1
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024; 25:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
2
|
Tizazu AM. Fasting and calorie restriction modulate age-associated immunosenescence and inflammaging. Aging Med (Milton) 2024; 7:499-509. [PMID: 39234195 PMCID: PMC11369340 DOI: 10.1002/agm2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a multifaceted process impacting cells, tissues, organs, and organ systems of the body. Like other systems, aging affects both the adaptive and the innate components of the immune system, a phenomenon known as immunosenescence. The deregulation of the immune system puts elderly individuals at higher risk of infection, lower response to vaccines, and increased incidence of cancer. In the Western world, overnutrition has increased the incidence of obesity (linked with chronic inflammation) which increases the risk of metabolic syndrome, cardiovascular disease, and cancer. Aging is also associated with inflammaging a sterile chronic inflammation that predisposes individuals to age-associated disease. Genetic manipulation of the nutrient-sensing pathway, fasting, and calorie restriction (CR) has been shown to increase the lifespan of model organisms. As well in humans, fasting and CR have also been shown to improve different health parameters. Yet the direct effect of fasting and CR on the aging immune system needs to be further explored. Identifying the effect of fasting and CR on the immune system and how it modulates different parameters of immunosenescence could be important in designing pharmacological or nutritional interventions that slow or revert immunosenescence and strengthen the immune system of elderly individuals. Furthermore, clinical intervention can also be planned, by incorporating fasting or CR with medication, chemotherapy, and vaccination regimes. This review discusses age-associated changes in the immune system and how these changes are modified by fasting and CR which add information on interventions that promote healthy aging and longevity in the growing aging population.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Immunology, and Parasitology, School of MedicineSt. Paul's Hospital Millennium Medical CollegeAddis AbabaEthiopia
| |
Collapse
|
3
|
Wang L, Wang R, Yu X, Shi Y, Li S, Yuan Y. Effects of Calorie Restriction and Fasting on Macrophage: Potential Impact on Disease Outcomes? Mol Nutr Food Res 2023; 67:e2300380. [PMID: 37771201 DOI: 10.1002/mnfr.202300380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Energy restriction, including calorie restriction and fasting, has garnered significant attention for its potential therapeutic effects on a range of chronic diseases (such as diabetes, obesity, and cancer) and aging. Since macrophages are critical players in many diseases, their response to energy restriction may impact disease outcomes. However, the diverse metabolic patterns and functions of macrophages can lead to variability in the effects of energy restriction on macrophages across different tissues and disease states. This review outlines the effects of energy restriction on macrophages in several diseases, offering valuable guidance for future studies and insights into the clinical applications of calorie restriction and fasting.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| |
Collapse
|
4
|
Sergeeva E, Ruksha T, Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int J Mol Sci 2023; 24:ijms24119601. [PMID: 37298551 DOI: 10.3390/ijms24119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Collapse
Affiliation(s)
- Ekaterina Sergeeva
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Yulia Fefelova
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| |
Collapse
|
5
|
Abstract
Respiratory diseases, including lung cancer, pulmonary fibrosis, asthma, and the recently emerging fatal coronavirus disease-19 (COVID-19), are the leading causes of illness and death worldwide. The increasing incidence and mortality rates have attracted much attention to the prevention and treatment of these conditions. Lipoic acid (LA), a naturally occurring organosulfur compound, is not only essential for mitochondrial aerobic metabolism but also shows therapeutic potential via certain pharmacological effects (e.g., antioxidative and anti-inflammatory effects). In recent years, accumulating evidence (animal experiments and in vitro studies) has suggested a role of LA in ameliorating many respiratory diseases (e.g., lung cancer, fibrosis, asthma, acute lung injury and smoking-induced lung injury). Therefore, this review will provide an overview of the present investigational evidence on the therapeutic effect of LA against respiratory diseases in vitro and in vivo. We also summarize the corresponding mechanisms of action to inspire further basic studies and clinical trials to confirm the health benefits of LA in the context of respiratory diseases.
