1
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Printzi A, Mazurais D, Witten PE, Madec L, Gonzalez AA, Mialhe X, Zambonino-Infante JL, Koumoundouros G. Juvenile zebrafish (Danio rerio) are able to recover from lordosis. Sci Rep 2022; 12:21533. [PMID: 36513797 PMCID: PMC9748118 DOI: 10.1038/s41598-022-26112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.
Collapse
Affiliation(s)
- A. Printzi
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece ,grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - D. Mazurais
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - P. E. Witten
- grid.5342.00000 0001 2069 7798Department of Biology, Gent University, Gent, Belgium
| | - L. Madec
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - A.-A. Gonzalez
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - X. Mialhe
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - J.-L. Zambonino-Infante
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - G. Koumoundouros
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece
| |
Collapse
|
4
|
Abstract
The tissue-resident skeletal stem cells (SSCs), which are self-renewal and multipotent, continuously provide cells (including chondrocytes, bone cells, marrow adipocytes, and stromal cells) for the development and homeostasis of the skeletal system. In recent decade, utilizing fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing, studies have identified various types of SSCs, plotted the lineage commitment trajectory, and partially revealed their properties under physiological and pathological conditions. In this review, we retrospect to SSCs identification and functional studies. We discuss the principles and approaches to identify bona fide SSCs, highlighting pioneering findings that plot the lineage atlas of SSCs. The roles of SSCs and progenitors in long bone, craniofacial tissues, and periosteum are systematically discussed. We further focus on disputes and challenges in SSC research.
Collapse
|
5
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
6
|
Schyrr F, Marques‐Vidal P, Hans D, Lamy O, Naveiras O. Differential blood counts do not consistently predict clinical measurements of bone mineral density and microarchitecture at homeostasis. JBMR Plus 2022; 6:e10669. [PMID: 36111204 PMCID: PMC9464992 DOI: 10.1002/jbm4.10669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
The hematopoietic stem cell niche constitutes a complex bone marrow (BM) microenvironment. Osteoporosis is characterized by both reduced bone mineral density (BMD) and microarchitectural deterioration, constituting the most frequent alteration of the BM microenvironment. It is unclear to which extent modifications of the BM microenvironment, including in the context of osteoporosis, influence blood cell production. We aimed to describe the association between lumbar spine and total hip BMD and microarchitecture (assessed by trabecular bone score [TBS]) and differential blood counts. Data were collected at two time points from 803 (first assessment) and 901 (second assessment) postmenopausal women participating in the CoLaus/OsteoLaus cohort, a population‐based sample in Lausanne, Switzerland. Participants with other active disease or treatment that could influence hematopoiesis or osteoporosis were excluded. Bivariate and multivariate associations between each peripheral blood cell count and BMD or TBS were performed. Additionally, participants in the highest BMD and TBS tertiles were compared with participants in the lowest BMD and TBS tertiles. At first assessment, only neutrophils were significantly different in the lowest BMD and TBS tertile (3.18 ± 0.09 versus 3.47 ± 0.08 G/L, p = 0.028). At the second assessment, leucocytes (5.90 ± 0.11 versus 5.56 ± 0.10 G/L, p = 0.033), lymphocytes (1.87 ± 0.04 versus 1.72 ± 0.04 G/L p = 0.033), and monocytes (0.49 ± 0.01 versus 0.46 ± 0.1 G/L, p = 0.033) were significantly different. Power analysis did not identify quasi‐significant associations missed due to sample size. Although significant associations between blood counts and BMD or TBS were found, none was consistent across bone measurements or assessments. This study suggests that, at homeostasis and in postmenopausal women, there is no clinically significant association between the osteoporotic microenvironment and blood production output as measured by differential blood counts. In the context of conflicting reports on the relationship between osteoporosis and hematopoiesis, our study represents the first prospective two time‐point analysis of a large, homogenous cohort at steady state. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Frederica Schyrr
- Laboratory of Regenerative HematopoiesisSwiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Didier Hans
- Centre of Bone Diseases, Bone and Joint DepartmentLausanne University HospitalLausanneSwitzerland
| | - Olivier Lamy
- Centre of Bone Diseases, Bone and Joint DepartmentLausanne University HospitalLausanneSwitzerland
| | - Olaia Naveiras
