1
|
Wang X, Li Y, Lou H, Yang Z, Wang J, Liang X, Bian Y. Strychni Semen Combined with Atractylodes Macrocephala Koidz Attenuates Rheumatoid Arthritis by Regulating Apoptosis. Curr Comput Aided Drug Des 2024; 20:518-533. [PMID: 37550914 DOI: 10.2174/1573409919666230807154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is a chronic autoimmune disease that can lead to joint pain and disability, and seriously impact patients' quality of life. Strychni Semen combined with Atractylodes Macrocephala koidz (SA) have pronounced curative effect on RA, and there is no poisoning of Strychni Semen (SS). However, its pharmacological mechanisms are still unclear. OBJECTIVE In this study, we aimed to investigate the pharmacological mechanisms of Strychni Semen combined with Atractylodes Macrocephala Koidz (SA) for the treatment of RA. METHODS We used network pharmacology to screen the active components of SA and predict the targets and pathways involved. Results originating from network pharmacology were then verified by animal experiments. RESULTS Network pharmacology identified 81 active ingredients and 141 targets of SA; 2640 disease- related genes were also identified. The core targets of SA for the treatment of RA included ALB, IL-6, TNF and IL-1β. A total of 354 gene ontology terms were identified by Gene ontology (GO) enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results showed that SA was closely associated with TNF signaling pathways in the treatment of RA. Furthermore, according to the predicted results of network pharmacology, we established a rat model of Adjuvant Arthritis (AA) for in vivo experiments. Analysis showed that each treatment group led to an improvement in paw swelling, immune organ coefficient and synovial tissue morphology in AA rats to different degrees, inhibit the expression levels of IL-1β, TNF-α and IL-6, upregulated the levels of Fas, Bax and Caspase 3, down-regulated the expression levels of Fas-L, Bcl-2 and p53. CONCLUSION SA has an anti-RA effect, the mechanism underlying the therapeutic action of SA in AA rats was related to the regulation of apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiaoxin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Yuling Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Huihui Lou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Zidong Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Jing Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Xiaodong Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Ji'nan, 250355, Shandong, Peoples R China
| | - Yuejuan Bian
- American Academy of Acupuncture and Oriental Medicine, Roseville, MN 55113, USA
| |
Collapse
|
2
|
Ye L, Li C, Zhao X, Ou W, Wang L, Wan M. Exploring the pharmacological mechanism of Tripterygium wilfordii hook for treatment of Behcet's disease using network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34512. [PMID: 37861497 PMCID: PMC10589559 DOI: 10.1097/md.0000000000034512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023] Open
Abstract
Tripterygium wilfordii hook (TWH) has been used to treat Behcet's disease (BD) but its underlying mechanism remains unclear. This study aims to explore the mechanism of TWH on BD using network pharmacology and molecular docking. The bioactive constituents of TWH and their corresponding target genes were extracted from the Traditional Chinese Medicine systems pharmacology database and analysis platform. BD target genes were obtained by searching the DisGeNet and GeneCards databases. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were conducted to elucidate the function of overlapping genes between TWH and BD target genes. A protein-protein interaction network was constructed using Cytoscape and STRING platforms, and the core target genes were identified from the overlapping genes. Finally, molecular docking was used to assess the binding affinity between the core targets and TWH bioactive constituents. We identified 25 intersection genes related to both TWH and BD and 27 bioactive ingredients of TWH. Through analysis of protein-protein interaction network, 6 core targets (TNF, IFNG, prostaglandin-endoperoxide synthase 2, NOS2, VCAM-1, and interleukin-2) were screened out. Enrichment analysis demonstrated that the antioxidant properties of TWH constituents might play a significant role in their therapeutic effects. Molecular docking revealed high binding affinity between the bioactive constituents of TWH, such as kaempferol, triptolide, 5, 8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin, and their corresponding target genes, suggesting the potential of TWH to treat BD. Our investigation clarified the active components, therapeutic targets of BD in the treatment of TWH and provided a theoretical foundation for further researches.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Changrong Li
- Medical Cosmetology Clinic, Hainan Yilimei Medical Cosmetology Co., Hainan, China
| | - Xiaoxia Zhao
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - WeiHong Ou
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Li Wang
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Mengjie Wan
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| |
Collapse
|