Collapse
Key Words
- lipoic acid
- respiratory diseases
- antioxidation
- anti-inflammatory effects
- mechanism of action
- akt, protein kinase b;
- aif, apoptosis-inducing factor;
- ampk, adenosine monophosphate-activated protein kinase;
- α-sma, alpha-smooth muscle actin;
- bcl-2, b-cell lymphoma 2;
- cox-2, cyclooxygenase-2;
- dna, deoxyribonucleic acid;
- er, endoplasmic reticulum;
- erk, extracellular-regulated kinase;
- egfr, epidermal growth factor receptor;
- gr, glutathione reductase;
- gpx, glutathione peroxidase;
- grb2, growth factor receptor-bound protein 2;
- gsh, reduced glutathione;
- gssg, oxidized glutathione;
- hif, hypoxia-inducible factor;
- ho-1, heme oxygenase 1;
- keap-1, kelch-like ech-associated protein 1;
- ig-e, immunoglobulin e;
- il, interleukin
- oct-4, octamer-binding transcription factor 4;
- parp-1, poly (adp-ribose) polymerase-1;
- pdk1, phosphoinositide-dependent kinase-1;
- pdh, pyruvate dehydrogenase;
- pi3k, phosphoinositide 3-kinase;
- pge2, prostaglandin e2;
- pgc1α, peroxisome proliferator-activated receptor‑γ co-activator 1α;
- p70s6k, p70 ribosomal protein s6 kinase;
- fak, focal adhesion kinase;
- sod, superoxide dismutase;
- mapk, mitogen-activated protein kinase;
- mtor, mammalian target of rapamycin;
- nf-κb, nuclear factor-kappa b;
- no, nitric oxide;
- nox-4, nicotinamide adenine dinucleotide phosphate (nadph) oxidase-4;
- nqo1, nadph quinone oxidoreductase 1;
- tnf-α, tumor necrosis factor-α;
- tgf-β1, transforming growth factor beta-1;
- vegf, vascular endothelial growth factor;
Collapse
|
6
|
Pomatto-Watson LCD, Bodogai M, Carpenter M, Chowdhury D, Krishna P, Ng S, Bosompra O, Kato J, Wong S, Reyes-Sepulveda C, Bernier M, Price NL, Biragyn A, de Cabo R. Replenishment of myeloid-derived suppressor cells (MDSCs) overrides CR-mediated protection against tumor growth in a murine model of triple-negative breast cancer. GeroScience 2022; 44:2471-2490. [PMID: 35996062 PMCID: PMC9768076 DOI: 10.1007/s11357-022-00635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) is the leading non-pharmacological intervention to delay induced and spontaneous tumors in pre-clinical models. These effects of CR are largely attributed to canonical inhibition of pro-growth pathways. However, our recent data suggest that CR impairs primary tumor growth and cancer progression in the murine 4T1 model of triple negative breast cancer (TNBC), at least in part, through reduced frequency of the myeloid-derived suppressor cells (MDSC). In the present study, we sought to determine whether injection of excess MDSCs could block regression in 4T1 tumor growth and metastatic spread in BALB/cJ female mice undergoing daily CR. Our findings show that MDSC injection impeded CR-mediated protection against tumor growth without increasing lung metastatic burden. Overall, these results reveal that CR can slow cancer progression by affecting immune suppressive cells.Impact statement: Inoculation of MDSCs from donor mice effectively impedes the ability of calorie restriction to protect against primary tumor growth without impacting lung metastatic burden in recipient animals.