- Laboratory of Regenerative HematopoiesisSwiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
- Hematology Service, Department of OncologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
7
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
8
|
Freire EBL, d’Alva CB, Madeira MP, Lima GEDCP, Montenegro APDR, Fernandes VO, Montenegro Junior RM. Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9724. [PMID: 34574647 PMCID: PMC8465110 DOI: 10.3390/ijerph18189724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
Congenital Generalized Lipodystrophy (CGL) is a rare syndrome characterized by the almost total absence of subcutaneous adipose tissue due to the inability of storing lipid in adipocytes. Patients present generalized lack of subcutaneous fat and normal to low weight. They evolve with severe metabolic disorders, non-alcoholic fatty liver disease, early cardiac abnormalities, and infectious complications. Although low body weight is a known risk factor for osteoporosis, it has been reported that type 1 and 2 CGL have a tendency of high bone mineral density (BMD). In this review, we discuss the role of bone marrow tissue, adipokines, and insulin resistance in the setting of the normal to high BMD of CGL patients. Data bases from Pubmed and LILACS were searched, and 113 articles published until 10 April 2021 were obtained. Of these, 76 were excluded for not covering the review topic. A manual search for additional literature was performed using the bibliographies of the studies located. The elucidation of the mechanisms responsible for the increase in BMD in this unique model of insulin resistance may contribute to the understanding of the interrelationships between bone, muscle, and adipose tissue in a pathophysiological and therapeutic perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza 60416200, CE, Brazil; (E.B.L.F.); (C.B.d.); (M.P.M.); (G.E.d.C.P.L.); (A.P.D.R.M.); (V.O.F.)
| | | |
Collapse
|
9
|
Okuyama C, Higashi T, Ishizu K, Takahashi M, Kusano K, Kagawa S, Saga T, Yamauchi H. Physiologically decreased F-18 fluorodeoxyglucose uptake in the lower vertebrae associated with daily drinking habit in Japanese men with alcohol flushing reaction. Alcohol 2021; 95:15-23. [PMID: 33711409 DOI: 10.1016/j.alcohol.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Alcohol flushing reaction (AFR) is known as one of the risks for esophageal squamous cell cancer, and scientists have been elucidating this issue. However, little attention has been given to relevant imaging features. This study aims to investigate whether physiological 18F-fluorodeoxyglucose (FDG) uptake patterns in vertebrae are associated with drinking habits or AFR. Japanese male patients who underwent FDG positron emission computed tomography for evaluation of their known or suspected malignancies or inflammatory diseases were asked about their drinking habits and AFR. Altogether, 192 patients, 139 every-day drinkers and 53 non-drinkers were evaluated. Comparing the FDG uptake between that in the thoracic region and that in the lumbar region, vertebral uptake was visually classified into four patterns: Ld, dominant in lumbar region; TL, almost equal in both regions; BL, slightly higher in thoracic region (borderline pattern); Td, dominant in thoracic region. The uptake patterns were evaluated according to drinking habit (every-day drinker or non-drinker), AFR (flusher or non-flusher), and the combination of these two factors (habit/reaction: every-day drinker/flusher, every-day drinker/non-flusher, non-drinker/flusher, or non-drinker/non-flusher). There were 95 flushers (51 every-day drinkers and 44 non-drinkers) and 97 non-flushers (88 every-day drinkers and 9 non-drinkers). Ld, TL, BL, and Td patterns were observed in 0, 109 (56.8%), 31 (16.1%), and 52 (27.1%) patients, respectively. Td and BL patterns were more frequently observed in every-day drinkers compared with non-drinkers (p = 0.0467). Though the uptake patterns did not differ between flushers and non-flushers (p = 0.116), the Td pattern was more frequently observed in every-day drinkers/flushers (51%) compared with every-day drinkers/non-flushers (20.5%), non-drinkers/flushers (13.6%), and non-drinkers/non-flushers (22.2%) (p = 0.0014). The Td pattern was observed in patients with various diseases, with higher frequency in esophageal cancer, head and neck cancer, and lung cancer compared with other diseases. In conclusion, drinking habits and AFR were related to the vertebral uptake pattern with decreased uptake in the lumbar region in Japanese male patients.
Collapse
|
10
|
Piotrowska K, Tarnowski M. Bone Marrow Adipocytes-Role in Physiology and Various Nutritional Conditions in Human and Animal Models. Nutrients 2021; 13:nu13051412. [PMID: 33922353 PMCID: PMC8146898 DOI: 10.3390/nu13051412] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, adipose tissue has attracted a lot of attention. It is not only an energy reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia nervosa and calorie restriction in animal models.
