1
|
Lestari DY, Mastutik G, Mukono IS. Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation. Med Oncol 2024; 42:24. [PMID: 39644426 DOI: 10.1007/s12032-024-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by a lack of hormones receptors and the HER2 receptor, making it unresponsive to targeted therapy. Triterpenoids such as betulinic acid (BA) and oleanolic acid (OA) have anticancer effects by inducing apoptosis in TNBC cells. CD81 is a tetraspanin that affects the growth and metastasis of cancer cells. To examine the effect of BA and OA on the viability of TNBC cell line (MDA-MB 231) by analyzing the CD81 expression, intracellular ROS, and apoptosis. The MDA-MB 231 cells was cultured and treated by BA and OA. The viability cell was evaluated by the CCK8 assay. This study analyzed the binding of BA and OA with CD81 using molecular docking and evaluated CD81 expression, intracellular ROS, and apoptosis by flow cytometry. The result showed that BA and OA inhibited viability of MDA-MB-231 cells. BA and OA bind to CD81 in silico, with binding affinities of 9.0 kcal/mol for BA and 7.2 kcal/mol for OA. Flow cytometry results revealed that BA can downregulate CD81 expression. BA and OA also increased intracellular ROS levels and induced apoptosis. These findings suggest that BA and OA, especially BA, can modulate CD81 expression and promote apoptosis in TNBC cells through the generation of ROS, thereby offering a potential therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Dian Yuliartha Lestari
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Medical Faculty, University of Muhammadiyah Malang, Malang, Indonesia
| | - Gondo Mastutik
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indri Safitri Mukono
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Univesitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
2
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
3
|
Milan A, Mioc M, Mioc A, Gogulescu A, Mardale G, Avram Ș, Maksimović T, Mara B, Șoica C. Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines. Molecules 2024; 29:3399. [PMID: 39064977 PMCID: PMC11279467 DOI: 10.3390/molecules29143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 μM) and NCI-H460 cells (IC50 of 30.74 μM). BA's fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Armand Gogulescu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Gabriel Mardale
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Ștefana Avram
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Tamara Maksimović
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
| | - Bogdan Mara
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Institute of Chemistry Coriolan Drăgulescu, 24 Mihai Viteazu Ave, 300223 Timișoara, Romania
| | - Codruța Șoica
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania; (A.M.); (M.M.); (A.M.); (G.M.); (Ș.A.); (T.M.); (B.M.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| |
Collapse
|
4
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
5
|
Torres-Sanchez A, Torres G, Estrada S, Perez D, Garcia C, Milian M, Velazquez E, Molina V, Delgado Y. Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals (Basel) 2024; 17:694. [PMID: 38931361 PMCID: PMC11206507 DOI: 10.3390/ph17060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, there has been great interest in plant-derived compounds known as phytochemicals. The pentacyclic oleanane-, ursane-, and lupane-type triterpenes are phytochemicals that exert significant activity against diseases like cancer. Lung cancer is the leading cause of cancer-related death worldwide. Although chemotherapy is the treatment of choice for lung cancer, its effectiveness is hampered by the dose-limiting toxic effects and chemoresistance. Herein, we investigated six pentacyclic triterpenes, oleanolic acid, ursolic acid, asiatic acid, betulinic acid, betulin, and lupeol, on NSCLC A549 cells. These triterpenes have several structural variations that can influence the activation/inactivation of key cellular pathways. From our results, we determined that most of these triterpenes induced apoptosis, S-phase and G2/M-phase cycle arrest, the downregulation of ribonucleotide reductase (RR), reactive oxygen species, and caspase 3 activation. For chemoresistance markers, we found that most triterpenes downregulated the expression of MAPK/PI3K, STAT3, and PDL1. In contrast, UrA and AsA also induced DNA damage and autophagy. Then, we theoretically determined other possible molecular targets of these triterpenes using the online database ChEMBL. The results showed that even slight structural changes in these triterpenes can influence the cellular response. This study opens up promising perspectives for further research on the pharmaceutical role of phytochemical triterpenoids.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA;
- Biochemistry Department, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736, USA;
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Carlos Garcia
- Medical Program, Ponce Health Science University, Ponce, PR 00716, USA
| | - Melissa Milian
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Eddian Velazquez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Valerie Molina
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| |
Collapse
|
6
|
Wang H, Du X, Liu W, Zhang C, Li Y, Hou J, Yu Y, Li G, Wang Q. Combination of betulinic acid and EGFR-TKIs exerts synergistic anti-tumor effects against wild-type EGFR NSCLC by inducing autophagy-related cell death via EGFR signaling pathway. Respir Res 2024; 25:215. [PMID: 38764025 PMCID: PMC11103851 DOI: 10.1186/s12931-024-02844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Han Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
- Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohui Du
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Congcong Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jingwen Hou
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yi Yu
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Guiru Li
