1
|
Malinovskaya EM, Shmarina GV, Ershova ES, Kameneva LV, Veiko NN, Veiko VP, Konkova MS, Bobrovsky PA, Kozhina EA, Umriukhin PE, Lazarev VN, Asanov AY, Rozhnova TM, Nikolenko VN, Sinelnikov MY, Kostyuk SV. GC-Reach DNA Fragments Reduce the Expression of Survival Genes in MCF7 Breast Carcinoma Cells: TLR9/MyD88/NF-κB Signaling Pathway as a Potential Target for Cancer Therapy. Bull Exp Biol Med 2025; 178:467-472. [PMID: 40138110 DOI: 10.1007/s10517-025-06357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 03/29/2025]
Abstract
Cell-free DNA (cfDNA) attracts increasing attention not only as a diagnostic tool for tumor resistance to cytostatic therapy, but also as an active participant of the tumor process. GC-rich DNA accumulates in the cfDNA pool and stimulates TLR9/MyD88/NF-κB signaling, thereby increasing the expression of genes responsible for viability of cancer cells. We studied the effect of GC-DNA on the transcriptional activity of survival genes in wild-type MCF7 cells (wt MCF7) and TLR9 gene knockout MCF7 cells (TLR9-/- MCF7). It was shown that, in contrast to wt MCF7 cell cultures, TLR9-/- MCF7 cells responded to stimulation with GC-DNA fragments by a decrease in the activity of TLR9/MyD88/NF-κB signaling cascade and a decline in survival gene expression. Our data indicate that TLR9/MyD88/NF-κB signaling cascade components may be considered as potential targets for cancer therapy.
Collapse
Affiliation(s)
| | - G V Shmarina
- Research Centre for Medical Genetics, Moscow, Russia
| | - E S Ershova
- Research Centre for Medical Genetics, Moscow, Russia
| | - L V Kameneva
- Research Centre for Medical Genetics, Moscow, Russia
| | - N N Veiko
- Research Centre for Medical Genetics, Moscow, Russia
| | - V P Veiko
- Research Centre for Medical Genetics, Moscow, Russia
| | - M S Konkova
- Research Centre for Medical Genetics, Moscow, Russia
| | - P A Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - E A Kozhina
- Research Centre for Medical Genetics, Moscow, Russia
| | - P E Umriukhin
- Research Centre for Medical Genetics, Moscow, Russia.
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| | - V N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A Y Asanov
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - T M Rozhnova
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V N Nikolenko
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - M Y Sinelnikov
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Kostyuk SV, Ershova ES, Martynov AV, Artyushin AV, Porokhovnik LN, Malinovskaya EM, Jestkova EM, Zakharova NV, Kostyuk GP, Izhevskaia VL, Kutsev SI, Veiko NN. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls-Part 2: Adaptive Response. Genes (Basel) 2022; 13:genes13122283. [PMID: 36553550 PMCID: PMC9777734 DOI: 10.3390/genes13122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta S. Ershova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Martynov
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Artyushin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Lev N. Porokhovnik
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
- Correspondence:
| | - Elena M. Malinovskaya
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta M. Jestkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia V. Zakharova
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - George P. Kostyuk
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - Vera L. Izhevskaia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Sergey I. Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia N. Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
3
|
Ershova ES, Shmarina GV, Porokhovnik LN, Zakharova NV, Kostyuk GP, Umriukhin PE, Kutsev SI, Sergeeva VA, Veiko NN, Kostyuk SV. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel) 2022; 13:genes13030551. [PMID: 35328103 PMCID: PMC8955124 DOI: 10.3390/genes13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes. After 1 h, 3 h, and 24 h of incubation, the expression of 6 protein genes responsible for cfDNA transport into the cell (EEA1 and HMGB1) and the recognition of cytosolic DNA (TLR9, AIM2, STING and RIG-I) was analyzed at the transcriptional (RT-qPCR) and protein level (flow cytometry and fluorescence microscopy). Additionally, we analyzed changes in the RNA amount of 32 genes (RT-qPCR), which had been previously associated with different cellular responses to cell-free DNA with different characteristics. Adding sz-cfDNA and hc-cfDNA to the HSF medium in equal amounts (50 ng/mL) blocked endocytosis and stimulated TLR9 and STING gene expression while blocking RIG-I and AIM2 expression. Sz-cfDNA and hc-cfDNA, compared to gDNA, demonstrated much stronger stimulated transcription of genes that control cell proliferation, cytokine synthesis, apoptosis, autophagy, and mitochondrial biogenesis. No significant difference was observed in the response of the cells to sz-cfDNA and hc-cfDNA. Sz-cfDNA and hc-cfDNA showed similarly high biological activity towards HSFs, stimulating the gene activity of TLR9 and STING DNA sensor proteins and blocking the activity of the AIM2 protein gene. Since the sz-cfDNA content in the patients’ blood is several times higher than the hc-cfDNA content, sz-cfDNA may upregulate pro-inflammatory cytokines in schizophrenia.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Galina V. Shmarina
