1
|
Jiang H, Foroozandeh P, Kaplan N, Xu D, Yang W, Qi X, Nalbant EK, Clutter ED, Zhu Y, Xu J, Schipma MJ, Ren Z, Peng H. IFITM1/OVOL1 Axis Is a Novel Regulator of the Expansion of the Limbal Epithelial Stem/Early Transient Amplifying Cell Population. FASEB J 2025; 39:e70648. [PMID: 40372397 DOI: 10.1096/fj.202500783r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Limbal epithelial stem cells (LESCs), located in the basal layer of the limbal epithelium, rarely proliferate under normal conditions. Upon proliferation, LESCs give rise to early transient amplifying (eTA) cells, which are thought to be morphologically and phenotypically indistinguishable from LESCs. Following corneal epithelial wounding, LESCs are activated to repair the corneal epithelium via expansion of eTA cells, a process crucial for maintaining corneal epithelial homeostasis and tissue transparency as well as essential for clear vision. To understand how this process is regulated, we conducted a single cell RNA sequencing assay of mouse corneal rims with and without injury and observed an expansion of the stem/eTA cell cluster after corneal injury. Interestingly, we found that Interferon Induced Transmembrane Protein 1 (IFITM1) was predominantly expressed in stem/eTA cells and was positively associated with such stem/eTA cell expansion after corneal wounding. In vivo knockdown of IFITM1 using an AAV (adeno-associated virus) vector significantly attenuated stem/eTA cell expansion and activation of stem/eTA cells to proliferate after mouse corneal wounding. In human limbal epithelial cell cultures, IFITM1 positively impacted the proliferation of stem/eTA cell-enriched limbal epithelial cells, contributing to expansion of the stem/eTA cell population. Such expansion was due, in part, to inhibition of OVOL1 (Ovo like zinc finger 1), a negative regulator of epithelial cell proliferation. These results provide key molecular insights into how stem cell activation and eTA cell expansion are regulated. Elucidating the IFITM1/OVOL1 pathway that governs stem/eTA cell proliferation not only deepens our knowledge of tissue homeostasis but also opens avenues for developing novel regenerative therapies.
Collapse
Affiliation(s)
- Huimin Jiang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Parisa Foroozandeh
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dan Xu
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Wending Yang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaolin Qi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elif Kayaalp Nalbant
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elwin D Clutter
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yongling Zhu
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matthew John Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Jiang H, Liu M, Yang W, Hong YK, Xu D, Nalbant EK, Clutter ED, Foroozandeh P, Kaplan N, Wysocki J, Batlle D, Miller SD, Lu K, Peng H. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway. iScience 2024; 27:110534. [PMID: 39175771 PMCID: PMC11338997 DOI: 10.1016/j.isci.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
In response to corneal injury, an activation of corneal epithelial stem cells and their direct progeny the early transit amplifying (eTA) cells to rapidly proliferate is critical for proper re-epithelialization. Thus, it is important to understand how such stem/eTA cell activation is regulated. Angiotensin-converting enzyme 2 (ACE2) is predominantly expressed in the stem/eTA-enriched limbal epithelium but its role in the limbal epithelium was unclear. Single cell RNA sequencing (scRNA-seq) suggested that Ace2 involved the proliferation of the stem/eTA cells. Ace2 was reduced following corneal injury. Such reduction enhanced limbal epithelial proliferation and downregulated LCN2, a negative regulator of proliferation in a variety of tissues, via upregulating TGFA and consequently activating epidermal growth factor receptor (EGFR). Inhibition of EGFR or overexpression of LCN2 reversed the increased proliferation in limbal epithelial cells lacking ACE2. Our findings demonstrate that after corneal injury, ACE2 is downregulated, which activates limbal epithelial cell proliferation via a TGFA/EGFR/LCN2 pathway.