Collapse
Affiliation(s)
- Laura C D Pomatto-Watson
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Melissa Carpenter
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dolly Chowdhury
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Priya Krishna
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sandy Ng
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Oye Bosompra
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah Wong
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Reyes-Sepulveda
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
8
|
Vidoni C, Ferraresi A, Esposito A, Maheshwari C, Dhanasekaran DN, Mollace V, Isidoro C. Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. J Cancer Prev 2021; 26:224-236. [PMID: 35047448 PMCID: PMC8749320 DOI: 10.15430/jcp.2021.26.4.224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most frequently diagnosed diseases, and despite the continuous efforts in searching for new and more effective treatments, its morbidity and mortality remain a significant health problem worldwide. Calorie restriction, a dietary manipulation that consists in a reduction of the calorie intake, is gaining attention as a potential adjuvant intervention for preventing and/or fighting cancer. Several forms of energy reduction intake, which includes caloric restriction tout-court, dietary restrictions, and intermittent fasting, are being explored for their ability to prevent or slow down cancer progression. Additionally, another anti-cancer approach being under investigation relies on the use of nutraceuticals known as “Caloric Restriction Mimetics” that can provide caloric restriction-mediated benefits without subjecting the patients to a strict diet. Preclinical in vitro and in vivo studies consistently show that diet modifiers reducing the calorie have impact on tumor microenvironment and cancer metabolism, resulting in reduced growth and progression of cancer. Preliminary clinical studies show that patients subjected to a reduced nutrient/energy intake experience improved outcomes from chemo- and radiotherapy while better tolerating the side effects. Here, we review the state of the art on the therapeutic potential of calorie restriction and of caloric restriction mimetics in preventing or retarding tumor development by modulating a subset of cellular processes. The most recent clinical progresses with caloric restriction mimetics in the clinical practice are also discussed.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vincenzo Mollace
- Department of Health Sciences, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
9
|
Qu N, Meng Y, Handley MK, Wang C, Shan F. Preclinical and clinical studies into the bioactivity of low-dose naltrexone (LDN) for oncotherapy. Int Immunopharmacol 2021; 96:107714. [PMID: 33989971 DOI: 10.1016/j.intimp.2021.107714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Naltrexone (NTX) is a nonspecific opioid antagonist that exerts pharmacological effects on the opioid axis by blocking opioid receptors distributed in cytoplastic and nuclear regions. NTX has been used in opioid use disorder (OUD), immune-associated diseases, alcoholism, obesity, and chronic pain for decades. However, low-dose naltrexone (LDN) also exhibits remarkable inhibition of DNA synthesis, viability, and other functions in numerous cancers and is involved in immune remodeling against tumor invasion and chemical toxicity. The potential anticancer activity of LDN is a focus of basic research. Herein, we summarize the associated studies on LDN oncotherapy to highlight the potential mechanisms and prospective clinical applications.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Mike K Handley
- Cytocom, Inc., 2537 Research Blvd. Suite 201, FortCollins, CO 80526, USA
| | - Chunyan Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, China.
| |
Collapse
|
10
|
Bianchi F, Sommariva M, Le Noci V, Camelliti S, Gagliano N, Giussani M, Balsari A, Tagliabue E, Sfondrini L. Aerosol 1,25-dihydroxyvitamin D3 supplementation: A strategy to boost anti-tumor innate immune activity. PLoS One 2021; 16:e0248789. [PMID: 33780475 PMCID: PMC8007042 DOI: 10.1371/journal.pone.0248789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] plays a role in calcium homeostasis but can also exert immunomodulatory effects. In lungs, characterized by a particular immunosuppressive environment primarily due to the presence of alveolar macrophages (AM), 1,25(OH)2D3 has been shown to favor the immune response against pathogens. Here, we explored the ability of aerosolized 1,25(OH)2D3 to locally promote an anti-tumor phenotype in alveolar macrophages (AM) in the treatment of lung metastases. METHODS Cytotoxicity assay has been used to assess the capability of AM, in vitro treated of not with 1,25(OH)2D3, to stimulate NK cells. Sulforhodamine B (SRB) assay has been used to assess the effect of 1,25(OH)2D3 on MC-38 and B16 tumor cells in vitro growth. 1,25(OH)2D3 was aerosolized in immunocompetent mouse models to evaluate the effect of local administration of 1,25(OH)2D3 on in vivo growth of MC-38 and B16 tumor cells within lungs and on infiltrating immune cells. RESULTS In vitro incubation of naïve AM with 1,25(OH)2D3 improved their ability to stimulate NK cell cytotoxicity. In vivo aerosolized 1,25(OH)2D3 significantly reduced the metastatic growth of MC-38 colon carcinoma, a tumor histotype that frequently metastasizes to lung in human. Immune infiltrate obtained from digested lungs of 1,25(OH)2D3-treated mice bearing MC-38 metastases revealed an increased expression of MHCII and CD80 on AM and an up-modulation of CD69 expression on effector cells that paralleled a strong increased ability of these cells to kill MC-38 tumor in vitro. CONCLUSIONS Together, these data show that aerosol delivery can represent a feasible and novel approach to supplement 1,25(OH)2D3 directly to the lungs promoting the activation of local immunity against cancer.
