1
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
3
|
Matthewman C, Krishnakumar IM, Swick AG. Review: bioavailability and efficacy of 'free' curcuminoids from curcumagalactomannoside (CGM) curcumin formulation. Nutr Res Rev 2024; 37:14-31. [PMID: 36655498 DOI: 10.1017/s0954422423000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The golden spice turmeric with its main bioactive component curcumin is one of the most popular and extensively studied nutraceuticals. Despite numerous pre-clinical studies reporting positive pharmacodynamics of turmeric extracts and curcumin, the main issues in translating the pharmacological effects to clinical efficacy have been to overcome its poor pharmacokinetics and to deliver significant amounts of the biologically relevant forms of the actives to various tissues. This review is aimed at providing a first critical evaluation of the current published literature with the novel curcumagalactomannoside (CGM) formulation of curcumin using fenugreek galactomannan dietary fibre, specifically designed to address curcumin poor pharmacokinetics. We describe CGM and its technology as a food-grade formulation to deliver 'free' unconjugated curcuminoids with enhanced bioavailability and improved pharmacokinetic properties. The therapeutic relevance of improving bioavailability of 'free' curcuminoids and some of the technical challenges in the measurement of the 'free' form of curcuminoids in plasma and tissues are also discussed. A total of twenty-six manuscripts are reviewed here, including fourteen pre-clinical and twelve clinical studies that have investigated CGM pharmacokinetics, safety and efficacy in various animal models and human conditions. Overall current scientific evidence suggests CGM formulation has improved bioavailability and tissue distribution of the biologically relevant unconjugated forms of turmeric actives called 'free' curcuminoids that may be responsible for the superior clinical outcomes reported with CGM treatments in comparison with unformulated standard curcumin across multiple studies.
Collapse
|
4
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Sunoqrot S, Abu Shalhoob M, Jarrar Y, Hammad AM, Al-Ameer HJ, Al-Awaida W. Nanoencapsulated Curcumin Mitigates Liver Injury and Drug-Metabolizing Enzymes Induction in Diclofenac-Treated Mice. ACS OMEGA 2024; 9:7881-7890. [PMID: 38405487 PMCID: PMC10882592 DOI: 10.1021/acsomega.3c07602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Curcumin (CUR) is a natural product with known anti-inflammatory, antioxidant, and hepatoprotective properties. The aim of this study was to formulate CUR into a polymeric nanoparticle (NP) formulation and examine its potential hepatoprotective activity in an animal model of diclofenac (DIC)-induced hepatotoxicity. CUR was loaded into polymeric NPs composed of poly(ethylene glycol)-polycaprolactone (PEG-PCL). The optimal CUR NPs were evaluated against DIC-induced hepatotoxicity in mice, by studying the histopathological changes and gene expression of drug-metabolizing cyp450 (cyp2c29 and cyp2d9) and ugt (ugt2b1) genes in the livers of the animals. The optimal NPs were around 67 nm in diameter with more than 80% loading efficiency and sustained release. Histological findings of mice livers revealed that CUR NPs exhibited a superior hepatoprotective effect compared to free CUR, and both groups reduced DIC-mediated liver tissue injury. While treatment with DIC alone or with CUR and CUR NPs had no effect on cyp2c29 gene expression, cyp2d9 and ugt2b1 genes were upregulated in the DIC-treated group, and this effect was reversed by CUR both as a free drug and as CUR NPs. Our findings present a promising application for nanoencapsulated CUR in the treatment of nonsteroidal anti-inflammatory drugs-induced liver injury and the associated dysregulation in the expression of hepatic drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Mohammad Abu Shalhoob
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Yazun Jarrar
- Department
of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Alaa M. Hammad
- Department
of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah
University of Jordan, Amman 11733, Jordan
| | - Hamzeh J. Al-Ameer
- Department
of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Wajdy Al-Awaida
- Department
of Biology and Biotechnology, American University
of Madaba, Madaba 17110, Jordan
| |
Collapse
|
7
|