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
7
|
Tao Z, Tao M, Zhou M, Wu XJ. Niacin treatment prevents bone loss in iron overload osteoporotic rats via activation of SIRT1 signaling pathway. Chem Biol Interact 2024; 388:110827. [PMID: 38081572 DOI: 10.1016/j.cbi.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Recently, more and more studies have revealed that iron overload can lead to osteoporosis by inducing oxidative stress. Niacin (NAN), also known as nicotinate or vitamin B3, has been confirmed to possess potent antioxidative effects. In addition, very little is currently known about the protective effects of NAN on iron overload in osteoporotic bone tissue. Therefore, we aimed to evaluate the protective effect of niacin on iron overload-induced bone injury and to investigate the effect and underlying mechanisms of the niacin and iron overload on intracellular antioxidant properties. When MC3T3-E1 and RAW264.7 cells were cultured in the presence of ammonium ferric citrate(FAC), NAN therapy could increase the matrix mineralization and promote expression of osteogenic markers in MC3T3-E1, inhibit osteoclastic differentiation of RAW264.7 cells, while increasing intracellular reactive oxygen species (ROS) levels and strengthening mitochondrial membrane potential (MMP). In the ovariectomized (OVX) rat model, NAN had an obvious protective effect against iron-overloaded injury. Meanwhile, superoxide dismutase 2 (SOD2), intracellular antioxidant enzymes and silent information regulator type 1 (SIRT1), were up-regulated in response to NAN exposures in MC3T3-E1. Furthermore, SIRT1 inhibitor EX527 attenuated the protective effects of NAN. Results revealed that NAN could stimulate osteogenic differentiation, inhibit osteoclastic differentiation and markedly increased antioxidant properties in cells through the induction of SIRT1. Studies suggest that niacin is a promising agent for preventing bone loss in iron overload conditions.
Collapse
Affiliation(s)
- Zhoushan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Ma Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Maosheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| |
Collapse
|
8
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
9
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
10
|
Nam T, Kang W, Oh S. Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation. J Microbiol Biotechnol 2023; 33:1206-1212. [PMID: 37463866 PMCID: PMC10580898 DOI: 10.4014/jmb.2301.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Kinetin riboside is a naturally produced cytokinin that displays strong antiproliferative activity in various human cancer cells. However, the mechanism of chemoprevention in colorectal cancer cells has not been elucidated. We used a cell-based reporter system to identify kinetin riboside as an antagonist of the Wnt/β-catenin pathway, which is aberrantly upregulated in colorectal cancer. Kinetin riboside suppressed β-catenin response transcription (CRT) by accelerating the degradation of intracellular β-catenin via a proteasomal degradation pathway. Pharmacological inhibition of glycogen synthase kinase-3β did not affect CRT downregulation. Kinetin riboside decreased the intracellular β-catenin levels in colorectal cancer cells with mutations in adenomatous polyposis coli (APC) and β-catenin. Consistently, kinetin riboside repressed expression of c-Myc and cyclin D1, β-catenin/T-cell factor (TCF)-dependent genes, and inhibited the proliferation of colorectal cancer cells. In addition, kinetin riboside stimulated apoptosis, as measured by an increase in annexin V-FITC-stained cells. These findings suggest that kinetin riboside exerts its anti-cancer activity by promoting β-catenin degradation and has significant potential as a chemopreventive agent for colorectal cancer cells.
Collapse
Affiliation(s)
- TaeKyung Nam
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
11
|
Liao J, Qin QH, Lv FY, Huang Z, Lian B, Wei CY, Mo QG, Tan QX. IKKα inhibition re-sensitizes acquired adriamycin-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Sci Rep 2023; 13:6211. [PMID: 37069240 PMCID: PMC10110611 DOI: 10.1038/s41598-023-33358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
IKKα has been shown to be responsible of multiple pro-tumorigenic functions and therapy resistance independent of canonical NF-κB, but its role in acquired chemotherapy resistance in breast cancer remains unclarified. In this study, we obtained pre-treatment biopsy and post-treatment mastectomy specimens from a retrospective cohort of triple-negative breast cancer (TNBC) patients treated with neoadjuvant chemotherapy(NAC) (n = 43). Immunohistochemical methods were used to detect the expression of IKKα before and after NAC, and the relationship between IKKα and the pathologic response to NAC was examined. In addition, we developed a new ADR-resistant MDA-MB-231 cell line(MDA-MB-231/ADR) and analyzed these cells for changes in IKKα expression, the role and mechanisms of the increased IKKα in promoting drug resistance were determined in vitro and in vivo. We demonstrated that the expression of IKKα in residual TNBC tissues after chemotherapy was significantly higher than that before chemotherapy, and was positively correlated with lower pathological reaction. IKKα expression was significantly higher in ADR-resistant TNBC cells than in ADR-sensitive cells, IKKα knockdown results in apoptotic cell death of chemoresistant cells upon drug treatment. Moreover, IKKα knockdown promotes chemotherapeutic drug-induced tumor cell death in an transplanted tumor mouse model. Functionally, we demonstrated that IKKα knockdown significantly upregulated the expression of cleaved caspase 3 and Bax and inhibited the expression of Bcl-2 upon ADR treatment. Our findings highlighted that IKKα exerts an important and previously unknown role in promoting chemoresistance in TNBC, combining IKKα inhibition with chemotherapy may be an effective strategy to improve treatment outcome in chemoresistant TNBC patients.