Collapse
Affiliation(s)
- Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Marta Giussani
- Laboratory Medicine Unit, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev 2021; 169:40-50. [PMID: 33301821 DOI: 10.1016/j.addr.2020.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is quintessential for the maintenance of cellular homeostasis in all eukaryotic cells, explaining why both normal and malignant cells benefit from proficient autophagic responses. Moreover, autophagy is intimately involved in the immunological control of malignant transformation, tumor progression and response to therapy. However, the net effect of autophagy activation or inhibition on the natural growth or therapeutic response of tumors evolving in immunocompetent hosts exhibits a considerable degree of context dependency. Here, we discuss the complex cross-talk between autophagy and immuno-oncology as delineated by genetic and pharmacological approaches in mouse models of cancer.
Collapse
|
12
|
Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and D-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging. Biogerontology 2020; 22:35-47. [PMID: 32979155 DOI: 10.1007/s10522-020-09900-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Spermidine (SPD) is a natural polyamine present in all living organisms and is involved in the maintenance of cellular homeostasis by inducing autophagy in different model organisms. Its role as a caloric restriction mimetic (CRM) is still being investigated. We have undertaken this study to investigate whether SPD, acting as a CRM, can confer neuroprotection in D-galactose induced accelerated senescence model rat and naturally aged rats through modulation of autophagy and inflammation. Young male rats (4 months), D-gal induced (500 mg/kg b.w., subcutaneously) aging and naturally aged (22 months) male rats were supplemented with SPD (10 mg/kg b.w., orally) for 6 weeks. Standard protocols were employed to measure prooxidants, antioxidants, apoptotic cell death and electron transport chain complexes in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy and inflammatory marker genes. Our data demonstrate that SPD significantly (p ≤ 0.05) decreased the level of pro-oxidants and increased the level of antioxidants. SPD supplementation also augmented the activities of electron transport chain complexes in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. RT-PCR data revealed that SPD up-regulated the expression of autophagy genes (ATG-3, Beclin-1, ULK-1 and LC3B) and down-regulated the expression of the inflammatory gene (IL-6) in aging brain. Our results provide first line of evidence that SPD provides neuroprotection against aging-induced oxidative stress by regulating autophagy, antioxidants level and also reduces neuroinflammation. These results suggest that SPD may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
|
13
|
Xu Y, Rogers CJ. Impact of physical activity and energy restriction on immune regulation of cancer. Transl Cancer Res 2020; 9:5700-5731. [PMID: 35117934 PMCID: PMC8798226 DOI: 10.21037/tcr.2020.03.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/04/2020] [Indexed: 11/06/2022]
Abstract
Cancer is a major public health issue worldwide. Lifestyle factors, such as body weight and physical activity (PA), significantly impact cancer risk and progression. There is strong evidence that PA reduces and obesity increases risk and mortality from numerous cancer types. Energy restriction (ER) in non-obese hosts significantly reduces tumor incidence in a variety of preclinical models, and reduces body weight and cardiometabolic risk factors in humans. Emerging data suggest that PA- and ER-induced changes in inflammatory and immune mediators may contribute to the cancer prevention effects of these interventions. A systematic literature search was conducted to identify studies that evaluated the impact of PA and ER on tumor and immune outcomes in humans and animal models. A total of 97 eligible studies were identified (68 studies reporting PA interventions and 30 studies reporting ER interventions). Thirty-one studies investigated the effect of PA on cancer immune outcomes using preclinical cancer models of breast (n=17, 55%), gastrointestinal (n=6, 19%), melanoma (n=4, 13%), and several other cancer types (n=4, 13%). Despite the heterogeneity in study designs, the majority of studies (n=23, 74%) reported positive effects of PA on tumor outcomes. Thirty-seven clinical studies investigated the effect of PA on cancer immune outcomes. None reported tumor outcomes, thus only immune outcomes were evaluated in these studies. PA studies were conducted in patients with breast (n=22, 59%), gastrointestinal (n=5, 14%), prostate (n=2, 5%), esophageal (n=1, 3%), lung (n=1, 3%) cancer, leukemia (n=1, 3%), or mixed cancer types (n=5, 14%). Twenty-two studies investigated the effect of ER interventions on cancer immune outcomes using preclinical cancer models including breast (n=5, 23%), gastrointestinal (n=5, 23%), lung (n=2, 9%), liver (n=2, 9%), pancreatic (n=2, 9%), and several other