1
|
Wu Y, Liu C, Liu J, Wang W, Qin B, Liu H. Osteogenic function of BMP2-modified PEEK scaffolds for orbital fracture repair. Biomed Mater 2025; 20:035008. [PMID: 40101367 DOI: 10.1088/1748-605x/adc220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
This study aimed to investigate the osteogenic function of polyetheretherketone (PEEK) scaffolds modified with bone morphogenetic protein 2 (BMP2) and its possibility for orbital fracture repair. The 3D-printed PEEK sheets were combined with BMP2-loaded hyaluronic acid hydrogel (HAH) to fabricate PEEK-BMP2-HAH composite scaffolds. Bone marrow mesenchymal stem cells (BMSCs) were seeded onto PEEK or PEEK-BMP2-HAH scaffolds. Cell adhesion and cell proliferation were measured by transmission electron microscopy and CCK-8 assay. Alkaline phosphatase (ALP) chromogenic, alizarine red S staining, and PCR analysis of Runt-related transcription factor 2 (Runx2), collagen-I (Col-I), Osterix, and osteopontin (OPN) were performed to assess osteogenic activity. The rat orbital fracture defect model is proposed for evaluating the biocompatibility, osteogenic integration, and functional recovery of PEEK orbital implants. Compared with PEEK, cell adhesion and cell proliferation were increased in PEEK-BMP2-HAH scaffolds. ALP activity and mineralized nodule formation were increased in PEEK-BMP2-HAH scaffolds than that in PEEK the mRNA expression of Runx2, Osterix, Col-I and OPN was increased on PEEK-BMP2-HAH scaffolds than that on PEEK at 14 d of osteogenic induction. Besides, a bone defect animal model revealed that BMP2-HAH-modified PEEK scaffolds could effectively facilitate the repair of the orbital bone defect, with increased expression of OPN and Runx2. BMP2-loaded HAH effectively increased adhesion, proliferation, and osteogenic differentiation of BMSCs on PEEK. PEEK-BMP2-HAH scaffolds are expected to become new materials for orbital fracture repair.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Cuihong Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Jinhua Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Wenwen Wang
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Bixuan Qin
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| | - Honglei Liu
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, People's Republic of China
| |
Collapse
|
2
|
Wang Z, Wang J, Wu R, Wei J. Construction of functional surfaces for dental implants to enhance osseointegration. Front Bioeng Biotechnol 2023; 11:1320307. [PMID: 38033823 PMCID: PMC10682203 DOI: 10.3389/fbioe.2023.1320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Dental implants have been extensively used in patients with defects or loss of dentition. However, the loss or failure of dental implants is still a critical problem in clinic. Therefore, many methods have been designed to enhance the osseointegration between the implants and native bone. Herein, the challenge and healing process of dental implant operation will be briefly introduced. Then, various surface modification methods and emerging biomaterials used to tune the properties of dental implants will be summarized comprehensively.
Collapse
Affiliation(s)
- Zhenshi Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Runfa Wu
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Immunity-related GTPase IRGM at the intersection of autophagy, inflammation, and tumorigenesis. Inflamm Res 2022; 71:785-795. [PMID: 35699756 PMCID: PMC9192921 DOI: 10.1007/s00011-022-01595-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
The human immunity-related GTPase M (IRGM) is a GTP-binding protein that regulates selective autophagy including xenophagy and mitophagy. IRGM impacts autophagy by (1) affecting mitochondrial fusion and fission, (2) promoting the co-assembly of ULK1 and Beclin 1, (3) enhancing Beclin 1 interacting partners (AMBRA1, ATG14L1, and UVRAG), (4) interacting with other key proteins (ATG16L1, p62, NOD2, cGAS, TLR3, and RIG-I), and (5) regulating lysosomal biogenesis. IRGM also negatively regulates NLRP3 inflammasome formation and therefore, maturation of the important pro-inflammatory cytokine IL-1β, impacting inflammation and pyroptosis. Ultimately, this affords protection against chronic inflammatory diseases. Importantly, ten IRGM polymorphisms (rs4859843, rs4859846, rs4958842, rs4958847, rs1000113, rs10051924, rs10065172, rs11747270, rs13361189, and rs72553867) have been associated with human inflammatory disorders including cancer, which suggests that these genetic variants are functionally relevant to the autophagic and inflammatory responses. The current review contextualizes IRGM, its modulation of autophagy, and inflammation, and emphasizes the role of IRGM as a cross point of immunity and tumorigenesis.
