1
|
Cai R, Yang Q, Liao Y, Qin L, Han J, Gao R. Immune Treatment Strategies in Unexplained Recurrent Pregnancy Loss. Am J Reprod Immunol 2025; 93:e70060. [PMID: 39967400 DOI: 10.1111/aji.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Recurrent pregnancy loss (RPL) is characterized by the occurrence of two or more consecutive pregnancy losses. Approximately half of these cases lack a clear etiology and are termed unexplained recurrent pregnancy loss (URPL). Maternal-fetal immune dysfunction is thought to be involved in causing URPL. Increased human leukocyte antigen compatibility, susceptibility genes, lack of blocking antibodies, and dysfunction of immune cells can all disrupt the immune tolerance environment of the maternal-fetal interface. To correct the maternal-fetal immune imbalances, some immunotherapies were recently tried to be used for patients with URPL. This review summarizes the characteristics and mechanisms of the immune microenvironment at the maternal-fetal interface of URPL patients, and the present immunotherapies for URPL patients, to serve as a reference for future research.
Collapse
Affiliation(s)
- Rui Cai
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiaoran Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yingjun Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jinbiao Han
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Wang RQ, Deng ZM, Chen GT, Dai FF, Xia LB. Obesity and recurrent spontaneous abortion: the crucial role of weight management in pregnancy. Reprod Biol Endocrinol 2025; 23:10. [PMID: 39844265 PMCID: PMC11752768 DOI: 10.1186/s12958-024-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous abortion (RSA), characterized by the loss of two or more pregnancies, impacts approximately 1-2% of couples and poses a significant challenge for individuals of childbearing age. The precise mechanisms underlying RSA remain incompletely understood. Concurrently, the global prevalence of obesity is on the rise, with obesity being closely associated with female reproductive disorders and infertility. This study initially examines the pathways through which obesity contributes to RSA, encompassing factors such as embryonic euploid miscarriage, endometrial development, immune function, among others. Furthermore, adipokines and the fat mass and obesity-related (FTO) are identified as potential contributors to RSA. The study also explores the enhancement of pregnancy outcomes through various weight management strategies, with a particular focus on the roles of dietary interventions, physical activity, and weight control during pregnancy. Obesity is closely related to RSA in multiple aspects. Additional clinical prospective and experimental studies are required to explore its precise pathogenesis. Through this review, we aim to provide strategies for improvement and treatment approaches for RSA related to obesity. Through this review, we suggest potential clinical management strategies and research avenues aimed at offering enhancements and therapeutic insights for miscarriages linked to obesity and its associated risk factors.
Collapse
Affiliation(s)
- Rui-Qi Wang
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Zhi-Min Deng
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Fang-Fang Dai
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| | - Liang-Bin Xia
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| |
Collapse
|
3
|
Du L, Pan D, Huang H, Liu Q, Yang Y, Jiang G. Shoutai Wan treatment upregulates the expression of TNFAIP3 and improves T cell immune tolerance at maternal-fetal interface. J Reprod Immunol 2024; 165:104301. [PMID: 39146884 DOI: 10.1016/j.jri.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Shoutai Wan (STW) is a traditional Chinese medicine formula used to treat various conditions. The objective of this study was to evaluate the impact of STW on the abortion rate in the URSA mouse model and elucidate its underlying molecular mechanisms. Female CBA/J mice were mated with male DBA/2 mice to establish the URSA model. Network pharmacological analysis was employed to investigate the potential molecular mechanisms of STW. Hematoxylin-eosin staining, immunofluorescence, and ELISA were performed to examine placental microenvironmental changes, protein expression related to TNFAIP3 and the NF-κB signaling pathway. Treatment with STW reduced the abortion rate in URSA model mice and improved trophoblast development. TNFAIP3 was identified as a potential target of STW for treating URSA, as STW enhanced TNFAIP3 protein expression while decreasing IL-6 and TNF-α secretion in the placenta. Moreover, STW upregulated TNFAIP3 protein expression and Foxp3 mRNA levels, increased the production of anti-inflammatory cytokines such as IL-10 and TGF-β1, and decreased p-NF-κB expression in CD4+ cells at the placenta. The findings of this study indicate that STW treatment reduces the abortion rate in the URSA mouse model. These effects are likely mediated by increased TNFAIP3 expression and decreased NF-κB signaling pathway activity at the maternal-fetal interface. These molecular changes may contribute to the regulation of T cell immunity and immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Le Du
- Department of traditional Chinese Medicine, Pizhou people's Hospital affiliated to Xuzhou Medical University, Jiangsu 221000, China
| | - Dingchen Pan
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - He Huang
- ShuGuang Clinical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- ShuGuang Clinical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China.