3
|
Wang Y, Sun Y, Wang R, Du J, Wang Q. Network Pharmacology and Molecular Docking Analysis on the Pharmacological Mechanisms of Modified Sanmiaosan in Treating Ulcerative Colitis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2556521. [PMID: 35966251 PMCID: PMC9371879 DOI: 10.1155/2022/2556521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023]
Abstract
Background Modified Sanmiaosan is an effective cure in the treatment of ulcerative colitis, but its mechanisms of action remain unclear. This study revealed the pharmacological mechanisms of Modified Sanmiaosan acting on ulcerative colitis through a pharmacology approach. Materials and Methods The active compounds and the targets of Modified Sanmiaosan were selected from the Traditional Chinese Medicine Systems Pharmacology database according to the absorption and metabolism. The UC-related therapeutic targets were collected from the PharmGKB database, the GeneCards database, the GADA database, and the OMIM database. The networks of "drug-component-target-disease" and "herbal-component-target" were constructed by the Cytoscape software. Protein-protein interaction network was generated by the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by the R software. Molecular docking technology was used to identify the affinity and activity between active compounds and targets. Results The 80 effective ingredients of MSM were collected. A total of 5180 UC-related genes and the 153 key targets of MSM and UC-related were obtained. JUN, Akt1, and MAPK1 were identified as the "hub targets" involved in the effects of Modified Sanmiaosan on ulcerative colitis. Hub targets were mainly involved in inflammatory response and oxidative stress. As the results of GO analysis, biological processes such as DNA-binding transcription and RNA polymerization may participate in the treatment process; KEGG pathway analysis showed that hub targets were mainly involved in IL-17 signal pathway and TNF signal pathway of ulcerative colitis. The high affinity and activity of the active compounds and targets were verified through molecular docking. Conclusion These findings demonstrate the active ingredients in Modified Sanmiaosan reduce inflammatory response by TNF and IL-17 signaling pathways to treat ulcerative colitis. Anti-inflammation and immune regulation may be the main mechanism of Modified Sanmiaosan in the treatment of ulcerative colitis. This study not only provide new insights into the development of a natural therapy for the prevention and treatment of ulcerative colitis but also proves a feasible method for discovering potential activated compounds from Chinese herbs.
Collapse
Affiliation(s)
- Yong Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Sun
- Traditional Chinese Medicine Research Institute, Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jisha Du
- Department of Nephrology, PLA Naval Medical Center, Shanghai 200052, China
| | - Qingqing Wang
- Department of Neurology, PLA Naval Medical Center, Shanghai 200052, China
| |
Collapse
|
4
|
Network pharmacology approach and molecular docking to explore the potential mechanism of Wu-Wei-Wen-Tong Chubi capsules in rheumatoid arthritis. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1061-1073. [PMID: 35670824 DOI: 10.1007/s00210-022-02260-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Network pharmacology, a holistic approach based on the theory of biological network technology, integrates information from biological systems, drugs, and diseases. Here, this theory was used to predict the targets of Wu-Wei-Wen-Tong Chubi capsule (WWWT) to explore the mechanism in the treatment of rheumatoid arthritis (RA). The ingredients of each herbal medicine in WWWT were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the active ingredients were screened through bioavailability (OB) ≥30% and drug-likeness (DL) ≥ 0.18. SwissTargetPrection and TCMSP were utilized to calculate and predict the targets of active ingredients. RA-related targets were obtained by searching the Genecards and OMIM databases. The common targets of RA and WWWT were used for gene ontology (GO), KEGG pathway enrichment, protein-protein interaction (PPI) analysis, and molecular docking. And then, four key genes were screened for subsequent verification experiments. In total, 90 active compounds and 330 potential targets of WWWT, 1310 targets of RA, and 135 intersection targets were found. Additionally, GO and pathway analysis identified 4610 significant GO terms and 147 significant KEGG pathways. Based on the PPI network, 11 key genes including IL-6, MMP-9, and TNF-α were screened out for molecular docking. Molecular docking showed that these key genes have good binding activities to active compounds of WWWT such as oroxylin a, kaempferol, and luteolin. Simultaneously, Western blot experimental validation demonstrated that the protein expressions of IL-6, MMP-9, TNF-α, and VEGFA significantly decreased after WWWT treatment. The mechanism of WWWT in treating RA involves multiple active compounds acting on multiple targets, and multiple pathways, which provides an important reference for further elucidation the mechanism and clinical applications of WWWT in the treatment of RA.