Collapse
Affiliation(s)
- Jian Liao
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Qing-Hong Qin
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi, Department of Education, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Fa-You Lv
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi, Department of Education, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Zhen Huang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Bin Lian
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Chang-Yuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Qin-Guo Mo
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China.
| | - Qi-Xing Tan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Province, People's Republic of China.
| |
Collapse
|
12
|
Tsepaeva OV, Nemtarev AV, Pashirova TN, Khokhlachev MV, Lyubina AP, Amerkhanova SK, Voloshina AD, Mironov VF. Novel triphenylphosphonium amphiphilic conjugates of glycerolipid type: synthesis, cytotoxic and antibacterial activity, and targeted cancer cell delivery. RSC Med Chem 2023; 14:454-469. [PMID: 36970146 PMCID: PMC10034156 DOI: 10.1039/d2md00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This work deals with the creation of new cationic triphenylphosphonium amphiphilic conjugates of glycerolipid type (TPP-conjugates), bearing a pharmacophore terpenoid fragment (abietic acid and betulin) and a fatty acid residue in one hybrid molecule as a new generation of antitumor agents with high activity and selectivity. The TPP-conjugates showed high mitochondriotropy leading to the development of mitochondriotropic delivery systems such as TPP-pharmacosomes and TPP-solid lipid particles. Introducing the betulin fragment into the structure of a TPP-conjugate (compound 10) increases the cytotoxicity 3 times towards tumor cells of prostate adenocarcinoma DU-145 and 4 times towards breast carcinoma MCF-7 compared to TPP-conjugate 4a in the absence of betulin. TPP-hybrid conjugate 10 with two pharmacophore fragments, betulin and oleic acid, has significant cytotoxicity toward a wide range of tumor cells. The lowest IC50 of 10 is 0.3 μM toward HuTu-80. This is at the level of the reference drug doxorubicin. TPP-pharmacosomes (10/PC) increased the cytotoxic effect approximately 3 times toward HuTu-80 cells, providing high selectivity (SI = 480) compared to the normal liver cell line Chang liver.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Michail V Khokhlachev
- Kazan (Volga Region) Federal University Kremlevskaya Str. 18 420008 Kazan Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Syumbelya K Amerkhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| |
Collapse
|
13
|
Sun RJ, Xu J, Gao W, Zhang YY, Sun XQ, Ji L, Cui X. Effect of Guizhi Fuling Capsule on Apoptosis of Myeloma Cells Through Mitochondrial Apoptosis Pathway. Chin J Integr Med 2023; 29:127-136. [PMID: 36401751 DOI: 10.1007/s11655-022-3624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms. METHODS MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry. RESULTS GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05). CONCLUSION GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.
Collapse
Affiliation(s)
- Run-Jie Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Gao
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan-Yu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao-Qi Sun
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Lin Ji
- Department of Neurology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| | - Xing Cui
- Department of Oncology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
14
|
Mosiane KS, Nweke EE, Balogun M, Fru PN. Polyethyleneglycol-Betulinic Acid (PEG-BA) Polymer-Drug Conjugate Induces Apoptosis and Antioxidation in a Biological Model of Pancreatic Cancer. Polymers (Basel) 2023; 15:448. [PMID: 36679328 PMCID: PMC9863557 DOI: 10.3390/polym15020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive solid malignancies with poor treatment response and low survival rates. Herbal medicines such as betulinic acid (BA) have shown potential in treating various solid tumours, but with limitations that can be circumvented by polymer-drug conjugation. Polyethylene glycol-BA (PEG-BA) polymer-drug conjugate has previously shown selective anticancer activity against PC cells. Here, we elucidate the mechanism of cell death and the cell death pathway, anti-inflammatory and antioxidant activities of PEG-BA. PEG-BA induced apoptotic cell death by arresting MIA-PaCa-2 cells in the Sub-G1 phase of the cell cycle compared with BA and untreated cells (39.50 ± 5.32% > 19.63 ± 4.49% > 4.57 ± 0.82%). NFκB/p65 protein expression was moderately increased by PEG-BA (2.70 vs. 3.09 ± 0.42 ng/mL; p = 0.1521). However, significant (p < 0.05) overexpression of the proapoptotic genes TNF (23.72 ± 1.03) and CASPASE 3 (12,059.98 ± 1.74) compared with untreated cells was notable. The antioxidant potential of PEG-BA was greater (IC50 = 15.59 ± 0.64 µM) compared with ascorbic acid (25.58 ± 0.44 µM) and BA-only (>100 µM) and further confirmed with the improved reduction of hydroperoxide levels compared with BA-only (518.80 ± 25.53 µM vs. 542.43 ± 9.70 µM). In conclusion, PEG-BA activated both the intrinsic and extrinsic pathways of apoptosis and improved antioxidant activities in PC cells, suggesting enhanced anticancer activity upon conjugation.