Collapse
|
11
|
Doretto-Silva L, Steiner ML, Veridiano JM, Petri G, Luz MCDB, Neofiti-Papi B, Bianco B, Fonseca FLA, Toledo OMSD, Fernandes CE, Pompei LDM. White, brown, and bone marrow adipose tissue behavior in DHEA-induced PCOS mice. Gynecol Endocrinol 2021; 37:15-20. [PMID: 32538231 DOI: 10.1080/09513590.2020.1772228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022] Open
Abstract
METHODS Thirty-one female C57BL/6J mice were divided into four groups: two were treated with subcutaneous dehydroepiandrosterone (DHEA) implants and divided into normal and hypercaloric diet (HFD). Two were control and divided into normal and HFD. Presence of insulin resistance, growth, and adipocyte markers expression of white and brown adipose tissues and growth and inflammatory cytokines expression of bone marrow adipose tissue were evaluated. RESULTS Hypercaloric diet groups presented higher total weight gain and huge growth in all fat sites, except bone marrow. They also demonstrated greater expression of adipocyte markers in sites of white adipose tissue. DHEA + HFD group showed more insulin intolerance than all other groups. DHEA shows to abrogate AdipoQ expression in all fatty tissues. CONCLUSIONS DHEA alone does not influence adipose tissue growth, but contributes to increased insulin resistance and influences the expression of adipokines. Proximal MAT showed different behavior from the other fat depot.
Collapse
Affiliation(s)
- Lorena Doretto-Silva
- Department of Morphology and Physiology, Histology Laboratory, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Marcelo Luis Steiner
- Department of Gynecology and Obstetrics, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Juliana Mora Veridiano
- Department of Morphology and Physiology, Histology Laboratory, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Giuliana Petri
- Vivarium of Centro Universitário Saúde ABC, Santo André, Brazil
| | | | - Bianca Neofiti-Papi
- Department of Anatomy, Bone Metabolism Laboratory, Institute of Biomedical Sciences III, University of São Paulo, São Paulo, Brazil
| | - Bianca Bianco
- Laboratory of Genetics and Molecular Biology, Centro Universitário Saúde ABC, Santo André, Brazil
| | | | | | - César Eduardo Fernandes
- Department of Gynecology and Obstetrics, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Luciano de Melo Pompei
- Department of Gynecology and Obstetrics, Centro Universitário Saúde ABC, Santo André, Brazil
| |
Collapse
|
12
|
Lee JY, Yang JY, Kim SW. Bone Lining Cells Could Be Sources of Bone Marrow Adipocytes. Front Endocrinol (Lausanne) 2021; 12:766254. [PMID: 34925236 PMCID: PMC8678613 DOI: 10.3389/fendo.2021.766254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently, lineage-tracing studies demonstrated that parathyroid hormone and anti-sclerostin antibody (Scl-Ab) can convert bone lining cells (BLCs) into active osteoblasts. However, BLCs might also be differentiated into other lineages. Here we investigated whether BLCs could differentiate into bone marrow adipocytes (BMAds) and whether Scl-Ab could suppress this process. METHODS Dmp1-CreERt2:mTmG mice were injected with 0.5 mg of 4-hydroxytamoxifen once weekly from postnatal week 4 to week 8. The mice were treated with either vehicle or rosiglitazone for 8 weeks (weeks 12-20). Moreover, they were administered either vehicle or Scl-Ab (50 mg/kg) twice weekly for 4 weeks (weeks 16-20, N = 4-6/group). We chased the GFP+ cells from the endosteal surface to the bone marrow (BM) of the femur. Using immunohistochemical staining, the numbers of perilipin+ or GFP+/perilipin double+ cells in the BM were quantified. In addition, serum N-terminal propeptide of type I procollagen (P1NP) levels were measured at each time point, and bone mass was analyzed at 20 weeks using micro-computed tomography. RESULTS Scl-Ab administration significantly reversed the decreases in bone parameters induced by rosiglitazone. Plump GFP+ cells, presumably active osteoblasts, and extremely flat GFP+ cells, presumably BLCs, were present on the endosteal surface of the femur at 8 and 12 weeks, respectively, in line with prior findings. When we chased the GFP+ cells, rosiglitazone significantly increased the number of GFP/perilipin double+ BMAds compared to the effects of the vehicle (P < 0.001), and overlapping Scl-Ab administration decreased the number of GFP/perilipin double + BMAd compared to rosiglitazone alone (P < 0.001). In addition, we found that osteoblast lineage cells such as BLCs might express PPARγ on immunohistochemical staining. When rosiglitazone was administered to Rip-Cre:mTmG mice, GFP+ cells were not present on the endosteal surface or in the BM of the femur; however, they were present in the pancreas. CONCLUSION BLCs could be sources of BMAds, and rosiglitazone could stimulate the differentiation of osteoblast lineage cells into BMAds. Suppression of the differentiation of osteoblast lineage cells into BMAds might contribute to anabolic effects resulting from the pharmacologic inhibition of sclerostin.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Division of Endocrinology and Metabolism, Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
