1
|
Nevado-Sánchez E, Rodríguez-Díaz M, Núñez-Rodríguez S, Bueno-de la Fuente A, de la Fuente-Anuncibay R, Villar-Suárez V, González-Bernal JJ, Labrador J. Effectiveness of Stem Cell Secretomes in the Regeneration and Functional Recovery of Severed Nerves in Patients with Nerve Injuries: A Systematic Review. Cells 2025; 14:492. [PMID: 40214446 PMCID: PMC11987723 DOI: 10.3390/cells14070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The regenerative potential of mesenchymal stem cell (MSC) secretomes in peripheral nerve injuries warrants rigorous evaluation. This systematic review analyzes their effectiveness in preclinical models of neurotmesis, a complete transection of a nerve. Neurophysiological recovery was assessed through nerve conduction velocity (NCV), a measure of the speed at which electrical impulses travel along a nerve. Following PRISMA guidelines, a systematic search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect (last search July 2024). From 640 initially identified studies, 13 met inclusion criteria, encompassing 514 animals (rats). experimental designs published since 2014 in English or Spanish, focusing on MSC secretomes for nerve regeneration. Exclusion criteria included reviews, case reports, and incomplete data. The risk of bias was assessed using Joanna Briggs Institute tools. Results were synthesized narratively, focusing on functional and structural outcomes. The included studies employed various MSC sources, including adipose tissue, olfactory mucosa, and umbilical cord. Nine studies reported enhanced SFI, favoring secretome-treated groups over controls (mean difference +20.5%, p < 0.01). Seven studies documented increased NCV, with up to 35% higher conduction velocities in treated groups (p < 0.05). Histological outcomes reported in 12 studies showed increased axonal diameter (+25%, p < 0.01), myelin sheath thickness (+30%, p < 0.05), and Schwann cell proliferation. Limitations of the included evidence include methodological heterogeneity and variability in outcome measurement tools. MSC-derived secretomes demonstrate potential as advanced therapeutic strategies for nerve injuries. Personalized approaches considering injury type and clinical context are essential for optimizing outcomes.
Collapse
Affiliation(s)
- Endika Nevado-Sánchez
- Reconstructive and Aesthetic Plastic Surgery Service, Hospital Universitario de Burgos, 09006 Burgos, Spain;
| | | | | | | | | | - Vega Villar-Suárez
- Department of Surgery, Medicine and Veterinary Anatomy, Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana, University of León, León 24071, Spain;
| | | | - Jorge Labrador
- Research Unit, Hospital Universitario de Burgos, 09006 Burgos, Spain;
| |
Collapse
|
2
|
Hamad-Alrashid H, Muntión S, Sánchez-Guijo F, Borrajo-Sánchez J, Parreño-Manchado F, García-Cenador MB, García-Criado FJ. Bone Regeneration with Dental Pulp Stem Cells in an Experimental Model. J Pers Med 2024; 14:1075. [PMID: 39590567 PMCID: PMC11595977 DOI: 10.3390/jpm14111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The therapeutic approach to bone mass loss and bone's limited self-regeneration is a major focus of research, emphasizing new biomaterials and cell therapy. Tissue bioengineering emerges as a potential alternative to conventional treatments. In this study, an experimental model of a critical bone lesion in rats was used to investigate bone regeneration by treating the defect with biomaterials Evolution® and Gen-Os® (OsteoBiol®, Turín, Italy), with or without mesenchymal stromal cells from dental pulp (DP-MSCs). METHODS Forty-six adult male Wistar rats were subjected to a 5-mm critical bone defect in the right mandible, which does not regenerate without intervention. The rats were randomly assigned to a Simulated Group, Control Group, or two Study Groups (using Evolution®, Gen-Os®, and DP-MSCs). The specimens were euthanized at three or six months, and radiological, histological, and ELISA tests were conducted to assess bone regeneration. RESULTS The radiological results showed that the DP-MSC group achieved uniform radiopacity and continuity in the bone edge, with near-complete structural defect restitution. Histologically, full bone regeneration was observed, with well-organized, vascularized lamellar bone and no lesion edges. These findings were supported by increases in endoglin, transforming growth factor-beta 1 (TGF-β1), protocollagen, parathormone, and calcitonin, indicating a conducive environment for bone regeneration. CONCLUSIONS The use of DP-MSCs combined with biomaterials with appropriate three-dimensional matrices is a promising therapeutic option for further exploration.