Collapse
Affiliation(s)
- Karabo Sekopi Mosiane
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Lab, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Pascaline Nanga Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
15
|
Liang Z, Chen Y, Gu R, Guo Q, Nie X. Asiaticoside Prevents Oxidative Stress and Apoptosis in Endothelial Cells by Activating ROS-dependent p53/Bcl-2/Caspase-3 Signaling Pathway. Curr Mol Med 2023; 23:1116-1129. [PMID: 36284389 DOI: 10.2174/1566524023666221024120825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Asiaticoside (AC) is a triterpenoid saponin found in Centella asiatica (L.) urban extract that has a wide range of pharmacological properties. Our previous study demonstrated that AC could promote angiogenesis in diabetic wounds, but the specific mechanisms remain unknown. OBJECTIVE This study aimed to examine the effectiveness and mechanism of AC on human umbilical vein endothelial cells (HUVECs) exposed to tert-butyl hydroperoxide (t-BHP) toxicity. METHODS Senescence was confirmed using senescence-associated betagalactosidase (SA-β-gal) activity and expression of the cell cycle phase markers p16 and p21. The levels of SOD, NO, MDA, GSH-Px, and ROS were tested. Furthermore, several cell death-related genes and proteins (p53, Bax, Bcl-2 and Caspase-3) were assessed with RT-qPCR and Western blotting. RESULTS AC significantly reduced SA-β-gal activity, with both the suppression of cellcycle inhibitors p16 and p21. We also found that the induced oxidative stress and apoptosis caused by t-BHP treatment resulted in the decrease of antioxidant enzymes activities, the surge of ROS and MDA, the up-regulation of p53, Bax and caspase-3, and the decrease of SOD, NO, GSH-Px and Bcl-2. These biochemical changes were all reversed by treatment with varying doses of AC. CONCLUSION AC alleviates t-BHP-induced oxidative injury and apoptosis in HUVECs through the ROS-dependent p53/Bcl-2/Caspase-3 signaling pathway. It may be a potential antioxidant applied in metabolic disorders and pharmaceutical products.
Collapse
Affiliation(s)
- Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Yu Chen
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qi Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xuqiang Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
16
|
Hamion G, Aucher W, Tardif C, Miranda J, Rouger C, Imbert C, Girardot M. Valorization of Invasive Plant Extracts against the Bispecies Biofilm Staphylococcus aureus- Candida albicans by a Bioguided Molecular Networking Screening. Antibiotics (Basel) 2022; 11:antibiotics11111595. [PMID: 36421241 PMCID: PMC9686625 DOI: 10.3390/antibiotics11111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Invasive plants efficiently colonize non-native territories, suggesting a great production of bioactive metabolites which could be effective antibiofilm weapons. Our study aimed to look for original molecules able to inhibit bispecies biofilm formed by S. aureus and C. albicans. Extracts from five invasive macrophytes (Ludwigia peploides, Ludwigia grandiflora, Myriophyllum aquaticum, Lagarosiphon major and Egeria densa) were prepared and tested in vitro against 24 h old bispecies biofilms using a crystal violet staining (CVS) assay. The activities of the extracts reducing the biofilm total biomass by 50% or more were comparatively analyzed against each microbial species forming the biofilm by flow cytometry (FCM) and scanning electron microscopy. Extracts active against both species were fractionated. Obtained fractions were analyzed by UHPLC-MS/MS and evaluated by the CVS assay. Chemical and biological data were combined into a bioactivity-based molecular networking (BBMN) to identify active compounds. The aerial stem extract of L. grandiflora showed the highest antibiofilm activity (>50% inhibition at 50 µg∙mL−1). The biological, chemical and BBMN investigations of its fractions highlighted nine ions correlated with the antibiofilm activity. The most correlated compound, identified as betulinic acid (BA), inhibited bispecies biofilms regardless of the three tested couples of strains (ATCC strains: >40% inhibition, clinical isolates: ≈27% inhibition), confirming its antibiofilm interest.