| | - Guojing Jiang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
4
|
Yang K, Zeng L, Li Y, Wu L, Xiang W, Wu X, Wang G, Bao T, Huang S, Yu R, Zhang G, Liu H. Uncovering the pharmacological mechanism of Shou Tai Wan on recurrent spontaneous abortion: A integrated pharmacology strategy-based research. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117589. [PMID: 38104875 DOI: 10.1016/j.jep.2023.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shou Tai Wan (STW), a traditional Chinese medicine formula, has been historically used for the treatment of recurrent spontaneous abortion (RSA). Despite its long-standing usage, the exact mechanism underlying the therapeutic effects of STW remains unclear in the existing literature. AIMS OF THIS STUDY To explore the Pharmacological Mechanism of STW on RSA. METHODS A network pharmacological methodology was utilized to predict the active compounds and potential targets of STW, collect the RSA targets and other human proteins of STW, and analyze the STW related networks. The animal experiments were also performed to validate the effect of STW on RSA. RESULTS The results of network analysis showed that STW may regulate PI3K/AKT, MAPK, FoxO signaling pathways and so on. Animal experiment established the RSA model with CBA/J × DBA/2 mice. It was found that STW can reduce the embryo absorption rate of RSA group (p < 0.05) and balance the expression of Th 1/Th2 type cytokines compared with the model group. After 14 days of administration, the decidual and placental tissues were taken and the CD4+ T cells were isolated, and the phosphorylation level of signaling pathway was detected by Springbio720 antibody microarray. This experiment found that STW can significantly up-regulate the phosphorylation levels of STAT3 and STAT6 proteins in the STAT signaling pathway, and down-regulating the phosphorylation level of STAT1 protein. STW also significantly up-regulated the phosphorylation levels of Raf1, A-Raf, Ask1, Mek1, Mek2, JKK1, ERK1, ERK2, c-fos, c-Jun and CREB proteins in the MAPK signaling pathway, and down-regulate the phosphorylation levels of MEK6 and IKKb proteins. Compared with the RSA group, the STW group increased the expression levels of ERK1/2 mRNA and proteins and p-ERK1/2 proteins, and there was a statistical difference (p < 0.05). This is consistent with the chip results. CONCLUSION STW may achieve therapeutic effects by interfering with the signaling pathways, biological processes and targets discovered in this study. It provides a new perspective for revealing the immunological mechanism of STW in the treatment of RSA, and also provides a theoretical basis for the clinical use of STW in the treatment of RSA.
Collapse
Affiliation(s)
- Kailin Yang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Lingyu Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- The First People's Hospital Changde City, Changde City, China
| | - Xiaolan Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guiyun Wang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Shanshan Huang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong Yu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guomin Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Huiping Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Lewis EL, Reichenberger ER, Anton L, Gonzalez MV, Taylor DM, Porrett PM, Elovitz MA. Regulatory T cell adoptive transfer alters uterine immune populations, increasing a novel MHC-II low macrophage associated with healthy pregnancy. Front Immunol 2023; 14:1256453. [PMID: 37901247 PMCID: PMC10611509 DOI: 10.3389/fimmu.2023.1256453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.