- *Correspondence: Sang Wan Kim,
| |
Collapse
|
13
|
Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020; 62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by the loss of bone mass and microarchitecture deterioration of bone tissue, attributed to various factors, including menopause (primary), aging (primary) and adverse effects of relevant medications (secondary). In recent decades, knowledge regarding the etiological mechanisms underpinning osteoporosis emphasizes that bone cellular homeostasis, including the maintenance of cell functions, differentiation, and the response to stress, is tightly regulated by autophagy, which is a cell survival mechanism for eliminating and recycling damaged proteins and organelles. With the important roles in the maintenance of cellular homeostasis and organ function, autophagy has emerged as a potential target for the prevention and treatment of osteoporosis. In this review, we update and discuss the pathophysiology of autophagy in normal bone cell life cycle and metabolism. Then, the alternations of autophagy in primary and secondary osteoporosis, and the accompanied pathological process are discussed. Finally, we discuss current strategies, limitations, and challenges involved in targeting relevant pathways and propose strategies by which such hurdles may be circumvented in the future for their translation into clinical validations and applications for the prevention and treatment of osteoporosis.
Collapse
|
14
|
Chen P, Song M, Wang Y, Deng S, Hong W, Zhang X, Yu B. Identification of key genes of human bone marrow stromal cells adipogenesis at an early stage. PeerJ 2020; 8:e9484. [PMID: 32742785 PMCID: PMC7380279 DOI: 10.7717/peerj.9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow adipocyte (BMA), closely associated with bone degeneration, shares common progenitors with osteoblastic lineage. However, the intrinsic mechanism of cells fate commitment between BMA and osteogenic lineage remains unclear. Methods Gene Expression Omnibus (GEO) dataset GSE107789 publicly available was downloaded and analyzed. Differentially expressed genes (DEGs) were analyzed using GEO2R. Functional and pathway enrichment analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were conducted by The Database for Annotation, Visualization and Integrated Discovery and Gene set enrichment analysis software. Protein-protein interactions (PPI) network was obtained using STRING database, visualized and clustered by Cytoscape software. Transcriptional levels of key genes were verified by real-time quantitative PCR in vitro in Bone marrow stromal cells (BMSCs) undergoing adipogenic differentiation at day 7 and in vivo in ovariectomized mice model. Results A total of 2,869 DEGs, including 1,357 up-regulated and 1,512 down-regulated ones, were screened out from transcriptional profile of human BMSCs undergoing adipogenic induction at day 7 vs. day 0. Functional and pathway enrichment analysis, combined with modules analysis of PPI network, highlighted ACSL1, sphingosine 1-phosphate receptors 3 (S1PR3), ZBTB16 and glypican 3 as key genes up-regulated at the early stage of BMSCs adipogenic differentiation. Furthermore, up-regulated mRNA expression levels of ACSL1, S1PR3 and ZBTB16 were confirmed both in vitro and in vivo. Conclusion ACSL1, S1PR3 and ZBTB16 may play crucial roles in early regulation of BMSCs adipogenic differentiation.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Vertebral Bone Marrow Fat Is independently Associated to VAT but Not to SAT: KORA FF4-Whole-Body MR Imaging in a Population-Based Cohort. Nutrients 2020; 12:nu12051527. [PMID: 32456276 PMCID: PMC7284541 DOI: 10.3390/nu12051527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of the current study was to assess the relationship of bone marrow adipose tissue (BMAT) content to abdominal fat depots, including visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), as well as cardiovascular risk factors (CVRF) beyond physical activity in a population-based cohort study undergoing whole-body magnetic resonance (MR) imaging. Subjects of the Cooperative Health Research in the Augsburg Region (KORA) FF4 study without known cardiovascular disease underwent fat fraction quantification in vertebrae (BMATL1/L2) via a 2-point T1-weighted volumetric interpolated breath-hold examination (VIBE) Dixon sequence. The same MR sequence was applied to quantify VAT and SAT volume. Subjects’ characteristics, including physical activity, were determined through standardized exams and self-assessment questionnaires. Univariate and multivariate linear regression were applied. In the cohort of 378 subjects (56 ± 9.1years; 42.1% female), BMATL1/L2 was 54.3 ± 10.1%, VAT was 4.54 ± 2.71 L, and SAT was 8.10 ± 3.68 L. VAT differed significantly across BMATL1/L2 tertiles (3.60 ± 2.76 vs. 4.92 ± 2.66 vs. 5.11 ± 2.48; p < 0.001), there was no significant differences for SAT (p = 0.39). In the fully adjusted model, VAT remained positively associated with BMATL1/L2 (β = 0.53, p = 0.03). Furthermore, BMATL1/L2 was associated with age (β = 5.40 per 10-years, p < 0.001), hemoglobin A1c (HbA1c; β = 1.55 per 1%, p = 0.04), lipids (β = 0.20 per 10 mg/dL triglycerides; β = 0.40 per 10 mg/dL low-density lipoprotein (LDL); β =−3.21 lipid-lowering medication; all p < 0.05), and less physical activity (β = 3.7 “no or nearly no exercise” as compared to “≥2 h per week, regularly”, p = 0.003); gender was not significantly different (p = 0.57). In the population-based cohort, VAT but not SAT were associated with higher BMATL1/L2 independently of physical activity and other cardiovascular risk factors. Further, BMATL1/L2 increased with older age, less physical activity, higher HbA1c, and increased lipids but decreased with lipid-lowering medication.
Collapse
|
16
|
Spurny M, Jiang Y, Sowah SA, Schübel R, Nonnenmacher T, Bertheau R, Kirsten R, Johnson T, Hillengass J, Schlett CL, von Stackelberg O, Ulrich CM, Kaaks R, Kauczor HU, Kühn T, Nattenmüller J. Changes in Bone Marrow Fat upon Dietary-Induced Weight Loss. Nutrients 2020; 12:nu12051509. [PMID: 32455947 PMCID: PMC7284630 DOI: 10.3390/nu12051509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bone marrow fat is implicated in metabolism, bone health and haematological diseases. Thus, this study aims to analyse the impact of moderate weight loss on bone marrow fat content (BMFC) in obese, healthy individuals. Methods: Data of the HELENA-Trial (Healthy nutrition and energy restriction as cancer prevention strategies: a randomized controlled intervention trial), a randomized controlled trial (RCT) among 137 non-smoking, overweight or obese participants, were analysed to quantify the Magnetic Resonance Imaging (MRI)-derived BMFC at baseline, after a 12-week dietary intervention phase, and after a 50-week follow-up. The study cohort was classified into quartiles based on changes in body weight between baseline and week 12. Changes in BMFC in respect of weight loss were analysed by linear mixed models. Spearman’s coefficients were used to assess correlations between anthropometric parameters, blood biochemical markers, blood cells and BMFC. Results: Relative changes in BMFC from baseline to week 12 were 0.0 ± 0.2%, −3.2 ± 0.1%, −6.1 ± 0.2% and −11.5 ± 0.6% for Q1 to Q4. Across all four quartiles and for the two-group comparison, Q1 versus Q4, there was a significant difference (p < 0.05) for changes in BMFC. BMFC was not associated with blood cell counts and showed only weaker correlations (<0.3) with metabolic biomarkers. Conclusion: Weight loss is associated with a decrease of BMFC. However, BMFC showed no stronger associations with inflammatory and metabolic biomarkers.
Collapse
Affiliation(s)
- Manuela Spurny
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Yixin Jiang
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Solomon A. Sowah
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Ruth Schübel
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Tobias Nonnenmacher
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Robert Bertheau
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Romy Kirsten
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Theron Johnson
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Jens Hillengass
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA;
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany;
| | - Oyunbileg von Stackelberg
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA;
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Hans-Ulrich Kauczor
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; (S.A.S.); (R.K.); (T.J.); (R.K.); (T.K.)
| | - Johanna Nattenmüller
- Heidelberg University Hospital, Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; (M.S.); (Y.J.); (R.S.); (T.N.); (R.B.); (O.v.S.); (H.-U.K.)