Collapse
|
4
|
Xu X, Hui W, Liu N, Zhang Y. Effects of ergosteroside combined risedronate on fracture healing and BMP-2, BMP-7 and VEGF expression in rats. Acta Cir Bras 2021; 36:e361107. [PMID: 34932671 PMCID: PMC8691146 DOI: 10.1590/acb361107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose To evaluate the effect of ergosterol combined with risedronate on fracture
healing. Methods Sixty male Sprague Dawley fracture model rats were assigned into group A
(n=20), group B (n=20), and group C (n=20) at random. All rats were fed by
gavage until their sacrifice as it follows: group A with ergosteroside and
risedronate, group B with risedronate, and group C with saline solution. At
weeks 2 and 4, 10 rats of each group were sacrificed. Healing effect and
bone tissue changes in the fractures site were assessed by using hematoxylin
and eosin stain histology. Enzyme-linked immunosorbent assay was used to
detect the expression of serum bone morphogenetic protein-2 (BMP-2), bone
morphogenetic protein-7 (BMP-7), and vascular endothelial growth factor
(VEGF). Reverse transcriptase polymerase chain reaction was applied to
detect the expression of osteoprotegerin (OPG) mRNA, osteocalcin (OCN) mRNA
and core-binding factor subunit-?1 (CBF-?1) mRNA. Results In terms of serum BMP-2, BMP-7, and VEGF expression at weeks 2 and 4 after
gavage, group A < group B < group C (P<0.05). At week 4 after
gavage, serum VEGF expression in the three groups harbored positive
relationship with serum BMP-2 and BMP-7 expression (P<0.05). Regarding
serum OPG, OCN and CBF-?1 mRNA expression at weeks 2 and 4 after gavage,
group A <group B <group C (P<0.05). Hematoxylin and eosin staining
results showed that the recovery effect of trabecular bone and callus in the
cases of group A was better than the other two groups after intragastric
administration. Conclusion Ergosteroside combined risedronate can patently ameliorate the healing effect
of fracture in rats.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Shanghai Jiao Tong University School of Medicine, China
| | - Wenyu Hui
- Shanghai Jiao Tong University School of Medicine, China
| | - Nian Liu
- Shanghai Jiao Tong University School of Medicine, China
| | - Yong Zhang
- Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
5
|
Padala SR, Kashyap B, Dekker H, Mikkonen JJW, Palander A, Bravenboer N, Kullaa AM. Irradiation affects the structural, cellular and molecular components of jawbones. Int J Radiat Biol 2021; 98:136-147. [PMID: 34855558 DOI: 10.1080/09553002.2022.2013568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Emerging evidence shows that changes in the bone and its microenvironment following radiotherapy are associated with either an inhibition or a state of low bone formation. Ionizing radiation is damaging to the jawbone as it increases the complication rate due to the development of hypovascular, hypocellular, and hypoxic tissue. This review summarizes and correlates the current knowledge on the effects of irradiation on the bone with an emphasis on jawbone, as these have been a less extensively studied area. CONCLUSIONS The stringent regulation of bone formation and bone resorption can be influenced by radiation, causing detrimental effects at structural, cellular, vascular, and molecular levels. It is also associated with a high risk of damage to surrounding healthy tissues and an increased risk of fracture. Technological advances and research on animal models as well as a few human bone tissue studies have provided novel insights into the ways in which bone can be affected by high, low and sublethal dose of radiation. The influence of radiation on bone metabolism, cellular properties, vascularity, collagen, and other factors like inflammation, reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Sridhar Reddy Padala
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bina Kashyap
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannah Dekker
- Amsterdam University Medical Centers, Academic Centre for Dentistry Amsterdam (ACTA), Department of Oral and Maxillofacial Surgery/Oral Pathology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jopi J W Mikkonen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anni Palander
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Bravenboer
- Amsterdam UMC, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Arja M Kullaa
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Toneatti DJ, Graf RR, Burkhard JP, Schaller B. Survival of dental implants and occurrence of osteoradionecrosis in irradiated head and neck cancer patients: a systematic review and meta-analysis. Clin Oral Investig 2021; 25:5579-5593. [PMID: 34401944 PMCID: PMC8443505 DOI: 10.1007/s00784-021-04065-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This systematic review assesses dental implant survival, calculates the incidence rate of osteoradionecrosis, and evaluates risk factors in irradiated head and neck cancer patients. MATERIALS AND METHODS Various databases (e.g., Medline/Embase using Ovid) and gray literature platforms were searched using a combination of keywords and subject headings. When appropriate, meta-analysis was carried out using a random effects model. Otherwise, pooled analysis was applied. RESULTS A total of 425 of the 660 included patients received radiotherapy. In total, 2602 dental implants were placed, and 1637 were placed in irradiated patients. Implant survival after an average follow-up of 37.7 months was 97% (5% confidence interval, CI 95.2%, 95% CI 98.3%) in nonirradiated patients and 91.9% (5% CI 87.7%, 95% CI: 95.3%) after an average follow-up of 39.8 months in irradiated patients. Osteoradionecrosis occurred in 11 cases, leading to an incidence of 3% (5% CI 1.6%, 95% CI 4.9%). The main factors impacting implant survival were radiation and grafting status, while factors influencing osteoradionecrosis could not be determined using meta-analysis. CONCLUSION Our data show that implant survival in irradiated patients is lower than in nonirradiated patients, and osteoradionecrosis is-while rare-a serious complication that any OMF surgeon should be prepared for. The key to success could be a standardized patient selection and therapy to improve the standard of care, reduce risks and shorten treatment time. CLINICAL RELEVANCE Our analysis provides further evidence that implant placement is a feasible treatment option in irradiated head and neck cancer patients with diminished oral function and good long-term cancer prognosis.