cancer types (n=6, 27%). Positive effects of ER on tumor outcomes were reported in 21 of 22 studies. Six clinical studies investigated the effect of ER (in combination with PA) on tumor immune outcomes in cancer patients with overweight or obesity. Five were conducted in breast cancer patients, and one recruited patients of a mix of cancer types. A wide range of immunological parameters including immune cell phenotype and function, cytokines, and other immune and inflammatory markers were assessed in multiple tissue compartments (blood, spleen, lymph nodes and tumor) in the included studies. Results from preclinical and clinical studies suggest that both PA and ER exert heterogeneous effects on circulating factors and systemic immune responses. PA + ER alters the gene expression profile and immune infiltrates in the tumor which may result in a reduction in immune suppressive factors. However, additional studies are needed to better understand the effect of PA and/or ER on immunomodulation, particularly in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Yitong Xu
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
14
|
Caloric restriction attenuates C57BL/6 J mouse lung injury and extra-pulmonary toxicity induced by real ambient particulate matter exposure. Part Fibre Toxicol 2020; 17:22. [PMID: 32503629 PMCID: PMC7275546 DOI: 10.1186/s12989-020-00354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Caloric restriction (CR) is known to improve health and extend lifespan in human beings. The effects of CR on adverse health outcomes in response to particulate matter (PM) exposure and the underlying mechanisms have yet to be defined. Results Male C57BL/6 J mice were fed with a CR diet or ad libitum (AL) and exposed to PM for 4 weeks in a real-ambient PM exposure system located at Shijiazhuang, China, with a daily mean concentration (95.77 μg/m3) of PM2.5. Compared to AL-fed mice, CR-fed mice showed attenuated PM-induced pulmonary injury and extra-pulmonary toxicity characterized by reduction in oxidative stress, DNA damage and inflammation. RNA sequence analysis revealed that several pulmonary pathways that were involved in production of reactive oxygen species (ROS), cytokine production, and inflammatory cell activation were inactivated, while those mediating antioxidant generation and DNA repair were activated in CR-fed mice upon PM exposure. In addition, transcriptome analysis of murine livers revealed that CR led to induction of xenobiotic metabolism and detoxification pathways, corroborated by increased levels of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and decreased cytotoxicity measured in an ex vivo assay. Conclusion These novel results demonstrate, for the first time, that CR in mice confers resistance against pulmonary injuries and extra-pulmonary toxicity induced by PM exposure. CR led to activation of xenobiotic metabolism and enhanced detoxification of PM-bound chemicals. These findings provide evidence that dietary intervention may afford therapeutic means to reduce the health risk associated with PM exposure.
Collapse
|
15
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
16
|
Andreeva-Gateva P, Traikov L, Sabit Z, Bakalov D, Tafradjiiska-Hadjiolova R. Antioxidant Effect of Alpha-Lipoic Acid in 6-Hydroxydopamine Unilateral Intrastriatal Injected Rats. Antioxidants (Basel) 2020; 9:E122. [PMID: 32024109 PMCID: PMC7070677 DOI: 10.3390/antiox9020122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The toxin 6-hydroxydopamine (6-OHDA) is a highly oxidizable dopamine (DA) analog that is widely used for reproducing several cell processes identified in Parkinson's disease (PD). Due to the close similarity of its neurotoxic mechanism to those of DA, it is suitable as a model for testing the effects of potentially neuroprotective drugs. This study aimed to evaluate the effect of alpha-lipoic acid (LA) on brain oxidative stress (OS) in unilateral intrastriatal (6-OHDA) injected rats. Forty male Wistar rats, four months old (220-260 g), were evaluated. Half of them received LA (35 mg/kg i.p.) from the start to the end of the experiment. On day 2 of the trial, ten LA-supplemented rats and ten non-LA-supplemented rats were subjected to the apomorphine test. Brain homogenates were evaluated for thiobarbituric acid-reactive substances (TBARS) and glutathione peroxidase (GPx) activity. The same evaluation procedures were repeated on day 14 with the remaining animals. An increased TBARS level and decreased GPx activity, suggestive for OS, were recorded in homogenates on day 14 vs. day 2 of the experiment in the 6-OHDA treated rats. The simultaneous application of LA mitigated these changes. Our study demonstrates that the low dose of LA could be of value for decreasing the OS of the neurotoxic 6-OHDA, supporting the need for further studies of the benefit of LA treatment in PD.
Collapse
Affiliation(s)
- Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Lubomir Traikov
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Pathophysiology, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|