Collapse
Affiliation(s)
- Haifa Hamad-Alrashid
- Doctoral School “Studii Salamantini”, University of Salamanca, 37008 Salamanca, Spain;
| | - Sandra Muntión
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
| | - Fermín Sánchez-Guijo
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
- Hematology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Javier Borrajo-Sánchez
- Department of Biomedical and Diagnostic Sciences, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - Felipe Parreño-Manchado
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
- Coordinator of the Esophagogastric Surgery and Obesity Unit, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - M. Begoña García-Cenador
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - F. Javier García-Criado
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
3
|
Drewry MD, Shi D, Dailey MT, Rothermund K, Trbojevic S, Almarza AJ, Cui XT, Syed-Picard FN. Enhancing facial nerve regeneration with scaffold-free conduits engineered using dental pulp stem cells and their endogenous, aligned extracellular matrix. J Neural Eng 2024; 21:056015. [PMID: 39197480 PMCID: PMC11406051 DOI: 10.1088/1741-2552/ad749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Objective. Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated.Approach. Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues.Main results. In vitroanalyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. Significance. This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.
Collapse
Affiliation(s)
- Michelle D Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Delin Shi
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matthew T Dailey
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sara Trbojevic
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alejandro J Almarza
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xinyan T Cui
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Fatima N Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
4
|
Al-Hadi MAA. Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study. BDJ Open 2024; 10:21. [PMID: 38480735 PMCID: PMC10937720 DOI: 10.1038/s41405-024-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Bone diseases have a profound global impact, especially when the body's innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. AIMS This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. MATERIALS AND METHODS The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. RESULTS The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. CONCLUSION The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.
Collapse
Affiliation(s)
- Mona Abdulrahman Abdullah Al-Hadi
- Faculty of Dentistry, Airlangga University, Surabaya, Indonesia.
- Faculty of Dentistry, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
5
|
Santilli F, Fabrizi J, Santacroce C, Caissutti D, Spinello Z, Candelise N, Lancia L, Pulcini F, Delle Monache S, Mattei V. Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders. Stem Cell Rev Rep 2024; 20:159-174. [PMID: 37962698 PMCID: PMC10799818 DOI: 10.1007/s12015-023-10652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Jessica Fabrizi
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 29900161, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| |
Collapse
|
6
|
Mohebichamkhorami F, Niknam Z, Zali H, Mostafavi E. Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair. Stem Cell Rev Rep 2023; 19:2709-2723. [PMID: 37733198 DOI: 10.1007/s12015-023-10626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Food Science & Technology, University of California, Davis, CA, 95616, USA
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
8
|
Mohebichamkhorami F, Niknam Z, Khoramjouy M, Heidarli E, Ghasemi R, Hosseinzadeh S, Mohseni SS, Hajikarim-Hamedani A, Heidari A, Ghane Y, Mahmoudifard M, Zali H, Faizi M. Brain Homogenate of a Rat Model of Alzheimer's Disease Modifies the Secretome of 3D Cultured Periodontal Ligament Stem Cells: A Potential Neuroregenerative Therapy. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133668. [PMID: 36896321 PMCID: PMC9990517 DOI: 10.5812/ijpr-133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ranjbar E, Tavakol Afshari J, KhajaviRad A, Ebrahimzadeh-Bideskan A, Shafieian R. Insights into the protective capacity of human dental pulp stem cells and its secretome in cisplatin-induced nephrotoxicity: effects on oxidative stress and histological changes. J Basic Clin Physiol Pharmacol 2022; 34:349-356. [PMID: 36201655 DOI: 10.1515/jbcpp-2022-0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute renal injury (AKI) is a major limiting factor for cisplatin administration. Recent evidence suggests the potential contribution of mesenchymal stem cells (MSCs) to rehabilitation from several disorders via both direct and indirect routes. Thus, the present study aimed, for the first time, to explore and compare the reno-protective potential of human dental pulp-derived stem cells (hDPSCs) vs. hDPSC-conditioned medium (hDPSC-CM) in recovery of impaired kidney tissues in a rat animal model of cisplatin-induced AKI. METHODS AKI was induced via cisplatin injection (n=36). One day after, 24 rats were treated with either hDPSCs or hDPSC-CM (n=12). An extra set of rats (n=12) served as sham group. On days 2 or 7 (n=6), rats were humanly sacrificed for further analysis. Renal injury was explored via measuring serum creatinine and BUN. Renal level of oxidative stress was assessed by determining malondialdehyde, and enzymatic activities of superoxide dismutase and catalase. Renal histopathological changes were scored for comparison among different experimental groups. RESULTS A single dose of cisplatin resulted in considerable renal dysfunction and oxidative stress. Treatment with hDPSCs or hDPSC-CM resulted in significantly restored renal function, reduced level of oxidative stress, and improved histopathological manifestations. Furthermore, as compared to hDPSC-CM, administration of hDPSCs led to superior results in AKI-induced animals. CONCLUSIONS The current study described the first comparative evidence of reno-protective potential of hDPSCs and their CM against cisplatin-induced nephrotoxicity in an AKI rat model, proposing them as useful adjunctive therapy in AKI. Yet, future explorations are still needed.