Collapse
Affiliation(s)
- Huimin Jiang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Liu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wending Yang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi-Kai Hong
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan Xu
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elif Kayaalp Nalbant
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elwin D. Clutter
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Parisa Foroozandeh
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jan Wysocki
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Batlle
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D. Miller
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kurt Lu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Goldberg JS, Fraser DJ, Hou JH. Prevalence of limbal stem cell deficiency at an academic referral center over a two-year period. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1392106. [PMID: 38984131 PMCID: PMC11228361 DOI: 10.3389/fopht.2024.1392106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Aim To evaluate the prevalence and clinical characteristics of limbal stem cell deficiency (LSCD) in the setting of a tertiary referral cornea practice at an academic center. Patient and methods A retrospective chart review was performed to identify all unique medical record numbers (MRNs) presenting to a single cornea specialist (JHH) at the University of Minnesota during calendar years 2019 and 2020. Records were queried and confirmed for a diagnosis of LSCD. Clinical characteristics of identified patients, including demographics, etiology of LSCD, severity of LSCD, treatment, and best corrected visual acuity (BCVA) at final follow-up, were documented. Results In total 1436 unique MRNs were identified over the study period. There were 61 individuals (91 eyes) diagnosed with LSCD, resulting in a prevalence of 4.25% (95% CI, 3.33-5.42). Of 91 eyes, 60 eyes were bilateral (65.9%). Among all eyes, ocular surface burns were the most common etiology (18.7%) followed by iatrogenic or medicamentosa (15.4%). There were 51 eyes (56.0%) that underwent some form of transplantation. The median BCVA at final follow-up was Snellen 20/80 (range 20/20 to no light perception). Conclusions The prevalence of LSCD found at a cornea subspecialty tertiary referral center in our study was much higher than previously reported prevalence rates. This may reflect referral bias and potential underdiagnosis of LSCD in practices outside of subspecialty referral centers. The high prevalence rate in our study also suggests that LSCD patients are concentrated in subspecialty referral practices, with many having high morbidity disease. This constitutes a major health burden for these practices.
Collapse
Affiliation(s)
- Jason S. Goldberg
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
- Department of Ophthalmology, Hampton Veterans Affairs Medical Center, Hampton, VA, United States
| | - Daniel J. Fraser
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Joshua H. Hou
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Wang Z, Jiang C, Fan Y, Hao X, Dong Y, He X, Gao J, Zhang Y, Li M, Wang M, Liu Y, Xu W. The application of a 4D-printed chitosan-based stem cell carrier for the repair of corneal alkali burns. Stem Cell Res Ther 2024; 15:41. [PMID: 38355568 PMCID: PMC10865625 DOI: 10.1186/s13287-024-03653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Corneal alkali burns can lead to ulceration, perforation, and even corneal blindness due to epithelial defects and extensive cell necrosis, resulting in poor healing outcomes. Previous studies have found that chitosan-based in situ hydrogel loaded with limbal epithelium stem cells (LESCs) has a certain reparative effect on corneal alkali burns. However, the inconsistent pore sizes of the carriers and low cell loading rates have resulted in suboptimal repair outcomes. In this study, 4D bioprinting technology was used to prepare a chitosan-based thermosensitive gel carrier (4D-CTH) with uniform pore size and adjustable shape to improve the transfer capacity of LESCs. METHODS Prepare solutions of chitosan acetate, carboxymethyl chitosan, and β-glycerophosphate sodium at specific concentrations, and mix them in certain proportions to create a pore-size uniform scaffold using 4D bioprinting technology. Extract and culture rat LESCs (rLESCs) in vitro, perform immunofluorescence experiments to observe the positivity rate of deltaNp63 cells for cell identification. Conduct a series of experiments to validate the cell compatibility of 4D-CTH, including CCK-8 assay to assess cell toxicity, scratch assay to evaluate the effect of 4D-CTH on rLESCs migration, and Calcein-AM/PI cell staining experiment to examine the impact of 4D-CTH on rLESCs proliferation and morphology. Establish a severe alkali burn model in rat corneas, transplant rLESCs onto the injured cornea using 4D-CTH, periodically observe corneal opacity and neovascularization using a slit lamp, and evaluate epithelial healing by fluorescein sodium staining. Assess the therapeutic effect 4D-CTH-loaded rLESCs on corneal alkali burn through histological evaluation of corneal tissue paraffin sections stained with hematoxylin and eosin, as well as immunofluorescence staining of frozen sections. RESULTS Using the 4D-CTH, rLESCs were transferred to the alkali burn wounds of rats. Compared with the traditional treatment group (chitosan in situ hydrogel encapsulating rLESCs), the 4D-CTH-rLESC group had significantly higher repair efficiency of corneal injury, such as lower corneal opacity score (1.2 ± 0.4472 vs 0.4 ± 0.5477, p < 0.05) and neovascularization score (5.5 ± 1.118 vs 2.6 ± 0.9618, p < 0.01), and significantly higher corneal epithelial wound healing rate (72.09 ± 3.568% vs 86.60 ± 5.004%, p < 0.01). CONCLUSION In summary, the corneas of the 4D-CTH-rLESC treatment group were similar to the normal corneas and had a complete corneal structure. These findings suggested that LESCs encapsulated by 4D-CTH significantly accelerated corneal wound healing after alkali burn and can be considered as a rapid and effective method for treating epithelial defects.