Dehzad MJ, Ghalandari H, Askarpour M. Curcumin/turmeric supplementation could improve blood pressure and endothelial function: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 59:194-207. [PMID: 38220376 DOI: 10.1016/j.clnesp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND PURPOSE A number of studies have examined the impact of curcumin/turmeric on blood pressure and the factors allegedly responsible for hypertension. In this systematic review and meta-analysis, we tried to sum up the existing literature on randomized controlled trials (RCTs) investigating this hypothesis. METHODS Online databases (PubMed, Scopus, Web of Science Core Collection, Cochrane Library, and Google Scholar) were searched from inception up to October 2022. We used the cochrane quality assessment tool to evaluate the risk of bias. Outcomes of interest included systolic blood pressure (SBP), diastolic blood pressure (DBP), blood levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), flow-mediated vasodilation (FMD), and pulse-wave velocity (PWV). Weighted mean differences (WMDs) were derived and reported. In case of significant between-study heterogeneity, subgroup analyses were carried out. Significance level was considered as P-values<0.05. RESULTS Finally, 35 RCTs out of 4182 studies were included. Our findings suggested that curcumin/turmeric supplementation significantly improved SBP (WMD: -2.02 mmHg; 95 % CI: -2.85, -1.18), DBP (WMD: -0.82 mmHg; 95 % CI: -1.46, -0.18), VCAM-1 (WMD: -39.19 ng/mL; 95 % CI: -66.15, -12.23), and FMD (WMD: 2.00 %; 95 % CI: 1.07, 2.94). However, it did not significantly change levels of ICAM-1 (WMD: -17.05 ng/ml; 95 % CI: -80.79, 46.70), or PWV (WMD: -79.53 cm/s; 95 % CI: -210.38, 51.33). CONCLUSION It seems that curcumin/turmeric supplementation could be regarded as a complementary method to improve blood pressure and endothelial function. However, further research is needed to clarify its impact on inflammatory adhesion molecules in the circulation.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on liver function in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 74:102952. [PMID: 37178581 DOI: 10.1016/j.ctim.2023.102952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Liver conditions are major burdens upon health systems around the world. Turmeric /curcumin is believed to possess therapeutic features in ameliorating various metabolic disorders. In this systematic review and meta-analysis of the randomized controlled trials (RCTs), we examined the effect of turmeric/curcumin supplementation on some liver function tests (LFTs). METHODS We comprehensively searched online databases (i.e. PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar) from inception up to October 2022. Final outcomes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Weighted mean differences (WMDs) were reported. In case of between-study heterogeneity, subgroup analysis was conducted. Non-linear dose-response analysis was carried out to detect the potential effect of dosage and duration. The registration code is CRD42022374871. RESULTS Thirty-one RCTs were included in the meta-analysis. Turmeric/curcumin supplementation significantly reduced blood levels of ALT (WMD = -4.09 U/L; 95 % CI = -6.49, -1.70) and AST (WMD = -3.81 U/L; 95 % CI = -5.71, -1.91), but not GGT (WMD: -12.78 U/L; 95 % CI: -28.20, 2.64). These improvements, though statistically significant, do not ensure clinical effectiveness. CONCLUSION It seems that turmeric/curcumin supplementation might be effective in improving AST and ALT levels. However, further clinical trials are needed to examine its effect on GGT. Quality of the evidence across the studies was low for AST and ALT and very low for GGT. Therefore, more studies with high quality are needed to assess this intervention on hepatic health.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Pandey B, Baral R, Kaundinnyayana A, Panta S. Promising hepatoprotective agents from the natural sources: a study of scientific evidence. EGYPTIAN LIVER JOURNAL 2023. [DOI: 10.1186/s43066-023-00248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Natural bioactive components derived from plant secondary metabolites have been pronounced as valuable alternatives for anticipating and subsiding hepatotoxic effects and its chronic complications based on experimental verification. The focus of this review is to elucidate the commonly used modern medicine for the treatment of liver disease and how major phytoconstituents have been tested for hepatoprotective activity, mechanism of action of some promising agents from natural sources, and clinical trial data for treating in patients with different liver diseases by the aid of natural phytoconstituents.
