1
|
de Oliveira Netto JR, Corrêa NP, Aragão de Araujo LB, Paiva WDS, Oliveira Rocha HA, Morais Lima WDA, Oliveira do Nascimento JH, Dos Santos Macedo DC, Santos-Magalhães NS, da Veiga Júnior VF, Maciel MAM. Bioavailability for the Improved Therapeutic Profile of trans-Dehydrocrotonin Incorporated into a Copaiba Oil Self-Nanoemulsifying Drug Delivery System: Formulation, Physicochemical Characterizations, and Antioxidant In Vitro Effect. Int J Mol Sci 2025; 26:4469. [PMID: 40429615 DOI: 10.3390/ijms26104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 05/29/2025] Open
Abstract
Croton cajucara Benth and Copaifera reticulata Ducke are prominent species in the traditional medicine of the Amazon region of Brazil. Copaifera species produce oil resin rich in bioactive diterpenes, and C. cajucara is a prolific producer of the diterpene 19-nor-clerodane trans-dehydrocrotonin (t-DCTN). This research aimed to develop a self-nanoemulsion drug delivery system (SNEDDS) by using copaiba oil resin (C. reticulata) as a carrier for t-DCTN. A stable SNEDDS single-phase nanoemulsion comprising Tween 80 (7%, w/w) and copaiba oil (0.5%, w/w) afforded a fine oil-in-water carrier system (SNEDDS-CO). The dropwise solubilization of t-DCTN (1 mg) into SNEDDS-CO resulted in the nanoformulation called SNEDDS-CO-DCTN. Transmission electron microscopy (TEM) analysis revealed spherical nanodevices, while particle size, polydispersity index (PDI), and zeta potential measurements indicated small nanodroplets (about 10 nm), uniformly distributed (between 0.1 and 0.2) and negatively charged for both systems. The in vitro kinetic of t-DCTN-loaded (SNEDDS-CO-DCTN) analyzed by using simulated conditions of the gastrointestinal microenvironment, as perspective for oral drug delivery, showed a controlled release profile, and corresponded to the Fickian diffusion model. The in vitro antioxidant activity of the samples (t-DCTN, SNEDDS-CO, and SNEDDS-CO-DCTN) was confirmed through total antioxidant capacity (TAC), reducing power, copper ion chelation, and hydroxyl radical scavenging assays. The antioxidant activity of SNEDDS-CO-DCTN which contained 1 mg of t-DCTN per mL-1 of the carrier SNEDDS-CO was similar or even better when compared to the unload t-DCTN solubilized in DMSO (10 mg mL-1). The SNEDDS formulations herein described were successfully obtained under moderated and controlled conditions, exhibiting effective physicochemical data and release characteristics with huge bioaccessibility for co-loading copaiba oil and t-DCTN. The novel colloidal system SNEDDS-CO-DCTN is a potential antioxidant nanoproduct and, from now on, is available for further pharmacological investigations.