Collapse
Affiliation(s)
- Zibo Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Changqing Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
| | - Yuqiao Fan
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xiaodan Hao
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266003, Shandong, China
| | - Yanhan Dong
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266003, Shandong, China
| | - Xinjia He
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Jinning Gao
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266003, Shandong, China
| | - Yongchun Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China
| | - Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yiming Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Yang W, Lee SK, Lehmann OJ, Wu Z, Hiriyanna S, Swaroop A, Lavker RM, Peng H, Kume T. FoxC1 activates limbal epithelial stem cells following corneal epithelial debridement. Exp Eye Res 2023; 234:109599. [PMID: 37488009 PMCID: PMC10530263 DOI: 10.1016/j.exer.2023.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Limbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6+/- mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues. However, the role of FoxC1 in limbal epithelial stem cells remains unknown. To unravel FoxC1's role(s) in limbal epithelial stem cell homeostasis, we utilized an adeno-associated virus (AAV) vector to topically deliver human FOXC1 proteins into Pax6 +/- mouse limbal epithelium. Under unperturbed conditions, overexpression of FOXC1 in the limbal epithelium had little significant change in differentiation (PAI-2, Krt12) and proliferation (BrdU, Ki67). Conversely, such overexpression resulted in a marked increase in the expression of putative limbal epithelial stem cell markers, N-cadherin and Lrig1. After corneal injuries in Pax6 +/- mice, FOXC1 overexpression enhanced the behavior of limbal epithelial stem cells from quiescence to a highly proliferative status. Overall, the treatment of AAV8-FOXC1 may be beneficial to the function of limbal epithelial stem cells in the context of a deficiency of Pax6 function.
Collapse
Affiliation(s)
- Wending Yang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sun Kyong Lee
- Departments of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ordan J Lehmann
- Department of Ophthalmology and Medical Genetics, University of Alberta, Edmonton, Alberta, T6G, 2H7, Canada
| | - Zhijian Wu
- Neurobiology Neurodegeneration& Repair Laboratory (N-NRL), National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Suja Hiriyanna
- Neurobiology Neurodegeneration& Repair Laboratory (N-NRL), National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration& Repair Laboratory (N-NRL), National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Robert M Lavker
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Tsutomu Kume
- Departments of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Corneal Reconstruction with EGFP-Labelled Limbal Mesenchymal Stem Cells in a Rabbit Model of Limbal Stem Cell Deficiency. Int J Mol Sci 2023; 24:ijms24065431. [PMID: 36982507 PMCID: PMC10051408 DOI: 10.3390/ijms24065431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Ocular surface reconstruction is essential for treating corneal epithelial defects and vision recovery. Stem cell-based therapy demonstrates promising results but requires further research to elucidate stem cell survival, growth, and differentiation after transplantation in vivo. This study examined the corneal reconstruction promoted by EGFP-labeled limbal mesenchymal stem cells (L-MSCs-EGFP) and their fate after transplantation. EGFP labeling allowed us to evaluate the migration and survival rates of the transferred cells. L-MSCs-EGFP seeded onto decellularized human amniotic membrane (dHAM) were transplanted into rabbits with a modeled limbal stem cell deficiency. The localization and viability of the transplanted cells in animal tissue were analyzed using histology, immunohistochemistry, and confocal microscopy up to 3 months after transplantation. EGFP-labeled cells remained viable for the first 14 days after transplantation. By the 90th day, epithelialization of the rabbit corneas reached 90%, but the presence of viable labeled cells was not observed within the newly formed epithelium. Although labeled cells demonstrated low survivability in host tissue, the squamous corneal-like epithelium was partially restored by the 30th day after transplantation of the tissue-engineered graft. Overall, this study paves the way for further optimization of transplantation conditions and studying the mechanisms of corneal tissue restoration.