Collapse
Affiliation(s)
- Guillaume Hamion
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
- Correspondence:
| | - Willy Aucher
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Charles Tardif
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Julie Miranda
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Caroline Rouger
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Christine Imbert
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Marion Girardot
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| |
Collapse
|
17
|
Ghiulai R, Mioc A, Racoviceanu R, Mioc M, Milan A, Prodea A, Semenescu A, Dehelean C, Barbu Tudoran L, Avram Ș, Trandafirescu C, Șoica C. The Anti-Melanoma Effect of Betulinic Acid Functionalized Gold Nanoparticles: A Mechanistic In Vitro Approach. Pharmaceuticals (Basel) 2022; 15:1362. [PMID: 36355533 PMCID: PMC9698836 DOI: 10.3390/ph15111362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 07/28/2023] Open
Abstract
Implementing metallic nanoparticles as research instruments for the transport of therapeutically active compounds remains a fundamentally vital work direction that can still potentially generate novelties in the field of drug formulation development. Gold nanoparticles (GNP) are easily tunable carriers for active phytocompounds like pentacyclic triterpenes. These formulations can boost the bioavailability of a lipophilic structure and, in some instances, can also enhance its therapeutic efficacy. In our work, we proposed a biological in vitro assessment of betulinic acid (BA)-functionalized GNP. BA-GNP were obtained by grafting BA onto previously synthesized citrate-capped GNP through the use of cysteamine as a linker. The nanoformulation was tested in HaCaT human keratinocytes and RPMI-7951 human melanoma cells, revealing selective cytotoxic properties and stronger antiproliferative effects compared to free BA. Further examinations revealed a pro-apoptotic effect, as evidenced by morphological changes in melanoma cells and supported by western blot data showing the downregulation of anti-apoptotic Bcl-2 expression coupled with the upregulation of pro-apoptotic Bax. GNP also significantly inhibited mitochondrial respiration, confirming its mitochondrial-targeted activity.
Collapse
Affiliation(s)
- Roxana Ghiulai
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Roxana Racoviceanu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Andreea Milan
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Prodea
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Alexandra Semenescu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Toxicology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Cristina Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Toxicology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory, Faculty of Biology and Geology, “Babes-Bolyai” University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 67–103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ștefana Avram
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Deparment of Pharmacognosy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Cristina Trandafirescu
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| | - Codruța Șoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| |
Collapse
|
18
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
19
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
20
|
Additive Interactions between Betulinic Acid and Two Taxanes in In Vitro Tests against Four Human Malignant Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23179641. [PMID: 36077036 PMCID: PMC9456196 DOI: 10.3390/ijms23179641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/02/2023] Open
Abstract
The incidence of melanoma is steadily increasing worldwide. Melanoma is the most lethal skin cancer, and new therapeutic methods are being sought. Our research aimed to investigate the cytotoxic and antiproliferative effects of betulinic acid in vitro, used alone and in combination with taxanes (paclitaxel, docetaxel) in four melanoma cell lines. Isobolographic analysis allowed us to assess the interactions between these compounds. Betulinic acid had no cytotoxic effect on normal human keratinocyte HaCaT cells; the amount of LDH released by them was significantly lower compared to melanoma cell lines. The present study shows that betulinic acid significantly inhibits the growth of melanoma cell lines in vitro. The IC50 values of betulinic acid ranged from 2.21 µM to 15.94 µM against the four melanoma lines. Co-treatment of betulinic acid with paclitaxel or docetaxel generated desirable drug–drug interactions, such as an additive and additive with a tendency to synergy interactions.
Collapse
|
21
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 386] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
23
|
Watanabe S, Hibiya S, Katsukura N, Kitagawa S, Sato A, Okamoto R, Watanabe M, Tsuchiya K. Importance of Telomere Shortening in the Pathogenesis of Ulcerative Colitis: A New Treatment From the Aspect of Telomeres in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:109-121. [PMID: 34180971 DOI: 10.1093/ecco-jcc/jjab115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease of the colon with frequent relapses. Telomere shortening in intestinal epithelial cells has been reported in severe or longstanding cases. However, its influence on UC pathogenesis remains unelucidated. To this end, we evaluated telomere shortening using a long-term organoid inflammation model that we had originally established. METHODS A UC model using human colon organoids was established to assess telomere changes chronologically. MST-312 was used for the telomerase inhibition assay. The potential of telomerase activators as a novel UC treatment was evaluated with an in vitro model, including microarray analysis, and histological changes were assessed using xenotransplantation into mouse colonic mucosa. RESULTS Our UC model reproduced telomere shortening in vitro, which was induced by the continuous suppression of telomerase activity via P53. MST-312-based analysis revealed that telomere shortening was involved in the pathogenesis of UC. Madecassoside [MD] improved the telomere length of the UC model and UC patient-derived organoids, which further promoted cell proliferation in vitro and improved the graft take-rate of xenotransplantation. Moreover, histological analysis revealed that MD induced normal crypt structure with abundant goblet cells. CONCLUSIONS This study is the first to reveal the mechanism and importance of telomere shortening in the pathogenesis of UC. MD could be a novel candidate for UC treatment beyond endoscopic mucosal healing.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiro Katsukura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayuki Kitagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Sun S, Yao Y, Huang C, Xu H, Zhao Y, Wang Y, Zhu Y, Miao Y, Feng X, Gao X, Zheng J, Zhang Q. CD36 regulates LPS-induced acute lung injury by promoting macrophages M1 polarization. Cell Immunol 2022; 372:104475. [PMID: 35063904 DOI: 10.1016/j.cellimm.2021.104475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023]
|
25
|
Song GR, Choi YJ, Park SJ, Shin S, Lee G, Choi HJ, Lee DY, Song GY, Oh S. Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway. J Microbiol Biotechnol 2021; 31:1559-1567. [PMID: 34584036 PMCID: PMC9706038 DOI: 10.4014/jmb.2109.09002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, cmyc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC- positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.