Collapse
Affiliation(s)
- José Robério de Oliveira Netto
- Post Graduate Program in Biotechnology (REDE RENORBIO), Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Natália Pignataro Corrêa
- Post Graduate Program in Biotechnology, Potiguar University, Campus Salgado Filho, Natal 59075-000, RN, Brazil
| | - Leonardo Bruno Aragão de Araujo
- Post Graduate Program in Biotechnology (REDE RENORBIO), Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Weslley de Souza Paiva
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Post Graduate Program in Biotechnology (REDE RENORBIO), Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | | | | | | | | | | | - Maria Aparecida Medeiros Maciel
- Post Graduate Program in Biotechnology (REDE RENORBIO), Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Post Graduate Program in Biotechnology, Potiguar University, Campus Salgado Filho, Natal 59075-000, RN, Brazil
| |
Collapse
|
2
|
Uc-Cachón AH, Chan-Bacab MJ, Lezama-Dávila CM, Isaac-Márquez AP, González-Sánchez AA, Dzul-Beh ÁDJ, Molina-Salinas GM. Anti- Leishmania activity of the Mayan medicinal plant Thouinia paucidentata Radlk extracts. Nat Prod Res 2024; 38:3444-3448. [PMID: 37565472 DOI: 10.1080/14786419.2023.2245537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Mexico's Yucatan Peninsula is an endemic area of cutaneous leishmaniasis, locally known as the chiclero's ulcer, and Mayan traditional medicine which refers to the use of Thouinia paucidentata Radlk, known as k'an chuunup. Aqueous and organic leaves extracts were evaluated against promastigotes and amastigotes of Leishmania mexicana. Toxicity tests of extracts were performed using Vero and J774A.1 macrophage cell lines. The composition of the most active extracts was analysed by GC-MS. The n-hexane and ethyl acetate extracts showed potent anti-Leishmania activity against the promastigote form, and remarkably, n-hexane extract exhibited potent activity against the amastigote form. Both extracts showed low toxicity on Vero both not on J774A.1 cells. Analysis of both bioactive extracts identified as more abundant compounds, germacrene D-4-ol and thunbergen in n-hexane, and thunbergol in ethyl acetate extracts. Our study presents T. paucidentata as anti-Leishmania phytomedicine supporting its medicinal use and contributes to the understanding of its phytochemical composition.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | - Manuel Jesús Chan-Bacab
- Centro de Investigación en Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, México
| | - Claudio Manuel Lezama-Dávila
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, México
| | | | | | - Ángel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, Yucatán, México
| | | |
Collapse
|
3
|
Dogra A, Narang RS, Kaur T, Narang JK. Mefenamic Acid Loaded and TPGS Stabilized Mucoadhesive Nanoemulsion for the Treatment of Alzheimer's Disease: Development, Optimization, and Brain-Targeted Delivery via Olfactory Pathway. AAPS PharmSciTech 2024; 25:16. [PMID: 38200387 DOI: 10.1208/s12249-023-02727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a very common disorder that affects the elderly. There are relatively few medications that can be used orally or as a suspension to treat AD. A mucoadhesive (o/w) nano emulsion of mefenamic acid was made by adding Carbopol 940P to the optimised drug nanoemulsion using distilled water as the aqueous phase (6%); Solutol HS: tween 20 (3.6%) as the surfactant and co-surfactant; and clove oil: TPGS (0.4%) as the oil phase and mefenamic acid as the drug (2.8 mg/ml). The mucoadhesive nanoemulsion (S40.5%w/v) had a particle size of 91.20 nm, polydispersity index of 0.270, and surface charge of - 12.4 mV. Significantly higher (p < 0.001) drug release (89.37%) was observed for mucoadhesive drug formulation in comparison to mucoadhesive drug suspension (25.64%) at 8 h. The ex vivo nasal permeation of 83.03% in simulated nasal fluid and 85.71% in artificial cerebrospinal fluid was observed. The percent inhibition and inhibitory concentration (IC50) of mucoadhesive drug nanoemulsion were found to be 91.57 ± 2.69 and 6.76 respectively. Higher cell viability on glioblastoma cells (85-80%) was researched for mucoadhesive nanoemulsion as compared to drug suspension (80-70%). Significantly higher (p < 0.001) drug absorption and Cmax (491.94 ± 24.13 ng/ml) of mucoadhesive drug nanoemulsion were observed than mucoadhesive drug suspension (107.46 ± 11.46 ng/ml) at 8 h. The stability studies confirmed that the formulation was stable at 40°C ± 2°C and 75 ± 5% RH. The authors concluded that the mucoadhesive mefenamic acid-loaded nanoemulsion may be an effective technique for treating Alzheimer's disease by intranasal route.