Collapse
|
7
|
Tan Y, Chen D, Wang Y, Wang W, Xu L, Liu R, You C, Li G, Zhou H, Li D. Limbal Bio-engineered Tissue Employing 3D Nanofiber-Aerogel Scaffold to Facilitate LSCs Growth and Migration. Macromol Biosci 2022; 22:e2100441. [PMID: 35020979 DOI: 10.1002/mabi.202100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Constrained by the existing scaffold inability to mimic limbal niche, limbal bio-engineered tissue constructed in vitro is challenging to be widely used in clinical practice. Here, 3D nanofiber-aerogel scaffold was fabricated by employing thermal cross-linking electrospinned film Polycaprolactone (PCL) and gelatin (GEL) as the precursor. Benefiting from the cross-linked (160°C, vacuum) structure, the homogenized and lyophilized 3D nanofiber-aerogel scaffold with preferable mechanical strength was capable of refraining the volume collapse in humid vitro. Intriguingly, compared with traditional electrospinning scaffolds, our 3D nanofiber-aerogel scaffolds possessed enhanced water absorption (1100%-1300%), controllable aperture (50-100 μm) and excellent biocompatibility (optical density value, 0.953 ± 0.021). The well-matched aperture and nanostructure of the scaffolds with cells enabled the construction of limbal bio-engineered tissue. It is foreseen that the proposed general method could be extended to various aerogels, providing new opportunities for the development of novel limbal bio-engineered tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongyao Tan
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Chen
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingjuan Xu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rong Liu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunxiu You
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guigang Li
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huamin Zhou
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dequn Li
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
9
|
Rush SW, Chain J, Das H. Corneal Epithelial Stem Cell Supernatant in the Treatment of Severe Dry Eye Disease: A Pilot Study. Clin Ophthalmol 2021; 15:3097-3107. [PMID: 34295148 PMCID: PMC8291803 DOI: 10.2147/opth.s322079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To report the subjective assessment of topical self-administered, cadaver-derived corneal epithelial stem cell supernatant for treatment of severe dry eye disease (DED). METHODS Thirty-four eyes of 17 patients with advanced DED as defined by Standardized Patient Evaluation of Eye Dryness (SPEEDTM) questionnaire ≥14, Ocular Surface Disease Index (OSDI©) score ≥40 and documented attempt of at least six conventional dry eye therapies were enrolled into a prospective clinical trial at a single private practice institution. Treatment consisted of patient self-administered topical instillation of the corneal epithelial stem cell-derived product four times daily in both eyes for 12 weeks. Patient-reported outcome measures (PROMs) were taken with the SPEEDTM questionnaire (the main outcome variable), OSDI© score and visual analog score (VAS; UNC Dry Eye Management Scale©), and objective clinical measurements were taken with best-corrected visual acuity (BCVA), corneal topographic index measurements and tear film osmolarity. These measurements were compared at baseline versus the endpoint at completion of the 12-week treatment. RESULTS All 34 eyes tolerated the treatment without any adverse events or significant side effects. Compared with baseline, both the SPEEDTM questionnaire and the VAS significantly improved at the conclusion of the 12-week treatment (p = 0.0054 and p = 0.0202, respectively). The OSDI© improved by an average of 10.9 points after the treatment but was not statistically significant (p = 0.1409). There were no significant changes in any of the objective clinical measurements. None of the study subjects failed to complete the treatment course, experienced decrease in any of the PROMs or lost one or more lines of BCVA during the follow-up period. CONCLUSION Topical corneal epithelial stem cell-derived supernatant that can be self-administered by the patient shows promise at improving patient symptoms and quality of life in the setting of severe DED that is unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Sloan W Rush
- Panhandle Eye Group, Amarillo, TX, 79106, USA
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | | | - Hiranmoy Das
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| |
Collapse
|
10
|
Tong CM, He B, Iovieno A, Yeung SN. Diagnosis and management of limbal stem cell deficiency, challenges, and future prospects. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1933441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Maya Tong
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Bonnie He
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Process development and safety evaluation of ABCB5 + limbal stem cells as advanced-therapy medicinal product to treat limbal stem cell deficiency. Stem Cell Res Ther 2021; 12:194. [PMID: 33741066 PMCID: PMC7980611 DOI: 10.1186/s13287-021-02272-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. Methods We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP). This product was tested in a preclinical study program investigating the cells’ engraftment potential, biodistribution behavior, and safety. Results ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD. Conclusion Building upon these data in conjunction with the previously shown cornea-restoring capacity of human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy that shows promise for replenishment of the patient’s LSC pool, recreation of a functional barrier against invading conjunctival cells and restoration of a transparent, avascular cornea. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02272-2.