Collapse
Affiliation(s)
- Emma L. Lewis
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R. Reichenberger
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M. Porrett
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michal A. Elovitz
- Women’s Biomedical Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Wang Y, Wang Y. Palmitic Acid Upregulates CD96 Expression to Mediate Maternal-Foetal Interface Immune Tolerance by Inhibiting Cytotoxic Activity and Promoting Adhesion Function in Human Decidual Natural Killer Cells. Bioengineering (Basel) 2023; 10:1008. [PMID: 37760110 PMCID: PMC10525720 DOI: 10.3390/bioengineering10091008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Decidual natural killer cells (dNK cells) are an essential component of the immune cells present at the maternal-foetal interface during early pregnancy, and they play a vital role in various physiological processes. Abnormalities in the ratio or function of dNK cells have been linked to recurrent miscarriages. CD96 has been previously shown to regulate NK cell function in the tumour microenvironment; however, its role and mechanism at the maternal-foetal interface remains unclear. The present study aimed to investigate the immunomodulatory role of CD96 in dNK cells and its function at the maternal-foetal interface. Immunofluorescence staining and flow cytometry were used to detect the expression of cellular markers such as CD96. Furthermore, the secretory function, adhesion-function-related molecules, and cell proliferation markers of CD96+ and CD96- dNK cells were detected using flow cytometry. In addition, we performed cell culture experiments via the magnetic bead sorting of NK cells to detect changes in the expression of the aforementioned functional molecules in dNK cells after the CD96 blockade. Furthermore, we examined the functional characteristics of dNK cells after palmitic acid treatment at a concentration of 10 μM. We also examined the changes in dNK cell function when subjected to the combined effect of palmitic acid and CD96 antagonists. The results indicated that CD96, TIGIT, CD155, and CD112 were highly expressed at the maternal-foetal interface, with dNK cells predominantly expressing CD96, whereas TIGIT was mainly expressed on T cells, and CD155 and CD112 were mainly present in metaphase stromal and trophoblast cells. CD96+ dNK cells displayed low cytotoxic activity and a high adhesion phenotype, which mediated the immunosuppressive effect on dNK cells at the maternal-foetal interface. Palmitic acid upregulated CD96 expression on the surface of dNK cells in the coculture system, inhibiting dNK cell activity and increasing their adhesion molecule expression. CD96 antagonist treatment blocked the inhibitory effect of trophoblasts on dNK cells, resulting in enhanced cytokine secretion and reduced adhesion. The results of this study provide valuable insight into the immunomodulatory role of CD96 in dNK cells and its mechanism at the maternal-foetal interface, particularly in metaphase NK cells. This study sheds light on the mechanisms of immune regulation at the maternal-foetal interface and their implications for the study of recurrent miscarriages of unknown origin.
Collapse
Affiliation(s)
| | - Yun Wang
- Department of Assisted Reproduction, School of Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, No. 500 Zhizaoju Road, Huangpu District, Shanghai 200025, China;
| |
Collapse
|
7
|
Xiong H, Xue G, Zhang Y, Wu S, Zhao Q, Zhao R, Zhou N, Xie Y. Effect of exogenous galectin-9, a natural TIM-3 ligand, on the severity of TNBS- and DSS-induced colitis in mice. Int Immunopharmacol 2023; 115:109645. [PMID: 36610329 DOI: 10.1016/j.intimp.2022.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1β, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuting Zhang
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shuang Wu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Rulin Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
8
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
9
|
Combined spinal-epidural anesthesia with acupoint injection for labor anesthesia reduces IL-1β/IL-10 ratio in maternal peripheral blood, umbilical cord blood and improves the labor outcomes: A prospective randomized controlled trial. Clin Immunol 2022; 236:108935. [PMID: 35093596 DOI: 10.1016/j.clim.2022.108935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study aimed to investigate the effects of combined spinal-epidural anesthesia (CSEA) with acupoint injection (AI) on the maternal-fetal expression of interleukin-1β (IL-1β), interleukin-10 (IL-10), analgesia effect, and labor outcomes. METHODS A total of 360 healthy primiparas were randomized into the CSEA+AI group, the CSEA group, the AI group, and the control group (n = 90, each group) according to the labor analgesia methods. RESULTS Compared to the CSEA group, the CSEA+AI group had significantly lower visual analog scale (VAS) scores, adverse events, dose of ropivacaine/sufentanil, and shorter labor durations. The IL-1β/IL-10 ratio in maternal peripheral blood and umbilical cord blood was reduced in the CSEA+AI group compared with the CSEA group. CONCLUSION The combination of CSEA and AI can reduce the ratio of IL-1β/ IL-10 in maternal peripheral blood and umbilical cord blood, which can effectively relieve labor pain.