Collapse
Affiliation(s)
- Anmol Dogra
- I.K.G Punjab Technical University, Kapurthala, Punjab, India
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Ramandeep Singh Narang
- Department of Oral and Maxillofacial Pathology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Jasjeet Kaur Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India.
| |
Collapse
|
4
|
Tiwari R, Gupta RP, Singh VK, Kumar A, Rajneesh, Madhukar P, Sundar S, Gautam V, Kumar R. Nanotechnology-Based Strategies in Parasitic Disease Management: From Prevention to Diagnosis and Treatment. ACS OMEGA 2023; 8:42014-42027. [PMID: 38024747 PMCID: PMC10655914 DOI: 10.1021/acsomega.3c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Parasitic infections are a major global health issue causing significant mortality and morbidity. Despite substantial advances in the diagnostics and treatment of these diseases, the currently available options fall far short of expectations. From diagnosis and treatment to prevention and control, nanotechnology-based techniques show promise as an alternative approach. Nanoparticles can be designed with specific properties to target parasites and deliver antiparasitic medications and vaccines. Nanoparticles such as liposomes, nanosuspensions, polymer-based nanoparticles, and solid lipid nanoparticles have been shown to overcome limitations such as limited bioavailability, poor cellular permeability, nonspecific distribution, and rapid drug elimination from the body. These nanoparticles also serve as nanobiosensors for the early detection and treatment of these diseases. This review aims to summarize the potential applications of nanoparticles in the prevention, diagnosis, and treatment of parasitic diseases such as leishmaniasis, malaria, and trypanosomiasis. It also discusses the advantages and disadvantages of these applications and their market values and highlights the need for further research in this field.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rohit P. Gupta
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
- Applied
Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Vishal K. Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Awnish Kumar
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rajneesh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Prasoon Madhukar
- Department
of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Shyam Sundar
- Department
of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
5
|
Chura SSD, Memória KAS, Lopes AT, Pelissari FM, Da Silveira JVW, Bezerra JDA, Chaves FCM, Rodrigues AP, Faria JAQA, Carneiro G. Red sacaca essential oil-loaded nanostructured lipid carriers optimized by factorial design: cytotoxicity and cellular reactive oxygen species levels. Front Pharmacol 2023; 14:1176629. [PMID: 37886132 PMCID: PMC10598706 DOI: 10.3389/fphar.2023.1176629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Amazonian flora includes several species with the potential to develop pharmaceutical and biotechnological products. The essential oils from Amazonian species possess some biological properties, such as antioxidant, antibacterial, and cytotoxic activities. The essential oil of red sacaca (RSO), Croton cajucara Benth., contains metabolites characterized by antioxidant and anti-inflammatory activities. Nanostructured lipid carriers (NLC) are an advantageous alternative for the effective delivery of drugs because they can solubilize lipophilic actives and reduce their cytotoxicity. This study aimed to optimize the synthesis of RSO-loaded nanostructured lipid carriers (NLC-RSO) using a 23 factorial design and investigate their antioxidant and cytotoxic effects. The red sacaca essential oil (RSO) metabolite profile was characterized using gas chromatography coupled with a mass spectrometer (GC-MS), identifying 33 metabolites, with linalool and 7-hydroxy-calamenene as the major ones, as reported in the literature. The optimized NLC-RSO formulation had a particle size less than 100 nm and a polydispersity index lower than 0.25. After characterizing NLC-RSO using Fourier-transform infrared spectroscopy, powder X-ray diffraction, zeta potential, moisture content, and wettability, in vitro cytotoxicity were performed in A549 and BEAS-2B cell lines using the resazurin metabolism assay. The data indicated a lower IC50 for RSO than for NLC-RSOs in both cell lines. Furthermore, low cytotoxicity of blank nanoparticles (blank NP) and medium chain triglycerides-loaded nanostructured lipid carriers (NLC-MCT) towards both pulmonary cell lines was noted. At a concentration of 50-100 μg/mL, free RSO exhibited higher cytotoxicity than NLC-RSO, demonstrating the protective effect of this lipid carrier in reducing cytotoxicity during metabolite delivery. Similarly, free RSO showed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging than NLC-RSO, also indicating this protective effect. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) intracellular reactive oxygen species (ROS) level assay did not show differences between the treatments at higher but non-cytotoxic dosages. Taken together, our results suggest that NLC-RSOs are potential RSO delivery systems for applications related to cancer treatment.