Collapse
Affiliation(s)
- Geu Rim Song
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Yoon Jung Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subeen Shin
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Giseong Lee
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Hui Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
26
|
Immunomodulatory Effects of a Concoction of Natural Bioactive Compounds-Mechanistic Insights. Biomedicines 2021; 9:biomedicines9111522. [PMID: 34829751 PMCID: PMC8615223 DOI: 10.3390/biomedicines9111522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Natural bioactive compounds derived from plant-based products are known for their biological immunomodulatory activities. They possess systemic pleiotropic effects, minimal side effects, and very low toxicities. Plant-based bioactive compounds have tremendous potential as natural therapeutic entities against various disease conditions and act as anti-inflammatory, antioxidant, anti-mutagenic, anti-microbial, anti-viral, anti-tumour, anti-allergic, neuroprotective, and cardioprotective agents. A herbal formulation extract including five biologically active compounds: Apigenin, Quercetin, Betulinic acid, Oleanolic acid, and β-Sitosterol can impart several immunomodulatory effects. In this review, we systematically present the impact of these compounds on important molecular signaling pathways, including inflammation, immunity, redox metabolism, neuroinflammation, neutropenia, cell growth, apoptosis, and cell cycle. The review corroborates the beneficial effect of these compounds and shows considerable potential to be used as a safer, more cost-effective treatment for several diseases by affecting the major nodal points of various stimulatory pathways.
Collapse
|
27
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
28
|
GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021; 26:molecules26195900. [PMID: 34641443 PMCID: PMC8512399 DOI: 10.3390/molecules26195900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo–chemodynamic combination therapy were constructed via host–guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles—and, thus, improving the BA recovery and release capability in tumors—but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).
Collapse
|
29
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
30
|
Ferreira NH, Cunha NL, de Melo MRS, Fernandes FS, de Freitas KS, do Nascimento S, Ribeiro AB, de A E Silva ML, Cunha WR, Tavares DC. Betulinic acid exerts antigenotoxic and anticarcinogenic activities via inhibition of COX-2 and PCNA in rodents. J Biochem Mol Toxicol 2021; 35:e22917. [PMID: 34541749 DOI: 10.1002/jbt.22917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
Phytochemicals have been suggested as an effective strategy for cancer prevention. Within this context, triterpene betulinic acid (BA) exhibits several biological properties but its chemopreventive effect has not been fully demonstrated. The present study investigated the antigenotoxic potential of BA against doxorubicin (DXR)-induced genotoxicity using the mouse peripheral blood micronucleus assay, as well as its anticarcinogenic activity against 1,2dimethylhydrazine (DMH)-induced colorectal lesions in rats. Micronuclei (MN) assay and aberrant crypt foci assay were used to assess the antigenotoxic and the anticarcinogenic potential, respectively. The molecular mechanisms underlying the anticarcinogenic activity of BA were evaluated by assessing anti-inflammatory (COX-2) and antiproliferative (PCNA) pathways. The results demonstrated that BA at the dose of 0.5 mg/kg bodyweight exerted antigenotoxic effects against DXR, with a reduction of 70.2% in the frequencies of chromosomal damage. Animals treated with BA showed a 64% reduction in the number of preneoplastic lesions when compared to those treated with the carcinogen alone. The levels of COX-2 and PCNA expression in the colon were significantly lower in animals treated with BA and DMH compared to those treated with the carcinogen alone. The chemopreventive effect of BA is related, at least in part, to its antiproliferative and anti-inflammatory activity, indicating a promising potential of this triterpene in anticancer therapies, especially for colorectal cancer.