Main text
The review shows fifteen major isolated phytoconstituents, their biological sources, chemical structures, utilized plant parts, type of extracts used, hepatoprotective assay method, and their possible mechanism of action on the hepatoprotection. Nine promising hepatoprotective leads from natural sources with their chemistry and hepatoprotective mechanism are mentioned briefly. The review further includes the recent clinical trial studies of some hepatoprotective leads and their clinical outcome with different liver disease patients. Scientific studies revealed that antioxidant properties are the central mechanism for the phytoconstituents to subside different disease pathways by upsurging antioxidant defense system of cells, scavenging free radicals, down surging lipid peroxidation, improving anti-inflammatory potential, and further protecting the hepatic cell injury. In this review, we summarize recent development of natural product-based hepatoprotective leads and their curative potential for various sort of liver diseases. Furthermore, the usefulness of hit and lead molecules from natural sources for significant clinical benefit to discover new drug molecule and downsizing the problems of medication and chemical-induced hepatotoxic effects is extrapolated.
Conclusion
Further research are encouraged to elucidate the pharmacological principle of these natural-based chemical agents which will stimulate future pharmaceutical development of therapeutically beneficial hepatoprotective regimens.
Collapse
|
10
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on obesity indices and adipokines in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1703-1728. [PMID: 36882287 DOI: 10.1002/ptr.7800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
In the present study, we explored the effect of curcumin/turmeric supplementation on anthropometric indices of obesity, leptin, and adiponectin. We searched PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar up to August 2022. Randomized clinical trials (RCTs) investigating the impact of curcumin/turmeric on obesity indices and adipokines were included. We applied the Cochrane quality assessment tool to evaluate the risk of bias. The registration number is CRD42022350946. Sixty eligible RCTs, with a total sample size of 3691 individuals were included for quantitative analysis. We found that supplementation with curcumin/turmeric significantly reduced body weight (WMD: -0.82 kg, 95% CI: -1.30, -0.35; p = 0.001), body mass index (WMD: -0.30 kg/m2 , 95% CI: -0.53, -0.06, p = 0.013), waist circumference (WMD: -1.31 cm, 95% CI: -1.94, -0.69, p < 0.001), body fat percentage (WMD: -0.88%, 95% CI: -1.51, -0.25, p = 0.007), leptin (WMD = -4.46 ng/mL; 95% CI: -6.70, -2.21, p < 0.001), and increased adiponectin (WMD = 2.48 μg/mL; 95% CI: 1.34, 3.62, p < 0.001). Overall, our study shows that supplementation with curcumin/turmeric significantly improves anthropometric indices of obesity and adiposity-related adipokines (leptin and adiponectin). However, due to high between-studies heterogeneity, we should interpret the results with caution.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Sadeghian M, Rahmani S, Jafarieh A, Jamialahmadi T, Sahebkar A. The effect of curcumin supplementation on renal function: A systematic and meta-analysis of randomized controlled trials. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Nanavati K, Rutherfurd-Markwick K, Lee SJ, Bishop NC, Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. Eur J Nutr 2022; 61:3835-3855. [PMID: 35831667 PMCID: PMC9596560 DOI: 10.1007/s00394-022-02943-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Collapse
Affiliation(s)
- K. Nanavati
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| | | | - S. J. Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - N. C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A. Ali
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| |
Collapse
|
13
|
Park JH, Bok MK, Kim J, Maeng S, Kim SH, Jung JH, Lee HJ, Lim H. Effect of an extract of Pinus koraiensis leaves, Lycium chinense fruit, and Saururus chinensis (Lour.) Baill. leaves on liver function in excessive drinkers: A randomized, double-blind, placebo-controlled trial. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Pancholi V, Smina TP, Kunnumakkara AB, Maliakel B, Krishnakumar IM. Safety assessment of a highly bioavailable curcumin-galactomannoside complex (CurQfen) in healthy volunteers, with a special reference to the recent hepatotoxic reports of curcumin supplements: A 90-days prospective study. Toxicol Rep 2021; 8:1255-1264. [PMID: 34195017 PMCID: PMC8233102 DOI: 10.1016/j.toxrep.2021.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/15/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
CGM did not cause adverse effects or significant variations in clinical parameters. Liver and renal function markers were in normal range after CGM supplementation. CGM was proved to be devoid of adjuvants, synthetic curcumin and contaminants. CGM has 100 % natural clean label status comprising vegan, allergen-free ingredients.