Collapse
|
5
|
Tripterygium wilfordii Hook. f. Preparations for Rheumatoid Arthritis: An Overview of Systematic Reviews. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3151936. [PMID: 35463070 PMCID: PMC9019410 DOI: 10.1155/2022/3151936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022]
Abstract
Objectives To summarize the quantity and quality of evidence for using Tripterygium wilfordii Hook. f. (TwHF) preparations in patients with rheumatoid arthritis (RA) and to find the reasons of the disparity by comprehensively appraising the related systematic reviews (SRs). Methods We performed an overview of evidence for the effectiveness and safety of TwHF preparations for patients with RA. We searched seven literature databases from inception to July 15, 2021. We included SRs of TwHF preparations in the treatment of RA. Four tools were used to evaluate the reporting quality, methodological quality, risk of bias, and the certainty of evidence for the included SRs, which are the PRISMA, the AMSTAR-2, the ROBIS, and the GRADE approach. Results We included 27 SRs (with 385 studies and 33,888 participants) for this overview. The AMSTAR-2 showed that 19 SRs had critically low methodological quality and the remaining 8 had low methodological quality. The rate of overlaps was 68.31% (263/385), and the CCA (corrected covered area) was 0.53, which indicated the degree of overlap is slight. Based on the assessment of ROBIS, all 27 SRs were rated as low risk in phase 1; one SR was rated as low risk in domain 1, 9 SRs were in low risk in domain 2, 16 SRs were in low risk in domain 3, and 16 SRs were in low risk in domain 4 in phase 2; 7 SRs were rated as low risk in phase 3. Among 27 items of PRISMA, 15 items were reported over 70% of compliance, the reporting quality of 16 SRs was rated as “fair,” and 11 were “good.” Using GRADE assessment, moderate quality of evidence was found in 5 outcomes, and 5 outcomes were low quality. Conclusion The use of TwHF preparations for the treatment of RA may be clinically effective according to the moderate-quality evidence. There are methodological issues, risk of bias, and reporting deficiencies still needed to be improved. SRs with good quality and further randomized clinical trials that focus on clinical important outcomes are needed.
Collapse
|
6
|
Li Y, Zhu W, He H, Garov YA, Bai L, Zhang L, Wang J, Wang J, Zhou X. Efficacy and Safety of Tripterygium Wilfordii Hook. F for Connective Tissue Disease-Associated Interstitial Lung Disease:A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:691031. [PMID: 34177599 PMCID: PMC8222720 DOI: 10.3389/fphar.2021.691031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Tripterygium wilfordii Hook. F (TwHF), a Chinese herbal medicine used to treat CTD-ILD patients in China, has been previously found to have immunoinhibitory, antifibrotic and anti inflammatory effects. It has also shown good results in treating autoimmune and inflammatory diseases. Objectives: This systematic review and meta-analysis aims to evaluate the efficacy and safety of TwHF for CTD-ILD. Methods: A systematic search was performed on PubMed, Embase, Cochrane Library, Web of Science, PsycINFO, Scopus, CNKI, Wanfang, VIP, and CBM databases up to May 2021. Randomized controlled trials (RCTs) comparing TwHF plus conventional therapy versus conventional therapy alone were included. We followed the PRISMA checklist, and applied Cochrane handbook 5.1.0 and RevMan 5.3 for data analysis and quality evaluation of the included studies. Results: Based on Cochrane handbook 5.1.0, nine RCTs consisting 650 patients met the inclusion/exclusion criteria and were selected for further analysis. The obtained data showed significant improvement in lung function with TwHF plus conventional treatment compared with conventional treatment (post-treatment FVC% (MD= 8.68, 95%Cl (5.10, 12.26), p < 0.00001), FEV1% (MD = 11.24, 95%Cl (6.87, 15.61), p < 0.00001), TLC% (MD = 5.28, 95%Cl (0.69, 9.87), p = 0.02)], but no significant difference in the