1
|
Zhu Y, Liu Y, Yang K, Wu W, Cheng Y, Ding Y, Gu R, Liu H, Zhang X, Liu Y. Apoptotic vesicles inhibit bone marrow adiposity via wnt/β-catenin signaling. Regen Ther 2025; 29:262-270. [PMID: 40230357 PMCID: PMC11994938 DOI: 10.1016/j.reth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background There is currently increasing focus on aging-related diseases. Osteoporosis is a common disease the incidence of which increases with age. In older patients with osteoporosis, bone marrow mesenchymal stem cells (BMMSCs) have a decreased capacity for osteogenesis and an increased capacity for adipogenesis, causing excessive accumulation of adipose tissue in the bone marrow. Therefore, means of reducing bone marrow adiposity may have therapeutic potential for osteoporosis. Apoptotic vesicles (apoVs) participate in a wide range of physiological processes and have been shown to have therapeutic effects in a variety of diseases. The principal objective of this study was to examine the special properties and regulatory mechanisms of BMMSC-derived apoVs in the treatment of bone marrow adiposity. Results The results showed that apoVs could decrease bone marrow adiposity in osteoporotic mice and prevent adipogenic differentiation of MSCs by activating the Wnt/β-catenin pathway. Conclusion New apoV-based therapies have potential for the treatment of bone marrow adiposity in patients with aging-related osteoporosis and may be further applicable to the treatment of obesity and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Weiliang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanan Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Han L, Li Q, Du M, Mao X. Bovine milk osteopontin improved intestinal health of pregnant rats fed a high-fat diet through improving bile acid metabolism. J Dairy Sci 2024; 107:24-39. [PMID: 37690710 DOI: 10.3168/jds.2023-23802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
The main purpose of the current study was to investigate the ameliorative effects of bovine milk osteopontin (bmOPN) on the gut dysfunction of pregnant rats fed a high-fat diet (HFD). Bovine milk osteopontin was supplemented at a dose of 6 mg/kg body weight. Bovine milk osteopontin supplementation during pregnancy reduced colonic inflammation of HFD dams, and it also increased the colonic expression of ZO-1 and claudin-4 of HFD dams. Bovine milk osteopontin significantly enriched the relative abundance of Bacteroidetes, whereas it decreased Proteobacteria, Helicobacteraceae, and Desulfovibrionaceae in feces of HFD dams. The levels of isobutyric acid and pentanoic acid in the HFD + bmOPN group were higher than that of the HFD group. Functional predication analysis of microbial genomes revealed that bmOPN supplementation to HFD pregnancies changed 4 Kyoto Encyclopedia of Genes and Genomes pathways including bile acid biosynthesis. Further, bmOPN enriched hepatic taurochenodeoxycholic acid and tauroursodeoxycholic acid plus taurohyodeoxycholic acid in the gut of HFD maternal rats. Our findings suggested that bmOPN improved the gut health of HFD pregnant rats partially through modulating bile acid biosynthesis.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiqi Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Xing H, Zhang F, Han R, Li H. DNA methylation pattern and mRNA expression of OPN promoter in sika deer antler tip tissues. Gene 2023; 868:147382. [PMID: 36958507 DOI: 10.1016/j.gene.2023.147382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
In order to explore the biological role of OPN gene during the growth of sika deer antler, the dermis, mesenchyme, precartilage and cartilage tissues of sika deer antler tip at the early period of the antler with a saddle-like appearance (30 days), the rapid growth period of the antler with two branches (60 days), and the final period of the antler with three branches (90 days) were analyzed. Bisulfite sequencing PCR (BSP) and quantitative real-time PCR (qRT-PCR) were used to explore the DNA promoter methylation and mRNA expression of OPN in sika deer antler from the perspective of space and time. The test results showed that: 1) The methylation rates of OPN promoter at the early, middle and late periods of dermis tissue were (40.48±0.82)%, (40.00±1.43)%, and (39.05±0.82)%; The methylation rates in mesenchyme tissue were (37.62±0.82)%, (34.76±2.18)%, and (38.57±1.43)%; The methylation rates in precartilage tissue were (36.67±0.28)%, (29.52±1.65)%, (28.10±2.18)%; The methylation rates in cartilage tissue were (31.90±1.65)%, (26.67±1.65)%, (24.29±1.43)%. 2) There are 7 CpG sites in the OPN promoter region, and the 3 CpG sites of -367 bp, -245 bp and -31 bp are all methylated to different level. 3) The methylation level of OPN in the dermis, mesenchyme, precartilage and cartilage tissues decreased in sequence at the same growth period. At the middle and late periods, the methylation level of the promoter region of the precartilage tissue was significantly different from that of the dermis and mesenchyme tissues (P<0.05); At different growth periods, the methylation level of the promoter region of cartilage tissue was extremely significantly different from that of dermis and mesenchyme tissues (P<0.01); In the same tissue, the methylation level of the promoter region at the middle period was down-regulated compared with the early period, and the methylation level of the promoter region at the early period and the middle period was extremely significantly different in the precartilage and cartilage (P<0.01). 4) OPN mRNA is highly expressed in precartilage and cartilage tissues. 