Collapse
Affiliation(s)
- Daniel Jan Toneatti
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Ronny Roger Graf
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - John-Patrik Burkhard
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Benoît Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.
| |
Collapse
|
7
|
Soares PBF, Soares CJ, Limirio PHJO, Lara VC, Moura CCG, Zanetta-Barbosa D. Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant. J Appl Oral Sci 2020; 28:e20200191. [PMID: 32997090 PMCID: PMC7521423 DOI: 10.1590/1678-7757-2020-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: This study analyzed the effect of ionizing radiation on bone microarchitecture and biomechanical properties in the bone tissue surrounding a dental implant. Methodology: Twenty rabbits received three dental morse taper junction implants: one in the left tibia and two in the right tibia. The animals were randomized into two groups: the nonirradiated group (control group) and the irradiated group, which received 30 Gy in a single dose 2 weeks after the implant procedure. Four weeks after the implant procedure, the animals were sacrificed, and the implant/bone specimens were used for each experiment. The specimens (n=10) of the right tibia were examined by microcomputed tomography to measure the cortical volume (CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other specimens (n=10) were examined by dynamic indentation to measure the elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. The specimens of the left tibia (n=10) were subjected to pull-out tests to calculate the failure load (N), displacement (mm) up to the failure point and interface stiffness (N/mm). In the irradiated group, two measurements were performed: close, at 1 mm surrounding the implant surface, and distant, at 2.5 mm from the external limit of the first measurement. Data were analyzed using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: The irradiated bone closer to the implant surface had lower elastic modulus (E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value than the bone distant to the implant (P<0.04). The irradiated bone that was distant from the implant surface had lower E, VHN, and Ct.Th values and a higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated bone had higher failure loads, displacements and stiffness values than the irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants resulted in negative effects on the microarchitecture and biomechanical properties of bone tissue, mainly near the surface of the implant.
Collapse
Affiliation(s)
| | - Carlos José Soares
- Federal University of Uberlândia, School of Dentistry, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brasil
| | | | - Vitor Carvalho Lara
- Federal University of Triângulo Mineiro, School of Medicine, Department of Radiology, Uberaba, MG, Brasil
| | | | - Darceny Zanetta-Barbosa
- Federal University of Uberlândia, School of Dentistry, Department of Oral and Maxillofacial Surgery, Uberlândia, MG, Brasil
| |
Collapse
|
8
|
Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020; 12:545-561. [PMID: 32843913 PMCID: PMC7415248 DOI: 10.4252/wjsc.v12.i7.545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
Collapse
Affiliation(s)
- Shi-Cheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
9
|
Xue H, Guo Y, Zhang S, Xu T, Wen J, Kang N, Yuan Q. The role of USP34 in the fixation of titanium implants in murine models. Eur J Oral Sci 2020; 128:211-217. [PMID: 32363724 DOI: 10.1111/eos.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
Ubiquitin-specific protease 34 (USP34), a member of the ubiquitin-specific protease family, regulates osteogenic differentiation of bone marrow mesenchymal stem cells via bone morphogenetic protein signaling. This study aimed to investigate the role of USP34 in fixation of titanium implants in mouse models. Eight-week-old Usp34-knockout (Prx1-Cre;Usp34f/f ) mice and their Usp34 wild-type (Usp34f/f ) control littermates were used. Experimental titanium implants were inserted into the distal ends of femurs and the edentulous area of maxillae. Two and four weeks after surgery, samples of femur and maxilla were obtained, and micro-computed tomography scanning, histomorphometric analyses, and push-in tests were performed on the samples. Compared with controls, Prx1-Cre;Usp34f/f mice showed reduced bone volume for both femurs and maxillae; a decreased femoral bone-implant contact ratio (BIC) at 2 wk [mean (standard error of the mean): 62.17% (2.15%) vs. 44.06% (3.45%)] and 4 wk [72.46% (1.61%) vs. 64.53% (1.93%)]; decreases in femoral bone volume fraction (BV/TV) and push-in resistance; and lower BIC and BV/TV of the maxillae. Taken together, our data demonstrate that specific deletion of Usp34 in mesenchymal stem cells impairs fixation of titanium implants in mice.
Collapse
Affiliation(s)
- Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junru Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|