post-treatment DLCO% [(MD = 4.40, 95%Cl (-2.29, 11.09), p = 0.20)]. Moreover, the data showed that TwHF combined with conventional treatment significantly reduced the HRCT integral of patients [MD = -0.65, 95% (-1.01, -0.30), p = 0.0003], the level of erythrocyte sedimentation rate (MD = -9.52, 95%Cl (-11.55, -7.49), p < 0.00001), c-reactive protein (CRP) (MD = -8.42, 95%Cl (-12.47, -4.38), p < 0.0001), and rheumatoid factor (MD = -25.48, 95%Cl (-29.36, -21.60), p < 0.00001). Compared to conventional therapy, TwHF combined with conventional therapy significantly improved clinical effects (RR = 1.33, 95%Cl (1.17, 1.51), p < 0.0001), in five trials with 354 patients. In terms of improvement of symptoms and signs, the TwHF group showed a more significant improvement than the conventional treatment group (Cough (MD = -0.96, 95%Cl (-1.43, -0.50), p < 0.0001), velcro rales (MD = -0.32, 95%Cl (-0.44, -0.20), p < 0.00001), shortness of breath (MD = -1.11, 95%Cl (-1.67, -0.56), p < 0.0001)], but no statistical difference in dyspnea (MD = -0.66, 95%Cl (-1.35, 0.03), p = 0.06). There was no statistical significance in the incidence of adverse reactions. Conclusion: The performed meta-analysis indicated that TwHF combined with conventional treatment was more beneficial to patients for improving symptoms, lung function and laboratory indicators. As it included studies with relatively small sample size, the findings require confirmation by further rigorously well-designed RCTs.
Collapse
Affiliation(s)
- Yehui Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | - Wen Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hailang He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | | | - Le Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | - Jinghai Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Artemisia annua on the Treatment of Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8947304. [PMID: 33688369 PMCID: PMC7920725 DOI: 10.1155/2021/8947304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Objective To investigate the potential active ingredients and underlying mechanisms of Artemisia annua (AA) on the treatment of hepatocellular carcinoma (HCC) based on network pharmacology. Methods In the present study, we used a network pharmacological method to predict its underlying complex mechanism of treating HCC. First, we obtained relative compounds of AA based on the traditional Chinese medicine systems pharmacology (TCMSP) database and collected potential targets of these compounds by target fishing. Then, we built HCC-related targets target by the oncogenomic database of hepatocellular carcinoma (OncoDB.HCC) and biopharmacological network (PharmDB-K) database. Based on the matching results between AA potential targets and HCC targets, we built a protein-protein interaction (PPI) network to analyze the interactions among these targets and screen the hub targets by topology. Furthermore, the function annotation and signaling pathways of key targets were performed by Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking. Results A total of 19 main active ingredients of AA were screened as target prediction; then, 25 HCC-related common targets were seeked out via multiple HCC databases. The areas of nodes and corresponding degree values of EGFR, ESR1, CCND1, MYC, EGF, and PTGS2 were larger and could be easily found in the PPI network. Furthermore, GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis to accomplish the anti-HCC activity. The molecular docking analysis showed that quercetin could stably bind to the active pocket of EGFR protein 4RJ5 via LibDock. Conclusion The anticancer effects of AA on HCC were predicted to be associated with regulating tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis via various pathways such as the EGFR signaling pathway, ESR1 signaling pathway, and CCND1 signaling pathway. It is suggested that AA might be developed as a broad-spectrum antitumor drug based on its characteristics of multicomponent, multipath, and multitarget.