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Lev N. Porokhovnik
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Correspondence:
| | - Natalia V. Zakharova
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - George P. Kostyuk
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - Pavel E. Umriukhin
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Department of Physiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey I. Kutsev
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Vasilina A. Sergeeva
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Natalia N. Veiko
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Svetlana V. Kostyuk
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| |
Collapse
|
4
|
Ungerer V, Bronkhorst AJ, Van den Ackerveken P, Herzog M, Holdenrieder S. Serial profiling of cell-free DNA and nucleosome histone modifications in cell cultures. Sci Rep 2021; 11:9460. [PMID: 33947882 PMCID: PMC8096822 DOI: 10.1038/s41598-021-88866-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in basic research have unveiled several strategies for improving the sensitivity and specificity of cell-free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico-chemical properties of cfDNA towards the identification of better disease-defining features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifications with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three different cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non-cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High-resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo-nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute significantly to the pool of mono-nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profiling. Furthermore, since active steps are often taken to exclude longer oligo-nucleosomes from clinical biospecimens and subsequent assays this raises the question of whether important pathological information is lost.
Collapse
Affiliation(s)
- Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Abel J Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany
| | | | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Lazarettstraße 36, 80636, Munich, Germany.
| |
Collapse
|
5
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the isolation of cell-free DNA from cell culture supernatant. Tumour Biol 2020; 42:1010428320916314. [PMID: 32338581 DOI: 10.1177/1010428320916314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In vitro characterization of cell-free DNA using two-dimensional cell culture models is emerging as an important step toward an improved understanding of the physical and biological characteristics of cell-free DNA in human biology. However, precise measurement of the cell-free DNA in cell culture medium is highly dependent on the efficacy of the method used for DNA purification, and is often a juncture of experimental confusion. Therefore, in this study, we compared six commercially available cell-free DNA isolation kits for the recovery of cell-free DNA from the cell culture supernatant of a human bone cancer cell line (143B), including two magnetic bead-based manual kits, one automated magnetic bead-based extraction method, and three manual spin-column kits. Based on cell-free DNA quantitation and sizing, using the Qubit dsDNA HS assay and Bioanalyzer HS DNA assay, respectively, the different methods showed significant variability concerning recovery, reproducibility, and size discrimination. These findings highlight the importance of selecting a cell-free DNA extraction method that is appropriate for the aims of a study. For example, mutational analysis of cell-free DNA may be enhanced by a method that favors a high yield or is biased toward the isolation of short cell-free DNA fragments. In contrast, quantitative analysis of cell-free DNA in a comparative setting (e.g. measuring the fluctuation of cell-free DNA levels over time) may require the selection of a cell-free DNA isolation method that forgoes a high recovery for high reproducibility and minimal size bias.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
6
|
Ershova ES, Konkova MS, Malinovskaya EM, Kutsev SI, Veiko NN, Kostyuk SV. Noncanonical Functions of the Human Ribosomal Repeat. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Extracellular DNA Containing (dG)n Motifs Penetrates into MCF7 Breast Cancer Cells, Induces the Adaptive Response, and Can Be Expressed. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7853492. [PMID: 31781350 PMCID: PMC6874983 DOI: 10.1155/2019/7853492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Background Oxidized human DNA or plasmid DNAs containing human ribosomal genes can easily penetrate into the breast cancer cells MCF7 and stimulate the adaptive response induction. Plasmid DNA containing a CMV promoter, gene EGFP, and the insertion of the human ribosomal genes can be expressed. A hypothesis is proposed: these features of the ribosomal DNA are due to the presence of dGn motifs that are prone to oxidize. Methods Cells of MCF7 line were cultured with plasmids which contained a CMV promoter and gene of fluorescent protein EGFP. Genetic construction pEGFP-Gn contains pEGFP vector and a small insertion with dG11 and dG13 motifs that are inclined to oxidation. The accumulation of pEGFP and pEGFP-Gn in MCF7 (qPCR), the levels of ROS in the cells, the content of 8-oxodG in plasmids and cellular DNA (flow cytometry, immunoassay, and fluorescent microscopy), the expression of NOX4 and EGFP, the localization of NOX4 and EGFP in MCF7 (qPCR, flow cytometry, and fluorescent microscopy), and the levels of the cell DNA damage (comet assay) were analyzed. Results (dG)n insertions in the plasmid pEGFP increase the levels of ROS, the cell DNA oxidation and DNA damage, and the level of transfection of plasmid into the MCF7 cells. NOX4 participates in the oxidation of pEGFP-Gn and pEGFP. The expression of EGFP gene in MCF7 is significantly increased in case of pEGFP-Gn. Stimulation of ROS synthesis (H2O2 40 μM or 10 cGy IR) increases the level of expression of EGFP. Conclusions GC-rich DNA fragments containing dGn motifs that are inclined to oxidation penetrate into MCF7 cancer cells, stimulate the adaptive response, and can be expressed. This property of GC-rich cell-free DNA should be considered and/or could potentially be used in therapy of tumors.
Collapse
|
8
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol 2019; 41:1010428319866369. [DOI: 10.1177/1010428319866369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaining a better understanding of the biological properties of cell-free DNA constitutes an important step in the development of clinically meaningful cell-free DNA–based tests. Since the in vivo characterization of cell-free DNA is complicated by the immense heterogeneity of blood samples, an increasing number of in vitro cell culture experiments, which offer a greater level of control, are being conducted. However, cell culture studies are currently faced with three notable caveats. First, the concentration of cell-free DNA in vitro is relatively low. Second, the median amount and size of cell-free DNA in culture medium varies greatly between cell types. Third, the amount and size of cell-free DNA in the culture medium of a single cell line fluctuates over time. Although these are interesting findings, it can also be a great source of experimental confusion and emphasizes the importance of method optimization and standardization. Therefore, in this study, we compared five commonly used cell-free DNA quantification methods, including quantitative polymerase chain reaction, Qubit Double-Stranded DNA High Sensitivity assay, Quant-iT PicoGreen Assay, Bioanalyzer High Sensitivity DNA assay, and NanoDrop Onec. Analysis of the resulting data, along with an interpretation of theoretical values (i.e. the theoretical detection and quantification limits of the respective methods), enables the calculation of optimal conditions for several important preanalytical steps pertaining to each quantification method and different cell types, including the (1) time-point at which culture medium should be collected for cell-free DNA extraction, (2) amount of cell culture supernatant from which to isolate cell-free DNA, (3) volume of elution buffer, and (4) volume of cell-free DNA sample to use for quantification.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
9
|
Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1245749. [PMID: 31360293 PMCID: PMC6644271 DOI: 10.1155/2019/1245749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
The present study focuses on the investigation of the oxidized cell-free DNA (cfDNA) properties in several experimental models, including cultured cerebellum cells, peripheral blood lymphocytes (PBL), plasma, and hippocampus under an acute and chronic unpredictable stress model in rats. Firstly, our study shows that Spectrum Green fluorescence-labeled oxidized cfDNA fragments were transferred into the cytoplasm of 80% of the cerebellum culture cells; meanwhile, the nonoxidized cfDNA fragments do not pass into the cells. Oxidized cfDNA stimulates the antioxidant mechanisms and induction of transcription factor NRF2 expression, followed by an activation of NRF2 signaling pathway genes-rise of Nrf2 and Hmox1 gene expression and consequently NRF2 protein synthesis. Secondly, we showed that stress increases plasma cfDNA concentration in rats corresponding with the duration of the stress exposure. At the same time, our study did not reveal any significant changes of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) level in PBL of rats under acute or chronic stress, probably due to the significantly increased Nrf2 expression, that we found in such conditions. 8-oxodG is one of the most reliable markers of DNA oxidation. We also found an increased level of 8-oxodG in the hippocampal homogenates and hippocampal dentate gyrus in rats subjected to acute and chronic stress. Taken together, our data shows that oxidized cfDNA may play a significant role in systemic and neuronal physiological mechanisms of stress and adaptation.