Collapse
Affiliation(s)
- Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl KhajaviRad
- Department of Physiology and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Mohebichamkhorami F, Fattahi R, Niknam Z, Aliashrafi M, Khakpour Naeimi S, Gilanchi S, Zali H. Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Res Ther 2022; 13:273. [PMID: 35729595 PMCID: PMC9210648 DOI: 10.1186/s13287-022-02942-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The damaged neuronal cells of adult mammalian lack the regenerative ability to replace the neuronal connections. Periodontal ligament stem cells (PDLSCs) are the promising source for neuroregenerative applications that can improve the injured microenvironment of the damaged neural system. They provide neuronal progenitors and neurotrophic, anti-apoptotic and anti-inflammatory factors. In this study, we aimed to comprehensively explore the various neuronal differentiation potentials of PDLSCs for application in neural regeneration therapy. MAIN TEXT PDLSCs have superior potential to differentiate into various neural-like cells through a dedifferentiation stage followed by differentiation process without need for cell division. Diverse combination of nutritional factors can be used to induce the PDLSCs toward neural lineage. PDLSCs when coupled with biomaterials could have significant implications for neural tissue repair. PDLSCs can be a new clinical research target for Alzheimer's disease treatment, multiple sclerosis and cerebral ischemia. Moreover, PDLSCs have beneficial effects on retinal ganglion cell regeneration and photoreceptor survival. PDLSCs can be a great source for the repair of injured peripheral nerve through the expression of several neural growth factors and differentiation into Schwann cells. CONCLUSION In conclusion, these cells are an appealing source for utilizing in clinical treatment of the neuropathological disorders. Although significant in vitro and in vivo investigations were carried out in order for neural differentiation evaluation of these cells into diverse types of neurons, more preclinical and clinical studies are needed to elucidate their therapeutic potential for neural diseases.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
| | | | - Samira Gilanchi
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Karimi-Haghighi S, Chavoshinezhad S, Safari A, Razeghian-Jahromi I, Jamhiri I, Khodabandeh Z, Khajeh S, Zare S, Borhani-Haghighi A, Dianatpour M, Pandamooz S, Salehi MS. Preconditioning with secretome of neural crest-derived stem cells enhanced neurotrophic expression in mesenchymal stem cells. Neurosci Lett 2022; 773:136511. [PMID: 35143889 DOI: 10.1016/j.neulet.2022.136511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/01/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.
Collapse
Affiliation(s)
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Bar JK, Lis-Nawara A, Grelewski PG. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int J Mol Sci 2021; 22:ijms222112018. [PMID: 34769446 PMCID: PMC8584775 DOI: 10.3390/ijms222112018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.
Collapse
|
13
|
Lo Monaco M, Gervois P, Beaumont J, Clegg P, Bronckaers A, Vandeweerd JM, Lambrichts I. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells 2020; 9:cells9040980. [PMID: 32326610 PMCID: PMC7227024 DOI: 10.3390/cells9040980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative and inflammatory joint disorder with cartilage loss. Dental pulp stem cells (DPSCs) can undergo chondrogenic differentiation and secrete growth factors associated with tissue repair and immunomodulation. Leukocyte- and platelet-rich fibrin (L-PRF) emerges in regenerative medicine because of its growth factor content and fibrin matrix. This study evaluates the therapeutic application of DPSCs and L-PRF in OA via immunomodulation and cartilage regeneration. Chondrogenic differentiation of DPSCs, with or without L-PRF exudate (ex) and conditioned medium (CM), and of bone marrow-mesenchymal stem cells was compared. These cells showed differential chondrogenesis. L-PRF was unable to increase cartilage-associated components. Immature murine articular chondrocytes (iMACs) were cultured with L-PRF ex, L-PRF CM, or DPSC CM. L-PRF CM had pro-survival and proliferative effects on unstimulated and cytokine-stimulated iMACs. L-PRF CM stimulated the release of IL-6 and PGE2, and increased MMP-13, TIMP-1 and IL-6 mRNA levels in cytokine-stimulated iMACs. DPSC CM increased the survival and proliferation of unstimulated iMACs. In cytokine-stimulated iMACs, DPSC CM increased TIMP-1 gene expression, whereas it inhibited nitrite release in 3D culture. We showed promising effects of DPSCs in an in vitro OA model, as they undergo chondrogenesis in vitro, stimulate the survival of chondrocytes and have immunomodulatory effects.
Collapse
Affiliation(s)
- Melissa Lo Monaco
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
- Correspondence: ; Tel.: +32-(0)-26-92-09
| | - Pascal Gervois
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Joel Beaumont
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Maastricht Radiation Oncology (MaastRO) Lab, GROW—School for Oncology and Developmental Biology, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Peter Clegg
- Department of Musculoskeletal and Ageing Sciences, Institute of Lifecourse and Medical Sciences, University of Liverpool, L7 8TX Liverpool, UK;
| | - Annelies Bronckaers
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Jean-Michel Vandeweerd
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
| | - Ivo Lambrichts
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| |
Collapse
|