Collapse
|
8
|
Systemic pharmacological investigation of the Feng Shi Gu Tong capsule in the treatment of rheumatoid arthritis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1285-1299. [PMID: 33527195 DOI: 10.1007/s00210-021-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Feng Shi Gu Tong (FSGT) capsule is a commonly used Chinese Traditional Patent Medicine in clinical practice, which has been proven to be effective for the treatment of active rheumatoid arthritis (RA). However, due to its complex composition, the precise molecular mechanism of the FSGT capsule in the treatment of RA is still indistinct. Therefore, the method of systemic pharmacology was used to obtain candidate compounds through absorption, distribution, metabolism, elimination (ADME) parameters, and supplementation of references. Network construction and analysis were also included to reveal the potential mechanism of FSGT capsule in treating RA. A total of 119 compounds were obtained in FSGT capsule, and a total of 107 compounds with targets were included in the study. These compounds acted on 267 targets in total. In addition, there were 317 targets related to RA disease. All constructed networks included four major networks and four minor networks. In addition, the clusters of RA disease protein-protein interaction (PPI) network and FSGT capsule-RA disease targets network revealed that the biological process involved in these clusters including immune response and apoptosis, etc. The pathways enriched by the direct targets of FSGT capsule acted on RA also highly overlapped with the pathways enriched by the RA PPI network, such as the TNF signaling pathway. Our research has managed to predict and explain the pharmacological effects and the molecular mechanisms of the FSGT capsule in RA, and provided a realistic exploration method for studying the potentially active ingredients of traditional Chinese medicines simultaneously.
Collapse
|
9
|
Network Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Qiaoshao Formula for Treatment of Premature Ejaculation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1418634. [PMID: 33273947 PMCID: PMC7676949 DOI: 10.1155/2020/1418634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Background Qiaoshao (QS) formula, a traditional Chinese medicine (TCM) comprising seven herbs, has been clinically proven to have a favorable treatment effect on premature ejaculation (PE). However, its underlying pharmacological mechanisms in the treatment of PE need to be further clarified. Methods In the present study, a network pharmacology-based strategy was adopted. The active compounds of QS formula were obtained from the Chinese medicine database, and the potential targets of these compounds were collected from the DrugBank database to construct compound-compound targets network. PE-related targets were identified from human disease databases and used to construct the protein-protein interaction (PPI) networks. Compound-disease target PPI network was constructed by merging the PPI network of disease-targets and compound-targets. Cluster and enrichment analyses were performed on the PPI network of disease targets and compound-disease targets. The influence of QS formula on serum 5-HT, NO, oxytocin, and thyroid hormones of PE patients was verified. Results Four primary pharmacological networks of QS formula were constructed, including the compound-compound targets network, PPI network of PE-related targets and compound-disease targets, and the QS-PE mechanism network. The module and pathway enrichment analyses revealed that the QS formula had the potential to affect varieties of biological process and pathways, such as nitric oxide biosynthetic process, oxytocin, thyroid hormone, TNF, PI3K-Akt, and the HIF-1 signaling pathway, that play an important role in the pathogenesis of PE. Meanwhile, the QS formula has been clinically confirmed to regulate the serum level of 5-HT, NO, oxytocin, and TT in PE patients. Conclusion This study preliminarily discovered the potential targets and pathways of QS formula in the treatment of PE, which laid a good foundation for further experimental research.
Collapse
|
10
|
Identifying Compound Effect of Drugs on Rheumatoid Arthritis Treatment Based on the Association Rule and a Random Walking-Based Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4031015. [PMID: 33204694 PMCID: PMC7665920 DOI: 10.1155/2020/4031015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that is diagnosed mainly on the basis of patient signs, symptoms, and laboratory indices. However, the exact causes of RA are unclear. Moreover, there is a lack of any method of dynamically evaluating the efficacy of the medication administered to treat RA. Here, we applied a random walk model to reveal the compatibility among the various constituents of traditional Chinese medicine and evaluate their therapeutic efficacy against RA. Drugs commonly used to treat RA were investigated using cluster analysis. The association rule analysis was applied to identify compatibilities among the constituents. A random walk model was developed to evaluate drug efficacy based on an in-house database comprising the clinical records of 9,408 RA patients. Frequently administered medicines were combined into three correlated sets. The evaluation based on the random walk method showed that the drug combination improved ESR, CRP, C3, C4, and IgA more effectively than any single drug. The present study demonstrated that the TCM constituents complement each other and various combinations of them produce different therapeutic effects on RA treatment.