- Correspondence: ; Tel.: +49-6221-5636462
| |
Collapse
|
17
|
Boroumand P, Klip A. Bone marrow adipose cells - cellular interactions and changes with obesity. J Cell Sci 2020; 133:133/5/jcs238394. [PMID: 32144195 DOI: 10.1242/jcs.238394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is a spatially restricted niche, housing cells of the hematopoietic and mesenchymal lineages in various hierarchical commitment states. Although highly localized, cells within this niche are also subject to regulation by environmental and/or circulatory changes through extensive vascularization. Bone marrow adipocytes, derived from mesenchymal stem cells and once known as marrow space fillers, are a heterogeneous population. These cells reside in distinct niches within the bone marrow and interact with proximal cells, such as hematopoietic precursors and lineage-committed cells. In this diverse cellular milieu, bone marrow adipocytes influence commitment decisions and cellular lineage selection by interacting with stem and progenitor cells. In addition, bone marrow adipocytes respond to environmental changes, such as obesity, by undergoing hypertrophy, hyperplasia or adoption of characteristics resembling those of peripheral brown, beige or white adipocytes. Here, we review recent findings and concepts on the influence of bone marrow adipocytes on hematopoietic and other cellular lineages within this niche. We discuss how changes in local, systemic, cellular and secreted signals impact on mesenchymal stem cell expansion, differentiation and lineage commitment. Furthermore, we highlight that bone marrow adipocytes may be intermediaries conveying environmental cues to influence hematopoietic cellular survival, proliferation and preferential differentiation.
Collapse
Affiliation(s)
- Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark.
- Department of Molecular Physiology of Bone, Institute of Physiology, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells Int 2019; 2019:9026729. [PMID: 31281389 PMCID: PMC6589297 DOI: 10.1155/2019/9026729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are postnatal self-renewing, multipotent, and skeletal lineage-committed progenitors that are capable of giving rise to cartilage, bone, and bone marrow stroma including marrow adipocytes and stromal cells in vitro and in an exogenous environment after transplantation in vivo. Identifying and isolating defined SSCs as well as illuminating their spatiotemporal properties contribute to our understating of skeletal biology and pathology. In this review, we revisit skeletal stem cells identified most recently and systematically discuss their origin and distributions.
Collapse
|
21
|
Esche J, Shi L, Hartmann MF, Schönau E, Wudy SA, Remer T. Glucocorticoids and Body Fat Inversely Associate With Bone Marrow Density of the Distal Radius in Healthy Youths. J Clin Endocrinol Metab 2019; 104:2250-2256. [PMID: 30715368 DOI: 10.1210/jc.2018-02108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/25/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Elevated bone marrow adipose tissue (BMAT) is associated with lower bone quality, higher fracture rates, and an unfavorable overall metabolic profile. Apart from age, particularly glucocorticoids (GC), body fat, and diet are discussed to influence BMAT. We hypothesized that already in healthy youths, higher fat intake, higher fat mass index (FMI), and higher GC secretion, still within the normal range, may associate with increased BMAT. DESIGN In a subsample of healthy 6- to 18-year-old participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed Study, peripheral quantitative CT of the nondominant proximal forearm was used to determine bone marrow density of the distal radius as an inverse surrogate parameter for BMAT. In those participants (n = 172) who had collected two, 24-hour urines within around one year before bone measurement, major urinary GC metabolites were measured by gas chromatography-mass spectrometry and summed up to assess daily adrenal GC secretion (ΣC21). Dietary intake was assessed by 3-day weighed dietary records. FMI was anthropometrically calculated. Separate multiple linear regression models were used to analyze the relationships of ΣC21, FMI, and fat intake with BMAT. RESULTS After controlling for confounders, such as age, energy intake, and forearm muscle area, ΣC21 (β = -0.042) and FMI (β = -0.002) showed inverse relationships with bone marrow density (P < 0.05), whereas fat intake did not associate significantly. CONCLUSION Our results indicate that already a moderately elevated GC secretion and higher body fatness during adolescence may adversely impact BMAT, an indicator for long-term bone health.
Collapse
Affiliation(s)
- Jonas Esche
- Dortmund Nutritional and Anthropometric Longitudinally Designed Study Center, Institute of Nutrition and Food Science, Nutritional Epidemiology, University of Bonn, Dortmund, Germany
| | - Lijie Shi
- Dortmund Nutritional and Anthropometric Longitudinally Designed Study Center, Institute of Nutrition and Food Science, Nutritional Epidemiology, University of Bonn, Dortmund, Germany
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Eckhard Schönau
- Children's Hospital, University of Cologne, Cologne, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Thomas Remer
- Dortmund Nutritional and Anthropometric Longitudinally Designed Study Center, Institute of Nutrition and Food Science, Nutritional Epidemiology, University of Bonn, Dortmund, Germany
| |
Collapse
|
22
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|