Collapse
Affiliation(s)
- Sofia Santos Donaire Chura
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Amanda Tibães Lopes
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Franciele Maria Pelissari
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Jaqueline de Araújo Bezerra
- Federal Institute of Education, Science and Technology of Amazonas (IFAM), IFAM Analytical Center, Manaus Centro Campus, Manaus, Brazil
| | | | - Ana Paula Rodrigues
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
6
|
Tullius Scotti M, Herrera-Acevedo C, Barros de Menezes RP, Martin HJ, Muratov EN, Ítalo de Souza Silva Á, Faustino Albuquerque E, Ferreira Calado L, Coy-Barrera E, Scotti L. MolPredictX: Online Biological Activity Predictions by Machine Learning Models. Mol Inform 2022; 41:e2200133. [PMID: 35961924 DOI: 10.1002/minf.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/12/2022] [Indexed: 01/05/2023]
Abstract
Here we report the development of MolPredictX, an innovate and freely accessible web interface for biological activity predictions of query molecules. MolPredictX utilizes in-house QSAR models to provide 27 qualitative predictions (active or inactive), and quantitative probabilities for bioactivity against parasitic (Trypanosoma and Leishmania), viral (Dengue, Sars-CoV and Hepatitis C), pathogenic yeast (Candida albicans), bacterial (Salmonella enterica and Escherichia coli), and Alzheimer disease enzymes. In this article, we introduce the methodology and usability of this webtool, highlighting its potential role in the development of new drugs against a variety of diseases. MolPredictX is undergoing continuous development and is freely available at https://www.molpredictx.ufpb.br/.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Chonny Herrera-Acevedo
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.,Department of Chemical Engineering, Universidad ECCI, Carrera 19 # 49-20, 111311, Bogotá D.C., Colombia
| | - Renata Priscila Barros de Menezes
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ávilla Ítalo de Souza Silva
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Emmanuella Faustino Albuquerque
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Lucas Ferreira Calado
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Luciana Scotti
- Programa de Pós-Graduação de Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
7
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
8
|
Sharma N, Kaur G, Sharma S, Dar BN. Effect of turmeric powder, curcumin essential oil and curcumin loaded nanoemulsions on stability, total phenolic content, cooking quality and cytotoxicity of pasta. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neha Sharma
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Gurkirat Kaur
- Electron Microscopy & Nanoscience Lab Punjab Agricultural University Ludhiana India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - B. N. Dar
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| |
Collapse
|
9
|
Kaur A, Kaur L, Singh G, Dhawan RK, Mahajan A. Nanotechnology-based Herbal Formulations: A Survey of Recent Patents, Advancements, and Transformative Headways. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:295-307. [PMID: 33913409 DOI: 10.2174/1872210515666210428135343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology in association with herbal medicine can lead to enhanced therapeutic and diminished adverse effects of medication. In turn, it can lead to synergistic effects of administered compound overcoming its demerits. Nowadays, the trend of herbal compounds to treat even a small illness is gaining momentum. Gone are the days when the ineffectiveness of a compound was impossible to be dealt with. Nevertheless, in this competitive era of science and innovative technology, it has become possible to maximize the usefulness of ineffective yet potent herbal compounds. The demand for herbal compounds is getting amplified because of their ability to treat a myriad of diseases, including COVID-19, showing fewer side effects. The merger of nanotechnology with traditional medicine augments the potential of herbal drugs for devastating dangerous and chronic diseases like cancer. In this review article, we have tried to assimilate the complete information regarding the use of different nanocarriers to overcome the drawbacks of herbal compounds. In addition, all the recent advancements in the herbal field, as well as the future exploration to be emphasized, have been discussed.