Collapse
|
11
|
Zhang DH, Zhang X, Peng B, Deng SQ, Wang YF, Yang L, Zhang KZ, Ling CQ, Wu KL. Network pharmacology suggests biochemical rationale for treating COVID-19 symptoms with a Traditional Chinese Medicine. Commun Biol 2020; 3:466. [PMID: 32811894 PMCID: PMC7434773 DOI: 10.1038/s42003-020-01190-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Chinese herbal formulas including the lung-cleaning and toxicity-excluding (LCTE) soup have played an important role in treating the ongoing COVID-19 pandemic (caused by SARS-CoV-2) in China. Applying LCTE outside of China may prove challenging due to the unfamiliar rationale behind its application in terms of Traditional Chinese Medicine. To overcome this barrier, a biochemical understanding of the clinical effects of LCTE is needed. Here, we explore the chemical compounds present in the reported LCTE ingredients and the proteins targeted by these compounds via a network pharmacology analysis. Our results indicate that LCTE contains compounds with the potential to directly inhibit SARS-CoV-2 and inflammation, and that the compound targets proteins highly related to COVID-19’s main symptoms. We predict the general effect of LCTE is to affect the pathways involved in viral and other microbial infections, inflammation/cytokine response, and lung diseases. Our work provides a biochemical basis for using LCTE to treat COVID-19 and its main symptoms. Deng-hai Zhang et al. report a network pharmacology analysis of the Traditional Chinese Medicine (TCM) lung-cleaning and toxicity-excluding (LCTE) soup. By exploring the chemical compounds that make up LCTE and the likely pathways and proteins that they target, the authors show that LCTE may have the potential to directly inhibit the SARS-CoV-2 virus and relieve inflammatory symptoms.
Collapse
Affiliation(s)
- Deng-Hai Zhang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, 200135, Shanghai, China. .,Post-graduate Training Base in Shanghai Gongli, Post-Graduate College, Ningxia Medical University, 750004, Yinchuan, Ningxia Province, China.
| | - Xue Zhang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, 200135, Shanghai, China
| | - Bin Peng
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, 200135, Shanghai, China
| | - Sheng-Qiong Deng
- Department of Research Affair Management, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, 200135, Shanghai, China
| | - Yu-Fang Wang
- Post-graduate Training Base in Shanghai Gongli, Post-Graduate College, Ningxia Medical University, 750004, Yinchuan, Ningxia Province, China
| | - Lin Yang
- Post-graduate Training Base in Shanghai Gongli, Post-Graduate College, Ningxia Medical University, 750004, Yinchuan, Ningxia Province, China
| | - Kai-Zheng Zhang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Chang-Quan Ling
- The Traditional Chinese Medicines of Changhai Hospital, Secondary Military Medical University, 200433, Shanghai, China
| | - Kun-Lun Wu
- Department of Traditional Chinese Medicine, Shanghai Pudong Gongli Hospital, China, Secondary Military Medical University, 200135, Shanghai, China
| |
Collapse
|
12
|
Study on the Multitarget Mechanism of Sanmiao Pill on Gouty Arthritis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9873739. [PMID: 32831884 PMCID: PMC7424379 DOI: 10.1155/2020/9873739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Sanmiao pill (SMP), a Chinese traditional formula, had been used to treat gouty arthritis (GA). However, the active compounds and underlying mechanism remained unclear. Hence, network pharmacology and molecular docking were utilized to explore bioactive compounds and potential mechanism of action of SMP in treating GA. In the study, the compounds of SMP, corresponding targets, and GA-related targets were mined from various pharmacological databases. Then, herb-compound-target, compound-target, PPI, and target-pathway networks were constructed. Ultimately, molecular docking was carried out to verify the predicted results. The results indicated that 47 active compounds, 338 targets, and 144 disease targets were collected. Network analysis implied that Phellodendron chinense Schneid. played a vital role in the whole formula. Moreover, 7 compounds (quercetin, kaempferol, wogonin, rutaecarpine, baicalein, beta-sitosterol, and stigmasterol) and 4 targets (NFKB1, RELA, MAPK1, and TNF) might be the kernel compounds and targets of SMP against GA. According to GOBP and KEGG pathway enrichment analysis and target-pathway network, SMP might exert a therapeutic role in GA by regulating numerous biological processes and pathways, including lipopolysaccharide-mediated signaling pathway, positive regulation of transcription, Toll-like receptor signaling pathway, JAK-STAT signaling pathway, NOD-like receptor signaling pathway, and MAPK signaling pathway. The results of molecular docking showcased that 11 pairs of compound with targets had tight binding strength. Thereinto, 4 compounds of MAPK1 and 5 compounds of NFKB1 possessed a better combination, suggesting that MAPK1 and NFKB1 might be considered as therapeutic targets in treatment of GA. This study verified that SMP had synergistic effect on GA by multicomponents, multitargets, and multipathways.