Collapse
Affiliation(s)
- Natália H Ferreira
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Nayanne L Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Matheus R S de Melo
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Fernanda S Fernandes
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Karoline S de Freitas
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Samuel do Nascimento
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Arthur B Ribeiro
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Márcio L de A E Silva
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Wilson R Cunha
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| | - Denise C Tavares
- Mutagenesis Laboratory and Organic Chemistry Laboratory, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
31
|
Zhang Y, He N, Zhou X, Wang F, Cai H, Huang SH, Chen X, Hu Z, Jin X. Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells. Aging (Albany NY) 2021; 13:21251-21267. [PMID: 34510030 PMCID: PMC8457576 DOI: 10.18632/aging.203441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark, exhibits antitumor effects against solid malignancies and triggers autophagy and/or apoptosis in human cancer cells. Nonetheless, the relationship between autophagy and apoptosis and the potential modulatory actions of BA on autophagy-dependent bladder cancer cell death remain unclear. The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells. These effects reflected caspase 3-mediated apoptosis and could be attenuated or abolished by inhibiting ROS production with N-acetyl-L-cysteine, inhibiting autophagy with chloroquine, or silencing ATG7 with targeted siRNA. BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM. Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway. Accordingly, exposure to dorsomorphin (Compound C), an AMPK inhibitor, and AICAR, an AMPK activator, respectively inhibited and stimulated BA-induced autophagy in EJ and T24 cells. The effects of Bmi-1 overexpression in vitro and decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Hairong Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Shih Han Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xianwu Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, P.R. China
| |
Collapse
|
32
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
33
|
Jöhrer K, Ҫiҫek SS. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel) 2021; 13:2678. [PMID: 34072312 PMCID: PMC8198565 DOI: 10.3390/cancers13112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure-activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria;
| | - Serhat Sezai Ҫiҫek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
34
|
Chiu CF, Chang HY, Huang CY, Mau CZ, Kuo TT, Lee HC, Huang SY. Betulinic Acid Affects the Energy-Related Proteomic Profiling in Pancreatic Ductal Adenocarcinoma Cells. Molecules 2021; 26:molecules26092482. [PMID: 33923185 PMCID: PMC8123215 DOI: 10.3390/molecules26092482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Yine Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
| | - Tzu-Ting Kuo
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
| | - Hsiu-Chuan Lee
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| |
Collapse
|
35
|
Park C, Jeong JW, Han MH, Lee H, Kim GY, Jin S, Park JH, Kwon HJ, Kim BW, Choi YH. The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis. Anim Cells Syst (Seoul) 2021; 25:119-127. [PMID: 34234893 PMCID: PMC8118407 DOI: 10.1080/19768354.2021.1915380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although previous studies have shown anti-cancer activity of betulinic acid (BA), a pentacyclic triterpenoid, against various cancer lines, the underlying molecular mechanisms are not well elucidated. In this study, we evaluated the mechanisms involved in the anti-cancer efficacy of BA in U937 human myeloid leukemia cells. BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA. The down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA. In addition, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio. BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase. However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment. Taken together, our results provide a mechanistic rationale that BA exhibits anti-cancer properties in U937 leukemia cells through ROS-dependent induction of cell cycle arrest at G2/M phase and apoptosis.
Collapse
Affiliation(s)
- Cheol Park
- College of Liberal Studies, Dong-Eui University, Busan, Republic of Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea
| | - Jung-Ha Park
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea.,Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea.,Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Dong-eui University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Republic of Korea.,Core-Facility Center for Tissue Regeneration, Dong Eui University, Busan, Republic of Korea
| |
Collapse
|
36
|
Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential. Molecules 2021; 26:molecules26051381. [PMID: 33806566 PMCID: PMC7961550 DOI: 10.3390/molecules26051381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.
Collapse
|
37
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
38
|
Liao L, Liu C, Xie X, Zhou J. Betulinic acid induces apoptosis and impairs migration and invasion in a mouse model of ovarian cancer. J Food Biochem 2020; 44:e13278. [PMID: 32412117 DOI: 10.1111/jfbc.13278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Betulinic acid (BA) was verified to possess plenty of biological activities including anti-tumor, anti-inflammatory and so on. In our research, we studied the growth inhibition, apoptosis promotion and metastasis resistance of ovarian cancer cells by BA. The result showed that BA showed a time- and dose-dependent inhibitory effect on ovarian cancer cell lines. SKOV3 cell line proliferation has a concentration- and time-dependently, which may be inhibited by BA. Furthermore, BA inhibited the metastasis of tumor cells remarkably by inhibiting epithelial-mesenchymal transition process. Beyond that, the weight and volume of subcutaneous tumor was distinctly suppressed by administration of BA in tumor-bearing mice of SKOV3 cells. Pathological and immunohistochemical tests showed that Ki-67+ and MMP-2+ cells were dramatically decreased after BA administration, indicating that BA can not only suppress proliferation, but also inhibit migration of tumor cells. Taken together, BA can be a valuable candidate drug for the treatment of ovarian cancer. PRACTICAL APPLICATIONS: Betulinic acid (BA) isolated from natural plants such as fenugreek, eucalyptus bulb and mulberry has been reported with many biological activities. Results from this study revealed that in vitro and in vivo BA-induced apoptosis and inhibited migration and invasion of human ovarian cancer cells. Therefore, BA from natural plants may be developed as a potential drug for inhibition the development of ovarian cancer cells.