Recently, there is a growing concern about the use of curcumin supplements owing to a few reported hepatotoxicity related adverse events among some of the long-term consumers. Even though no clear evidence was elucidated for the suspected toxicity, the addition of adjuvants that inhibits body’s essential detoxification pathways, adulteration with synthetic curcumin, and presence of contaminants including heavy metals, chromate, illegal dyes, non-steroidal anti-inflammatory agents, and pyrrole alkaloids were suggested as plausible reasons. Considering these incidences and speculations, there is a need to critically evaluate the safety of curcumin supplements for prolonged intake. The present study is an evaluation of the safety of curcumin-galactomannoside complex (CGM), a highly bioavailable curcumin formulation with demonstrated high free curcuminoids delivery. Twenty healthy human volunteers were evaluated for toxic manifestations of CGM when supplemented with 1000 mg per day (∼380 mg curcuminoids) for 90-days. CGM supplementation did not cause any adverse effects or clinically significant variations in the vital signs, hematological parameters, lipid profile and renal function markers of the volunteers, indicating its safety. Liver function enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and bilirubin were in the normal range after 90-day supplementation of CGM. In summary, no adverse effects were observed under the conditions of the study. CGM can be considered as a safe curcumin supplement for regular consumption and is devoid of any adulterants or contaminants.
Collapse
Affiliation(s)
- Vaibhavi Pancholi
- Department of General Medicine, Medistar Hospital & Research Center, Vadodara, Gujarat, India
| | | | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Assam, India
| | - Balu Maliakel
- R&D Centre, Akay Natural Ingredients, Cochin, Kerala, India
| | | |
Collapse
|
15
|
Thomas JV, Smina TP, Khanna A, Kunnumakkara AB, Maliakel B, Mohanan R, Krishnakumar IM. Influence of a low-dose supplementation of curcumagalactomannoside complex (CurQfen) in knee osteoarthritis: A randomized, open-labeled, active-controlled clinical trial. Phytother Res 2020; 35:1443-1455. [PMID: 33210408 DOI: 10.1002/ptr.6907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
A 6-week, randomized, open-label, active-controlled clinical trial was conducted to evaluate the influence of a low-dose curcumagalactomannosides (CGM) (400 mg once daily) in OA subjects. The treatment was compared with a standard combination of 500 mg glucosamine hydrochloride (GLN) and 415 mg chondroitin sulphate (CHN), supplied as a single oral dose twice a day. Out of 84 subjects randomized, 72 subjects who have completed the study were evaluated for the safety and efficacy of the treatments at baseline and subsequent visits (day 28 and 42), by measuring walking performance, VAS, KPS, and WOMAC scores. CGM exhibited 47.02, 21.43, and 206% improvement in VAS, KPS, and walking performance, respectively, compared to the baseline. Similarly, there was 31.17, 32.93, 36.44, and 35% improvement in the pain, stiffness, physical function, and total WOMAC scores. CGM also caused a substantial reduction in the serum inflammatory marker levels. The results indicate that a short-term supplementation of a low dosage CGM exerted superior beneficial effects than a high-dosage CHN-GLN combination in alleviating the pain and symptoms of OA subjects. Further clinical trials of extended duration in a larger population is required to substantiate the efficacy of CGM in the long-term management of OA.