Collapse
|
13
|
Network Pharmacology Study of Heat-Clearing and Detoxifying Traditional Chinese Medicine for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7831675. [PMID: 32382304 PMCID: PMC7196989 DOI: 10.1155/2020/7831675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023]
Abstract
This study aims to explore the possible homologous mechanism of 7 frequently-used herbs for heat-clearing and detoxification in traditional Chinese medicine (HDTCM) for treating Alzheimer's disease (AD), one of the most common types of dementia, based on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases. The common targets of the herbs and AD were identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway enrichment analysis. The results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. The IL-4 and IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the significant pathways associated with the 7 herbs. This study revealed that the analogous anti-AD mechanism of the 7 herbs of HDTCM may be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.
Collapse
|
14
|
Yang P, Qian F, Zhang M, Xu AL, Wang X, Jiang B, Zhou L, Zhou X. Zishen Tongluo formula ameliorates collagen-induced arthritis in mice by modulation of Th17/Treg balance. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112428. [PMID: 31783137 DOI: 10.1016/j.jep.2019.112428] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Tongluo formula (ZTF) is simplified from the Qingluo Tongbi formula, which has been applied to treat rheumatoid arthritis (RA) in clinical practices for several decades. Our previous studies have verified the effects of ZTF on arthritis animal models. However, its mechanism of treating RA is not clear. AIM OF THE STUDY The present study was designed to investigate the effects of ZTF on the Th17/Treg balance in RA mice and the role of the different herb groups with the effect of Zishen yangyin (YY), Huatan quyu (HT), or Qufeng chushi (QF) in ZTF. MATERIALS AND METHODS A mouse model of collagen-induced arthritis (CIA) was established. The animals were randomly divided into the normal, model, positive drug, YY, QF, HT, and the whole compound (ZTF) groups. After oral administration for one-month, cytokine levels in the plasma and histopathological changes of the joint were measured by ELISA and hematoxylin-eosin staining, respectively. Meanwhile, the balance of Th17/Treg cells in blood, spleen or lymph nodes was detected using flow cytometry and qPCR. RESULTS ZTF or the different functional groups could improve the joint inflammation, decrease the levels of proinflammatory cytokines, restore the balance of Th17 and Treg cells in CIA mice. However, there were some differences in each functional group: YY mainly promoted the responses of Treg cells while QF inhibited the functions of Th17 cells. Besides, HT regulated both Th17 and Treg cells to keep the immune balance. CONCLUSIONS ZTF could notably ameliorate CIA mice by restoring the balance of Th17/Treg cells. Each functional group could target Th17 and/or Treg cells to produce synergistic/enhancement effects, and ZTF had a better holistic effect in RA treatment.