Collapse
Affiliation(s)
- Anureet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Lakhvir Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Gurjeet Singh
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - R K Dhawan
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, 143001, India
| | - Ayushi Mahajan
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, 143001, India
| |
Collapse
|
10
|
Abstract
The purpose of this study was to develop a stable nanoemulsion (NE) containing Croton cajucara 7-hydroxycalamenene-rich essential oil (NECC) with antifungal activity. The NECCs were prepared using an ultrasonic processor with Pluronic® F-127 as the aqueous phase. In order to evaluate the NECCs, the droplet size, polydispersity index (PdI), percentage of emulsification, and pH were determined along with a stability study. The NECC selected for the study had 15% surfactant, showed 100% emulsification, Pdl of 0.249, neutral pH, droplet diameters of about 40 nm, and remained stable over 150 days at room temperature. In addition, the NECC activity against some species of Zygomycetes and Candida, as well as the potential to inhibit fungal extracellular proteases, were assessed, and, finally, the hemolytic activity was evaluated. The best NECC antifungal activities were against Mucorramosissimus (Minimal inhibitory concentration (MIC) = 12.2 μg/mL) and Candida albicans (MIC = 25.6 μg/mL). The highest extracellular protease activities of M. ramosissimus and C. albicans were detected at pH 3 and 4, respectively, which were totally inhibited after NECC treatment. The NECC showed no hemolytic effect at the highest concentration tested (2 mg/mL).
Collapse
|
11
|
Rodrigues GDM, Filgueiras CT, Garcia VADS, de Carvalho RA, Velasco JI, Fakhouri FM. Antimicrobial Activity and GC-MS Profile of Copaiba Oil for Incorporation into Xanthosoma mafaffa Schott Starch-Based Films. Polymers (Basel) 2020; 12:E2883. [PMID: 33271855 PMCID: PMC7760987 DOI: 10.3390/polym12122883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022] Open
Abstract
The present study evaluated the effect of the incorporation of copaiba oil, in direct and in microencapsulated form, into films based on Xanthosoma mafaffa Schott starch. Initially, the characterization of copaiba oil by gas chromatograph coupled with mass spectrometry (GC-MS) and its antimicrobial activity against gram-positive and gram-negative bacteria was performed. The films were produced by the casting technique and characterized in relation to physical, chemical, structural, and antimicrobial activity. Sesquiterpenes, mainly β-caryophyllene, were the predominant compounds in copaiba oil, showing antimicrobial activity against B. subtilis and S. aureus. The films showed forming capacity, however, was observed a decrease in solubility and revealed an increase in hydrophobic characteristics. However, the oil reduced the tensile strength and elongation, while the microcapsules did not influence the mechanical properties in comparison to the control film. From microstructure analysis, changes in the films roughness and surface were observed after the addition of oil both directly and in microencapsulated form. Films incorporated with microparticles were able to inhibit the gram-positive bacteria tested, forming inhibition zones, indicating that the encapsulation of copaiba oil was more efficient for protecting bioactive compounds from the oil, suggesting the possible application of mangarito starch-based films incorporated with copaiba oil as biodegradable packaging.
Collapse
Affiliation(s)
- Giovana de Menezes Rodrigues
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (G.d.M.R.); (C.T.F.); (V.A.d.S.G.)
| | - Cristina Tostes Filgueiras
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (G.d.M.R.); (C.T.F.); (V.A.d.S.G.)
| | - Vitor Augusto dos Santos Garcia
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (G.d.M.R.); (C.T.F.); (V.A.d.S.G.)
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - Rosemary Aparecida de Carvalho
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - José Ignacio Velasco
- Poly 2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), ESEIAAT, Carrer de Colom, 11, 08222 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil; (G.d.M.R.); (C.T.F.); (V.A.d.S.G.)
- Poly 2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC BarcelonaTech), ESEIAAT, Carrer de Colom, 11, 08222 Terrassa, Spain;
| |
Collapse
|
12
|
Antimicrobial activity of nanoemulsion encapsulated with polyphenon 60 and ciprofloxacin for the treatment of urinary tract infection. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci Rep 2020; 10:15158. [PMID: 32938966 PMCID: PMC7495442 DOI: 10.1038/s41598-020-72230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.