Collapse
Affiliation(s)
- Jestin V Thomas
- Leads Clinical Research & Bio Services Pvt. Ltd., Bangalore, India
| | | | - Aman Khanna
- Aman Hospital and Research Center, Vadodara, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Balu Maliakel
- R&D Centre, Akay Natural Ingredients Pvt. Ltd., Cochin, India
| | - Ratheesh Mohanan
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | | |
Collapse
|
16
|
Curcumin: an inflammasome silencer. Pharmacol Res 2020; 159:104921. [DOI: 10.1016/j.phrs.2020.104921] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
|
17
|
Khanna A, Das SS, Smina TP, Thomas JV, Kunnumakkara AB, Maliakel B, Krishnakumar IM, Mohanan R. Curcumagalactomannoside/Glucosamine Combination Improved Joint Health Among Osteoarthritic Subjects as Compared to Chondroitin Sulfate/Glucosamine: Double-Blinded, Randomized Controlled Study. J Altern Complement Med 2020; 26:945-955. [PMID: 32678677 DOI: 10.1089/acm.2020.0128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective: A combination of curcumagalactomannosides (CGM) (400 mg) with glucosamine hydrochloride (GLN) (500 mg) was evaluated against a standard dietary supplement combination chondroitin sulfate (CHN) (415 mg)/GLN (500 mg) for their effectiveness in alleviating the pain and symptoms among osteoarthritic subjects. Design: Randomized, double-blinded and active-controlled study. Settings/Location: The study was conducted in a hospital-based research center in Vadodara, Gujarat, India. Subjects: Eighty subjects (38 males and 42 females), with confirmed osteoarthritis (OA) (Class I-III), were randomized into two parallel groups designated as Group I (CGM-GLN) and Group II (CHN-GLN). Interventions: All the study subjects were supplemented with their corresponding intervention capsules (ether CGM along with GLN or CHN along with GLN), as a single oral dose twice a day, once in the morning 10-15 min before breakfast and again in the evening before dinner, for 84 days. Outcome measures: A validated treadmill uphill walking protocol was used for the study, and the efficiency of supplementation was evaluated using visual analogue scale (VAS) score, Karnofsky Performance Scale (KPS) score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire at the baseline, 28th, and 84th day following the treatment. Mechanism of action of CGM-GLN combination was analyzed by measuring the levels of serum inflammatory markers interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and soluble vascular cell adhesion molecule-1 (sVCAM) at the baseline and 84th day. Results: CGM-GLN was found to offer significant beneficial effects to pain, stiffness, and physical function of OA subjects compared with CHN-GLN, which was evident from the improvement in walking performance, VAS score, KPS score, and WOMAC score. The efficiency of CGM-GLN was almost double compared with the CHN-GLN by the end of the study (84th day). A significant reduction of inflammatory serum marker levels was observed among CGM-GLN subjects compared with CHN-GLN subjects. Compared with the baseline, CGM-GLN produced 54.52%, 59.08%, and 22.03% reduction in IL-1β, IL-6, and sVCAM levels, respectively. Whereas CHN-GLN group of subjects expressed only 23.17%, 21.38%, and 6.82% reduction in IL-1β, IL-6, and sVCAM levels, respectively. Conclusions: In conclusion, the present study demonstrated the potential benefits of CGM-GLN supplements in alleviating the symptoms and function of OA subjects compared with the standard CHN-GLN treatment. The augmented efficacy of CGM-GLN combination could be attributed to the enhanced anti-inflammatory effect of CGM.
Collapse
Affiliation(s)
- Aman Khanna
- Aman Hospital and Research Center, Vadodara, India
| | | | | | - Jestin V Thomas
- Leads Clinical Research & Bio Services Pvt. Ltd., Bangalore, India
| | | | - Balu Maliakel
- R&D Centre, Akay Natural Ingredients Pvt. Ltd., Cochin, India
| | | | | |
Collapse
|
18
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
19
|
Corrigendum to "A Novel Curcumin-Galactomannoside Complex Delivery System Improves Hepatic Function Markers in Chronic Alcoholics: A Double-Blinded, randomized, Placebo-Controlled Study". BIOMED RESEARCH INTERNATIONAL 2019; 2019:5673740. [PMID: 30941366 PMCID: PMC6421028 DOI: 10.1155/2019/5673740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
[This corrects the article DOI: 10.1155/2018/9159281.].
Collapse
|