5) The methylation level of OPN promoter was negatively correlated with mRNA expression level. In summary, it is speculated that the OPN gene, which may be regulated by the DNA methylation level of the promoter, promotes the growth and development of deer antler mainly by regulating the growth of precartilage and cartilage tissues.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Furui Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Tang M, Guo C, Sun M, Zhou H, Peng X, Dai J, Ding Q, Wang Y, Yang C. Effective delivery of osteopontin small interference RNA using exosomes suppresses liver fibrosis via TGF-β1 signaling. Front Pharmacol 2022; 13:882243. [PMID: 36120332 PMCID: PMC9478741 DOI: 10.3389/fphar.2022.882243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Objective and aims: Osteopontin (OPN), an oxidant stress sensitive cytokine, plays a central role in liver fibrosis. While OPN expression can be reduced by small interfering RNA (siRNA), the challenge to deliver siRNA safely and effectively into liver remains unresolved. Exosomes are promising natural nanocarriers for drug delivery that are able to enter cells with different biological barriers efficiently. In this study, we used exosomes as a delivery vehicle to target OPN in liver fibrosis. Methods: Exosomes selectively home to fibrotic liver according to small animal imaging system. Electroporation technique was used to engineer exosomes to carry siRNA targeting OPN (ExosiRNA−OPN). Primary hepatic stellate cells (HSCs) were isolated and treated with ExosiRNA−OPN to assess the effect on activated HSCs (aHSCs). Immunofluorescence for α−SMA, an aHSCs marker, and sirius red staining were performed to assess ECM deposition. Finally, plasma OPN from patients with liver fibrosis was identified by ELISA assay. Results: Exosome-mediated siRNA delivery systems show high uptake and low toxicity. Besides, ExosiRNA−OPN suppressed HSCs activation and ECM deposition and more efficiently improved liver function when compared to naked siRNA-OPN. Moreover, ExosiRNA−OPN was assumed inhibiting TGF-β1 signaling activation, along with other fibrotic-related genes based on a GEO datasheet of liver fibrosis samples for correlation analyzes. ExosiRNA−OPN inhibited TGF-β1 signaling by decreasing high-mobility group box-1 (HMGB1). Plasma proteins from chronic HBV-induced fibrosis patients were identified that patients with high OPN expression correlates with more advanced fibrosis progression. Discussion: This study shows that exosome-mediated siRNA-OPN delivery may be an effective option for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Tang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Guo
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Mengxue Sun
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Zhou
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianli Dai
- Biology Department of Pharmaron Beijing Co., Ltd., Beijing, China
| | - Qin Ding
- Nutrition Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Ying Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Changqing Yang, ; Ying Wang,
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Changqing Yang, ; Ying Wang,
| |
Collapse
|
5
|
Hutchings G, Janowicz K, Moncrieff L, Dompe C, Strauss E, Kocherova I, Nawrocki MJ, Kruszyna Ł, Wąsiatycz G, Antosik P, Shibli JA, Mozdziak P, Perek B, Krasiński Z, Kempisty B, Nowicki M. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int J Mol Sci 2020; 21:ijms21113790. [PMID: 32471255 PMCID: PMC7312564 DOI: 10.3390/ijms21113790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Correspondence:
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Łukasz Kruszyna
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland;
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
6
|
Su X, Weng S, Peng D. New Insights into Apolipoprotein A5 and the Modulation of Human Adipose-derived Mesenchymal Stem Cells Adipogenesis. Curr Mol Med 2020; 20:144-156. [PMID: 31560287 DOI: 10.2174/1566524019666190927155702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
Background:
The hallmark of obesity is the excessive accumulation of
triglyceride (TG) in adipose tissue. Apolipoprotein A5 (ApoA5) has been shown to
influence the prevalence and pathogenesis of obesity. However, the underlying
mechanisms remain to be clarified.
Methods:
Human adipose-derived mesenchymal stem cells (AMSCs) were treated with
600 ng/ml human recombinant ApoA5 protein. The effect of ApoA5 on intracellular TG
content and adipogenic related factors expression were determined. Furthermore, the
effect of ApoA5 on CIDE-C expression was also observed.
Results:
During the process of adipogenesis, ApoA5 treatment reduced the intracellular
accumulation of lipid droplets and the TG levels; meanwhile, ApoA5 down-regulated the
expression levels of adipogenic related factors, including CCAAT enhancer-binding
proteins α/β (C/EBPα/β), fatty acid synthetase (FAS), and fatty acid-binding protein 4
(FABP4). Furthermore, the suppression of adipogenesis by ApoA5 was mediated
through the inhibition of CIDE-C expression, an important factor which promotes the
process of adipogenesis. However, over-expressing intracellular CIDE-C could lead to
the loss-of-function of ApoA5 in inhibiting AMSCs adipogenesis.
Conclusions:
In conclusion, ApoA5 inhibits the adipogenic process of AMSCs through,
at least partly, down-regulating CIDE-C expression. The present study provides novel
mechanisms whereby ApoA5 prevents obesity via AMSCs in humans.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuwei Weng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|