Collapse
|
10
|
Bi SJ, Yue SJ, Bai X, Feng LM, Xu DQ, Fu RJ, Zhang S, Tang YP. Danggui-Yimucao Herb Pair Can Protect Mice From the Immune Imbalance Caused by Medical Abortion and Stabilize the Level of Serum Metabolites. Front Pharmacol 2021; 12:754125. [PMID: 34867365 PMCID: PMC8636897 DOI: 10.3389/fphar.2021.754125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Unintended pregnancy is a situation that every woman may encounter, and medical abortion is the first choice for women, but abortion often brings many sequelae. Angelica sinensis Radix (Danggui) and Leonuri Herba (Yimucao) are widely used in the treatment of gynecological diseases, which can regulate menstrual disorders, amenorrhea, dysmenorrhea, and promote blood circulation and remove blood stasis, but the mechanism for the treatment of abortion is not clear. We determined the ability of Danggui and Yimucao herb pair (DY) to regulate the Th1/Th2 paradigm by detecting the level of progesterone in the serum and the expression of T-bet and GATA-3 in the spleen and uterus. Then, we detected the level of metabolites in the serum and enriched multiple metabolic pathways. The arachidonic acid pathway can directly regulate the differentiation of Th1/Th2 cells. This may be one of the potential mechanisms of DY in the treatment of abortion.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
11
|
Chaney HL, Grose LF, LaBarbara JM, Sirk AW, Blancke AM, Sánchez JM, Passaro C, Lonergan P, Mathew DJ. Galectin-1 Confers Endometrial Gene Expression and Protein Related to Maternal-Conceptus Immune Tolerance in Cattle. Biol Reprod 2021; 106:487-502. [PMID: 34792096 DOI: 10.1093/biolre/ioab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptus secretory factors include galectins, a family of carbohydrate binding proteins that elicit cell adhesion and immune suppression by interacting with intracellular and extracellular glycans. In rodents, galectin-1 (LGALS1) promotes maternal-fetal immune tolerance in the decidua through expansion of tolerogenic CD11c+ dendritic cells, increased anti-inflammatory IL-10, and activation of FOXP3+ regulatory T cells (Treg). This study characterized galectin expression in early ruminant conceptuses and endometrium. We also tested the effect of recombinant bovine LGALS1 (rbLGALS1) and progesterone (P4) on endometrial expression of genes and protein related to maternal-fetal immune tolerance in cattle. Elongating bovine and ovine conceptuses expressed several galectins, particularly, LGALS1, LGALS3 and LGALS8. Within bovine endometrium, expression of LGALS3, LGALS7 and LGALS9 was greater on Day 16 of pregnancy compared to the estrous cycle. Within ovine endometrium, LGALS7 was greater during pregnancy compared to the estrous cycle and endometrium of pregnant sheep tended to have greater LGALS9 and LGALS15. Expression of endometrial LGALS4 was less during pregnancy in sheep. Treating bovine endometrium with rbLGALS1 increased endometrial expression of CD11c, IL-10 and FOXP3, within 24 h. Specifically, within caruncular endometrium, both rbLGALS1 and P4 increased FOXP3, suggesting that both ligands may promote Treg expansion. Using IHC, FOXP3+ cells with a leukocyte phenotype were localized to the bovine uterine stratum compactum near the uterine surface and increased in response to rbLGALS1. We hypothesize that galectins have important functions during establishment of pregnancy in ruminants and bovine conceptus LGALS1 and luteal P4 confer mechanisms of maternal-conceptus immune tolerance in cattle.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Lindsay F Grose
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeanna M LaBarbara
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Adam W Sirk
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Alyssa M Blancke
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jose M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
12
|
Liu J, Dong P, Jia N, Wen X, Luo L, Wang S, Li J. The expression of intracellular cytokines of decidual natural killer cells in unexplained recurrent pregnancy loss. J Matern Fetal Neonatal Med 2020; 35:3209-3215. [PMID: 32907413 DOI: 10.1080/14767058.2020.1817369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aims to investigate the expression levels of TNF-α, IFN-γ, IL-4, and IL-10 in dNK cells and determine whether or not the MAPK signal pathway is involved in the regulation of cytokine secretion by dNK cells at the maternal-fetal interface. METHODS In this study, we collected decidua specimens from patients with apparently normal pregnant and unexplained recurrent pregnancy loss (URPL) and extracted dNK cells by enzymatic digestion. Then the expression of cytokines were analyzed by flow cytometry and Real-Time PCR respectively. RESULTS The secretions of both IFN-γ and TNF-α in dNK cells in URPL were significantly higher than those in normal pregnancy. Furthermore, p38/MAPK inhibitors can inhibit the secretion of four cytokines in normal pregnancy, while in URPL cases, p38/MAPK inhibitors only significantly inhibit the secretion of IL-4 and IFN-γ. ERK inhibitors had no effect on the expression of all four cytokines and JNK/MAPK inhibitors varied on different cytokines. CONCLUSION URPL is associated with a NK1 cytokine profile. MAPK signaling pathway is involved in the regulation of cytokine secretion by decidual NK cells at maternal-fetal interface.