Collapse
|
12
|
Hou L, Fu W, Liu Y, Wang Q, Wang L, Huang Y. Agrin Promotes Limbal Stem Cell Proliferation and Corneal Wound Healing Through Hippo-Yap Signaling Pathway. Invest Ophthalmol Vis Sci 2020; 61:7. [PMID: 32392315 PMCID: PMC7405682 DOI: 10.1167/iovs.61.5.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the effect and mechanism of Agrin on limbal stem cell proliferation and corneal wound healing. Methods Limbal stem cells were isolated and treated with different concentrations of Agrin. CCK-8 and cell proliferation markers (Ki67 and pH3) were detected to evaluate cell numbers or proliferative potential of limbal stem cells. The corneal epithelium wound model was induced by debridement of central corneal epithelial, and the effects of Agrin on limbal stem cell proliferation and corneal epithelial wound healing rate were determined. Results Agrin promoted the proliferation of cultured limbal stem cells in vitro and increased the expression level of p63α rather than keratin 12. Furthermore, Agrin accelerated the wound healing rate of corneal epithelium through activating limbal stem cell proliferation in vivo. In terms of mechanism, Agrin could facilitate the dephosphorylation of Yap1, which contributed to the nuclear translocation of Yap1 and expression of Cyclin D1, and subsequently promoted proliferation of limbal stem cells. Conclusions Agrin promotes the proliferation of limbal stem cells and accelerates the healing rate of corneal wound through Hippo-Yap signaling pathway.
Collapse
|
13
|
Lavker RM, Kaplan N, Wang J, Peng H. Corneal epithelial biology: Lessons stemming from old to new. Exp Eye Res 2020; 198:108094. [PMID: 32697979 DOI: 10.1016/j.exer.2020.108094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The anterior surface of the eye functions as a barrier to the external environment and protects the delicate underlying tissues from injury. Central to this protection are the corneal, limbal and conjunctival epithelia. The corneal epithelium is a self-renewing stratified squamous epithelium that protects the underlying delicate structures of the eye, supports a tear film and maintains transparency so that light can be transmitted to the interior of the eye (Basu et al., 2014; Cotsarelis et al., 1989; Funderburgh et al., 2016; Lehrer et al., 1998; Pajoohesh-Ganji and Stepp, 2005; Parfitt et al., 2015; Peng et al., 2012b; Stepp and Zieske, 2005). In this review, dedicated to James Funderburgh and his contributions to visual science, in particular the limbal niche, corneal stroma and corneal stromal stem cells, we will focus on recent data on the identification of novel regulators in corneal epithelial cell biology, their roles in stem cell homeostasis, wound healing, limbal/corneal boundary maintenance and the utility of single cell RNA sequencing (scRNA-seq) in vision biology studies.
