer ability was detected by Transwell method, and cell proliferation ability was detected by colony formation assay. The expression of Notch1, β-catenin and c-myc mRNA in MDA-MB-453 cells were detected by real-time fluorescence quantitative PCR. Then, chemical informatics and transcriptomics methodology was utilized to predict the potential compounds and targets of XHP, and collect triple negative breast cancer (TNBC) genes and the data of Olibanum and β-boswellic acid intervention MD-MB-231 cells (from GSE102891). The cytoscape software was utilized to undergo network construction and network analysis. Finally, the data from the network analysis was imported into the DAVID database for enrichment analysis of signaling pathways and biological processes. Results The IC50 was 15.08 g/L (for MD-MB-231 cells). After interfering with MD-MB-231 cells with 15.08 g/L XHP extract for 72 h, compared with the control group, the cell viability, migration and proliferation was significantly decreased, while early apoptosis and late apoptosis were significantly increased (P < 0.01). After interfering with MDA-MB-453 cells with 6 g/L XHP extract for 72 h, compared with the control group, the cell inhibition and apoptosis rate increased, while the expression of Notch1, β-catenin and c-myc mRNA decreased. (P < 0.05). The chemical informatics and transcriptomics analysis showed that four networks were constructed and analyzed: (1) potential compounds-potential targets network of XHP; (2) XHP-TNBC PPI network; (3) DEGs PPI network of Olibanum-treated MD-MB 231 cells; (4) DEGs PPI network of β-boswellic acid -treated MD-MB 231 cells. Several anti-TNBC biological processes, signaling pathways, targets and so on were obtained. Conclusion XHP may exert anti-TNBC effects through regulating biological processes, signaling pathways, targets found in this study.
Collapse
Affiliation(s)
- Kailin Yang
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.,Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Graduate College, Capital Medical University, Beijing, China
| | - Liuting Zeng
- Graduate College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tingting Bao
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,School of Clinical Medicine (Xiyuan Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Tao Xu
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaobing Xie
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lifang Liu
- Galactophore Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Meta-Analysis of Xihuang Pill Efficacy When Combined with Chemotherapy for Treatment of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3502460. [PMID: 30992708 PMCID: PMC6434299 DOI: 10.1155/2019/3502460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Objective To systematically evaluate the efficacy of Xihuang pill (XHP) in breast cancer patients receiving chemotherapy. Methods Three English and four Chinese databases were searched. Literature was screened using EndNote X7 and data were analyzed by Review Manager. Results This review included 13 randomized clinical studies of 1272 patients. The results showed that XHP increased the tumor response [risk ratio (RR) = 2.91; 95% confidence interval (CI): 1.98-4.26] and improved Karnofsky performance score (KPS) for breast cancer patients receiving chemotherapy [RR = 4.96; 95% CI = 2.07-11.86]. In addition, XHP treatment significantly reduced chemotherapy-induced adverse events, including nausea and vomiting [RR = 0.50; 95% CI = 0.33-0.74], WBC reduction [RR = 0.71; 95% CI = 0.47-1.06], platelet reduction [RR = 0.53; 95% CI = 0.19-1.44], hemoglobin reduction [RR = 0.31; 95% CI = 0.19-0.52], and hepatic function damage [RR = 0.63; 95% CI = 0.35-1.11]. Conclusion XHP combined with chemotherapy in comparison with chemotherapy alone could significantly enhance the tumor response, improve KPS, and alleviate toxicity induced by chemotherapy in breast cancer patients.
Collapse
|
7
|
The Therapeutic Strategies of Regulatory T Cells in Malignancies and Stem Cell Transplantations. JOURNAL OF ONCOLOGY 2019; 2019:5981054. [PMID: 30693029 PMCID: PMC6332959 DOI: 10.1155/2019/5981054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Treg cells) are considered one of the main dynamic cell types within the immune system. Because Treg cells suppress immune responses, they have potential roles in immunological self-tolerance and may help to maintain immune homeostasis. Promoting Treg cell function and increasing their numbers might be useful in treating autoimmune disorders, as well as preventing allograft rejection. However, studies of mice and humans demonstrate that Treg cells promote cancer progression and suppress antitumor immunity. Therefore, suppressing Treg cell function or reducing their numbers could support the immune system's response to pathogenic microorganisms and tumors. As a result, there is great interest in investigating the Treg cells role in the treatment of hematological and nonhematological malignancies. Consequently, Treg cells could be a fundamentally important target for pathologies of the immune system. Targeting effector Treg cells could help to distinguish and selectively decrease these cells while preserving other Treg cells needed to suppress autoimmunity. Currently, a promising way to treat malignancies and other autoimmune disorders is stem cell transplantation. Stem cell transplants (SCT) can help to manage the production of Treg cells and also may produce more efficient Treg cells, thereby suppressing clinical disease progression. Specifically, mature T cells within the engrafted stem cells mediate this SCT beneficial effect. During SCT, the recipient's immune system is replaced with a donor, which allows for improved immune system function. In addition, SCT can protect from disease relapse, as graft-versus-host disease (GvHD) in transplant patients can be protective against cancer recurrence. The current review will define the role of regulatory T cells in treatment of malignancy. Additionally, it will summarize current promising research regarding the utility of regulatory T cells in stem cell transplantation.
Collapse
|