Collapse
Affiliation(s)
- Jia Liu
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Dong
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningyi Jia
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xi Wen
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lanrong Luo
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shijun Wang
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol 2020; 11:2025. [PMID: 32973809 PMCID: PMC7461801 DOI: 10.3389/fimmu.2020.02025] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
During pregnancy, various immune effectors and molecules participating in the immune-microenvironment establish specific maternal tolerance toward the semi-allogeneic fetus. Activated maternal immune effectors by the trophoblast antigens, such as T helper (Th), T cytotoxic (Tc), T regulatory (Treg), and B cells, are involved in the regulation of adaptive immunity. Recognition of active signal through the T cell receptors stimulate the differentiation of naive CD3+CD4+ T cells into specific T cell subsets, such as Th1, Th2, Th9, Th17, Th22, and follicular Th cells (Tfh). Each of these subsets has a significant and distinct role in human pregnancy. Th1 immunity, characterized by immune-inflammatory responses, becomes dominant during the peri-implantation period, and the “controlled” Th1 immunity benefits the invading trophoblasts rather than harm. Quickly after the placental implantation, the early inflammatory Th1 immunity is shifted to the Th2 anti-inflammatory immune responses. The predominant Th2 immunity, which overrules the Th1 immunity at the placental implantation site, protects a fetus by balancing Th1 immunity and accommodate fetal and placental development. Moreover, Treg and Th9 cells regulate local inflammatory immune responses, potentially detrimental to the fetus. Th17 cells induce protective immunity against extracellular microbes during pregnancy. However, excessive Th17 immunity may induce uncontrolled neutrophil infiltration at the maternal-fetal interface. Other Th cell subsets such as Tfh cells, also contribute to pregnancy by setting up favorable humoral immunity during pregnancy. However, dysregulation of Th cell immunity during pregnancy may result in obstetrical complications, such as recurrent pregnancy losses (RPL) and preeclampsia (PE). With this review, we intend to deliver a comprehensive overview of CD4+ Th cell subsets, including Th1, Th2, Th9, Th17, Th22, and Tfh cells, in human pregnancy by reviewing their roles in normal and pathological pregnancies.
Collapse
Affiliation(s)
- Wenjuan Wang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Nayoung Sung
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Alice Gilman-Sachs
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
14
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler G. Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand. Glycobiology 2020; 30:895-909. [PMID: 32280962 DOI: 10.1093/glycob/cwaa034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra M Blois
- Experimental and Clinical Research Center, Charité Campus Buch, Lindenberger Weg 80, 13125 Berlin, Germany.,Charité- Universitätsmedizin Berlin, Institute for Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Charles J Dimitroff
- Translational Medicine, Translational Glycobiology Institute, FIU, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Jonathan Zmuda
- Biosciences Division, Thermo Fisher Scientific, 7335 Executive Way, Frederick MD 21704, USA
| | - Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Front Immunol 2019; 10:1166. [PMID: 31231368 PMCID: PMC6558399 DOI: 10.3389/fimmu.2019.01166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins, consisting of 15 different types, each with a specific function. Galectins contribute to placentation by regulating trophoblast development, migration, and invasion during early pregnancy. In addition, galectins are critical players regulating maternal immune tolerance to the embedded embryo. Recently, the role of galectins in angiogenesis during decidualization and in placenta formation has gained attention. Altered expression of galectins is associated with abnormal pregnancies and infertility. This review focuses on the role of galectins in pregnancy-associated processes and discusses the relevance of galectin-glycan interactions as potential therapeutic targets in pregnancy disorders.
Collapse
Affiliation(s)
- Sandra M Blois
- Reproductive Medicine Research Group, Division of General Internal and Psychosomatic Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, UMB, Baltimore, MD, United States
| | - Nancy Freitag
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Véronique Blanchard
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|