Collapse
|
10
|
Malinovskaya EM, Ershova ES, Okorokova NA, Veiko VP, Konkova MS, Kozhina EA, Savinova EA, Porokhovnik LN, Kutsev SI, Veiko NN, Kostyuk SV. Ribosomal DNA as DAMPs Signal for MCF7 Cancer Cells. Front Oncol 2019; 9:445. [PMID: 31205871 PMCID: PMC6552851 DOI: 10.3389/fonc.2019.00445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: The cell free ribosomal DNA (cf-rDNA) is accrued in the total pool of cell free DNA (cfDNA) in some non-cancer diseases and demonstrates DAMPs characteristics. The major research questions: (1) How does cell free rDNA content change in breast cancer; (2) What type of response in the MCF7 breast cancer cells is caused by cf-rDNA; and (3) What type of DNA sensors (TLR9 or AIM2) is stimulated in MCF7 in response to the action of cf-rDNA? Materials and Methods: CfDNA and gDNA were isolated from the blood plasma and the cells derived from 38 breast cancer patients and 20 healthy female controls. The rDNA content in DNA was determined using non-radioactive quantitative hybridization. In order to explore the rDNA influence on MCF7 breast cancer cells, the model constructs (GC-DNAs) were applied: pBR322-rDNA plasmid (rDNA inset 5836 bp long) and pBR322 vector. ROS generation, DNA damage, cell cycle, expression of TLR9, AIM2, NF-kB, STAT3, and RNA for 44 genes affecting the cancer cell viability were evaluated. The methods used: RT-qPCR, fluorescent microscopy, immunoassay, flow cytometry, and siRNA technology. Results: The ratio R = cf-rDNA/g-rDNA for the cases was higher than for the controls (median 3.4 vs. 0.8, p < 10−8). In MCF7, GC-DNAs induce a ROS burst, DNA damage response, and augmentation of NF-kB and STAT3 activity. The number of the apoptotic cells decreases, while the number of cells with an instable genome (G2/M– arrest, micronuclei) increase. Expression of anti-apoptotic genes (BCL2, BCL2A1, BCL2L1, BIRC3, MDM2) is elevated, while expression of pro-apoptotic genes (BAX, BID, BAD, PMAIP1, BBC3) is lowered. The cells response for pBR322-rDNA is much more intense and develops much faster, than response for pBR322, and is realized through activation of TLR9- MyD88 - NF-kB- signaling. This difference in response speed is owing to the heightened oxidability of pBR322-rDNA and better ability to penetrate the cell. Induction of TLR9 expression in MCF7 is followed by blocking AIM2 expression. Conclusion: (1) Ribosomal DNA accumulates in cfDNA of breast cancer patients; (2) Cell free rDNA induce DNA damage response and stimulates cells survival, including cells with an instable genome; (3) Cell free rDNA triggers TLR9- MyD88- NF-kB- signaling, with significantly repressing the expression of AIM2.
Collapse
Affiliation(s)
| | | | - Natalya A Okorokova
- Biotechnology Research Center, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Veiko
- Biotechnology Research Center, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Nataly N Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | | |
Collapse
|