Collapse
Affiliation(s)
- Robert M Lavker
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junyi Wang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Ophthalmology, The First Center of the PLA General Hospital, Haidian District, Beijing, China
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Peripheral Blood As a Source of Stem Cells for Regenerative Medicine: Emphasis Towards Corneal Epithelial Reconstruction-An In Vitro Study. Tissue Eng Regen Med 2020; 17:495-510. [PMID: 32572811 DOI: 10.1007/s13770-020-00273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-based treatments are now emerging as a therapy for corneal epithelial damage. Although bone marrow, adipose tissue and umbilical cord blood are the main sources of mesenchymal stem cells (MSCs), other tissues like the peripheral blood also harbor mesenchymal-like stem cells called peripheral blood-derived mononuclear cells (PBMNCs). These blood derived stem cells gained a lot of attention due to its minimally invasive collection and ease of isolation. In this study, the feasibility of using PBMNCs as an alternative cell source to corneal limbal stem cells envisaging corneal epithelial regeneration was evaluated. METHODS Rabbit PBMNCs were isolated using density gradient centrifugation and was evaluated for mesenchymal cell properties including stemness. PBMNCs were differentiated to corneal epithelial lineage using rabbit limbal explant conditioned media and was evaluated by immuno-cytochemistry and gene expression analysis. Further, the differentiated PBMNCs were engineered into a cell sheet using an in-house developed thermo-responsive polymer. RESULTS These blood derived cells were demonstrated to have similar properties to mesenchymal stem cells. Corneal epithelial lineage commitment of PBMNCs was confirmed by the positive expression of CK3/12 marker thereby demonstrating the aptness as an alternative to limbal stem cells. These differentiated cells effectively generated an in vitro cell sheet that was then demonstrated for cell sheet transfer on an ex vivo excised rabbit eye. CONCLUSION PBMNCs as an alternative autologous cell source for limbal stem cells is envisaged as an effective therapeutic strategy for corneal surface reconstruction especially for patients with bilateral limbal stem cell deficiency.
Collapse
|
15
|
Kaplan N, Wang J, Wray B, Patel P, Yang W, Peng H, Lavker RM. Single-Cell RNA Transcriptome Helps Define the Limbal/Corneal Epithelial Stem/Early Transit Amplifying Cells and How Autophagy Affects This Population. Invest Ophthalmol Vis Sci 2019; 60:3570-3583. [PMID: 31419300 PMCID: PMC6701873 DOI: 10.1167/iovs.19-27656] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Single-cell RNA-sequencing (scRNA-seq) was used to interrogate the relatively rare stem (SC) and early transit amplifying (TA) cell populations in limbal/corneal epithelia from wild-type and autophagy-compromised mice. Methods We conducted scRNA-seq on ocular anterior segmental tissue from wild-type and beclin 1–deficient (beclin1+/−) mice, using a 10X Gemomics pipeline. Cell populations were distinguished by t-distributed stochastic neighbor embedding. Seurat analysis was conducted to compare gene expression profiles between these two groups of mice. Differential protein expression patterns were validated by immunofluorescence staining and immunoblotting. Results Unbiased clustering detected 10 distinct populations: three clusters of mesenchymal and seven clusters of epithelial cells, based on their unique molecular signatures. A discrete group of mesenchymal cells expressed genes associated with corneal stromal SCs. We identified three limbal/corneal epithelial cell subpopulations designated as stem/early TA, mature TA, and differentiated corneal epithelial cells. Thioredoxin-interacting protein and PDZ-binding kinase (PBK) were identified as novel regulators of stem/early TA cell quiescence. PBK arrested corneal epithelial cells in G2/M phase of the cell cycle. Beclin1+/− mice displayed a decrease in proliferation-associated (Ki67, Lrig1) and stress-response (H2ax) genes. The most increased gene in beclin1+/− mice was transcription factor ATF3, which negatively regulates limbal epithelial cell proliferation. Conclusions Establishment of a comprehensive atlas of genes expressed by stromal and epithelial cells from limbus and cornea forms the foundation for unraveling regulatory networks among these distinct tissues. Similarly, scRNA-seq profiling of the anterior segmental epithelia from wild-type and autophagy-deficient mice provides new insights into how autophagy influences proliferation in these tissues.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Junyi Wang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.,Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Brian Wray
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Priyam Patel
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Wending Yang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
16
|
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol 2019; 21:801-811. [PMID: 31209293 DOI: 10.1038/s41556-019-0344-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Despite many reports of putative stem-cell-based treatments in genetic and degenerative disorders or severe injuries, the number of proven stem cell therapies has remained small. In this Review, we survey advances in stem cell research and describe the cell types that are currently being used in the clinic or are close to clinical trials. Finally, we analyse the scientific rationale, experimental approaches, caveats and results underpinning the clinical use of such stem cells.
Collapse
Affiliation(s)
- Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari", Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|