Collapse
|
14
|
Koyama S, Heinbockel T. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int J Mol Sci 2020; 21:E1558. [PMID: 32106479 PMCID: PMC7084246 DOI: 10.3390/ijms21051558] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
15
|
Oliveira de Veras B, Melo de Oliveira MB, Granja da Silva Oliveira F, Queiroz Dos Santos Y, Saturnino de Oliveira JR, Lúcia de Menezes Lima V, Guedes da Silva Almeida JR, Maria do Amaral Ferraz Navarro D, Ribeiro de Oliveira Farias de Aguiar JC, Aguiar JDS, Gorlach-Lira K, Dias de Assis CR, Vanusa da Silva M, Catarina de Souza Lopes A. Chemical composition and evaluation of the antinociceptive, antioxidant and antimicrobial effects of essential oil from Hymenaea cangaceira (Pinto, Mansano & Azevedo) native to Brazil: A natural medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112265. [PMID: 31580941 DOI: 10.1016/j.jep.2019.112265] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hymenaea cangaceira Pinto, Mansano & Azevedo (Fabaceae) is a Brazilian medicinal plant widely known as "Jatobá". In folk medicine, it is used to treat infections, respiratory problems, rheumatism, antitumoral, inflammation and pain, however, no activity has been scientifically validated. AIM OF THE STUDY This study investigated chemical composition of essential oil from Hymenaea cangaceira (EOHc), antimicrobial, antinociceptive and antioxidant activities besides protection against DNA damage and hemolysis. MATERIAL AND METHODS The essential oil was obtained by hydrodistillation, and characterized by GC-MS and GC-FID. The evaluation of antimicrobial activity was performed by microdilution method. The evaluation of the antioxidant activity was performed using the radicals DPPH, ABTS, O2- and OH-, and the protection of DNA damage using plasmid pBR322. Different experimental models were used to evaluate the antinociceptive effect (acetic acid and formalin), and evaluate the mechanisms of action involved with pharmacological antagonists (naloxone, atropine and gibenclamide) in mice. The essential oil was evaluated for hemolysis on human erythrocytes. RESULTS The extraction of EOHc showed a yield of 0.18% on a dry basis, presenting high content of hydrocarbon sesquiterpenes (79.04%), high antioxidant activity and protect DNA from damage, besides presenting antifungal and antibacterial activity against Gram-positive and Gram-negative bacteria in vitro. It was found that the essential oil had no acute toxicity in mice up to 5000 mg/kg oral administration (o.a.), in addition to no hemolysis on human erythrocytes. The reduction of antinociceptive activity was 75%, with the opioid system as the mechanism of action. CONCLUSION Our results validate the main activities by the traditional use attributed to H. cangaceira for antimicrobial and analgesic activity. In addition, the oil has a potent antioxidant activity, protecting the body against oxidative stress damage, adding new value to an endemic species not known to the industry.
Collapse
Affiliation(s)
- Bruno Oliveira de Veras
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Maria Betânia Melo de Oliveira
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Fernanda Granja da Silva Oliveira
- Post-graduation in Biotechnology, Laboratory of Natural Products, Federal University of São Francisco Valley, 56304-917, Pernambuco, Brazil
| | - Yago Queiroz Dos Santos
- Department of Biochemistry, Laboratory of Proteins and Bioactive Peptides, Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil
| | | | - Vera Lúcia de Menezes Lima
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | | | | | | | - Jaciana Dos Santos Aguiar
- Post-graduation in Biotechnology, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Krystyna Gorlach-Lira
- Department of Molecular and Cellular Biology, Laboratory of Biology Molecular of Microorganisms, Federal University of Paraiba, 58059-900, João Pessoa, Paraiba, Brazil
| | - Caio Rodrigo Dias de Assis
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina de Souza Lopes
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| |
Collapse
|