Collapse
Affiliation(s)
- Lingyun Liao
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| | - Chi Liu
- College of Medical & Life Sciences, Chengdu University of TCM, Chengdu, P.R. China
| | - Xiaoying Xie
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| | - Jieli Zhou
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| |
Collapse
|
39
|
Pang K, Hao L, Shi Z, Chen B, Pang H, Dong Y, Zhang Z, Dong B, Han C. Comprehensive gene expression analysis after ERH gene knockdown in human bladder cancer T24 cell lines. Gene 2020; 738:144475. [PMID: 32081697 DOI: 10.1016/j.gene.2020.144475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In this article, we utilized Ingenuity® Pathway Analysis (IPA®) bioinformatics analysis software and Metascape® bioinformatics analysis website tools to analyse the possible mechanism of ERH affecting tumourigenesis (proliferation and apoptosis) in bladder cancer (BC) T24 cells. METHODS The ERH gene was knocked down, and BC T24 cells were divided into ERH normal and knockdown groups. Affymetrix® gene expression microarrays were performed to obtain a differentially expressed gene list (DEGL) between the 2 groups. IPA® data analyses contain five modules: disease and function analysis, upstream analysis, regulator effects analysis, canonical pathway analysis and molecular network analysis. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were analysed by Metascape®. RESULTS The results of the gene expression profiling chip and the DEGL showed that 344 genes were upregulated and 254 genes were downregulated. The IPA® and Metascape® pathway analyses showed that the ERH gene may affect proliferation and apoptosis by affecting the apoptosis, cell cycle, Toll-like receptor (TLR), NF-κB or TGF-beta signalling pathways. Upstream analysis determined that the ERH gene may regulate TNF and NK-κB in the BC T24 cell lines. The ERH gene may be involved in the "cell death and survival" molecular network in BC T24 cells. ERH may be a regulator of KITLG through TNF. CONCLUSIONS The ERH gene may affect apoptosis through the TLR, NF-κB, TNF or TGF-beta signalling pathways in BC T24 cells, and may be a regulator of KITLG to ultimately activate the growth of malignant tumours.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Huiqing Pang
- Department of Operating Room, Linyi Central Hospital, No. 17, Jiankang Road, Yishui, Shandong, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Zhiguo Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Bingzheng Dong
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Conghui Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou City, Jiangsu Province, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Central Hospital, No. 199 Jiefang South Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
40
|
Pioglitazone Protects Compression-Mediated Apoptosis in Nucleus Pulposus Mesenchymal Stem Cells by Suppressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4764071. [PMID: 31885796 PMCID: PMC6893265 DOI: 10.1155/2019/4764071] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 08/10/2019] [Indexed: 01/28/2023]
Abstract
Excessive compression, the main cause of intervertebral disc (IVD) degeneration, affected endogenous repair of the intervertebral disc. Pioglitazone (PGZ) is the agonist of peroxisome proliferator-activated receptor γ, which has been widely used in the treatment of diabetes mellitus. The present study aim at investigating whether pioglitazone has protective effects on compression-mediated cell apoptosis in nucleus pulposus mesenchymal stem cells (NP-MSCs) and further exploring the possible underlying mechanism. Our results indicated that the isolated cells satisfied the criteria of MSC stated by the International Society for Cellular Therapy. Besides, our research revealed that pioglitazone could protect cell viability, cell proliferation of NP-MSCs and alleviated the toxic effects caused by compression. The actin stress fibers was suppressed obviously under compression, and pioglitazone alleviated the adverse outcomes. Pioglitazone exerted protective effects on compression-induced NP-MSCs apoptosis according to annexin V/PI double-staining and TUNEL assays. Pioglitazone suppressed compression-induced NP-MSCs oxidative stress, including decreasing compression-induced overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and alleviated compression-induced mitochondrial membrane potential (MMP) decrease. Ultrastructure collapse of the mitochondria exhibited a notable improvement by pioglitazone in compression-induced NP-MSCs according to transmission electron microscopy (TEM). Furthermore, the molecular results showed that pioglitazone significantly decreased the expression of apoptosis-associated proteins, including cyto.cytochrome c, Bax, cleaved caspase-9, and cleaved caspase-3, and promoted Bcl-2 expression. These results indicated that pioglitazone alleviated compression-induced NP-MSCs apoptosis by suppressing oxidative stress and the mitochondrial apoptosis pathway, which may be a valuable candidate for the treatment of IVD degeneration.
Collapse
|