Collapse
Affiliation(s)
- Pei Yang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Feiya Qian
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Mingfei Zhang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - A-Lan Xu
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiang Wang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Baoping Jiang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lingling Zhou
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
15
|
Zhang J, Huang Q, Zhao R, Ma Z. A network pharmacology study on the Tripteryguim wilfordii Hook for treatment of Crohn's disease. BMC Complement Med Ther 2020; 20:95. [PMID: 32293395 PMCID: PMC7092476 DOI: 10.1186/s12906-020-02885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 01/23/2023] Open
Abstract
Background To explore the mechanism of action of Tripterygium wilfordii Hook (TWH) in the treatment of Crohn’s disease (CD) by network pharmacology. Methods Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP) was used to obtain the active constituents and targets of TWH. “Crohn’s disease” was used as a search term to search for related targets of CD from GeneCards database and OMIM database, thereby obtaining the targets of TWH against CD. The Cytoscape 3.7.1 software was used to construct a Chinese medicine compound-target network and STRING database to construct a protein-protein interaction network (PPI). The DAVID 6.8 online tool was used to perform gene ontology (GO) and kyoto encyclopedia of genes and genome (KEGG) pathway enrichment analysis of overlapping targets. Results The database results showed that there were 30 active ingredients (14 key active ingredients) in TWH and 36 targets were screened out for CD treatment. Network analysis indicated that main targets of main active components of TWH were target genes such as VEGFA, MAPK8 and CASP3, which are involved in the regulation of cancer pathway, TNF signal pathway, hepatitis B pathway, apoptosis pathway, NF-kappa B signal pathway and so forth. Conclusions TWH can play a multi-target and multi-channel synergistic treatment of CD by anti-angiogenesis, anti-apoptosis, anti-inflammation and immune regulation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Qifeng Huang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Rui Zhao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Zhiyuan Ma
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
16
|
In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:152-158. [PMID: 32113846 PMCID: PMC7102521 DOI: 10.1016/j.joim.2020.02.005] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Objective In this study we execute a rational screen to identify Chinese medical herbs that are commonly used in treating viral respiratory infections and also contain compounds that might directly inhibit 2019 novel coronavirus (2019-nCoV), an ongoing novel coronavirus that causes pneumonia. Methods There were two main steps in the screening process. In the first step we conducted a literature search for natural compounds that had been biologically confirmed as against sever acute respiratory syndrome coronavirus or Middle East respiratory syndrome coronavirus. Resulting compounds were cross-checked for listing in the Traditional Chinese Medicine Systems Pharmacology Database. Compounds meeting both requirements were subjected to absorption, distribution, metabolism and excretion (ADME) evaluation to verify that oral administration would be effective. Next, a docking analysis was used to test whether the compound had the potential for direct 2019-nCoV protein interaction. In the second step we searched Chinese herbal databases to identify plants containing the selected compounds. Plants containing 2 or more of the compounds identified in our screen were then checked against the catalogue for classic herbal usage. Finally, network pharmacology analysis was used to predict the general in vivo effects of each selected herb. Results Of the natural compounds screened, 13 that exist in traditional Chinese medicines were also found to have potential anti-2019-nCoV activity. Further, 125 Chinese herbs were found to contain 2 or more of these 13 compounds. Of these 125 herbs, 26 are classically catalogued as treating viral respiratory infections. Network pharmacology analysis predicted that the general in vivo roles of these 26 herbal plants were related to regulating viral infection, immune/inflammation reactions and hypoxia response. Conclusion Chinese herbal treatments classically used for treating viral respiratory infection might contain direct anti-2019-nCoV compounds.
Collapse
|
17
|
Lu C, Fu W, Zhou R, Hu W. Network pharmacology-based study on the mechanism of Yiganling capsule in hepatitis B treatment. BMC Complement Med Ther 2020; 20:37. [PMID: 32024508 PMCID: PMC7076828 DOI: 10.1186/s12906-020-2815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yiganling (YGL) capsule is a traditional Chinese medicine preparation consisting of eight herbs that has been clinically proven to have a favorable treatment effect on Hepatitis B (HB). However, due to its multiple targets and multi-pharmacological effects, the mechanisms of YGL capsule in the treatment of HB are unknown. Methods First, the chemical constituents of YGL capsules were obtained from the Chinese medicine database, and YGL capsules were constructed. Second, active compounds were screened by the ADME model. The target fishing model was used to screen the corresponding targets of active compounds and to construct a compounds and compound targets network. Using human disease databases and literature mining, we systematically identified genes associated with HB, constructed disease-specific protein-protein interaction networks, and performed clustering and enrichment analyses of these networks. These networks were then merged to obtain a compound-disease target network, and cluster and enrichment analyses were performed on the compound-disease target network to acquire a compounds-disease targets-mechanism network and a clustering network. Results We successfully built eight pharmacological network diagrams, including four primary networks and other network maps. The four dominating network maps included a HB disease-associated protein-protein interaction network, a YGL capsule compounds-target network, a YGL capsule ingredient target-HB disease target network, and a YGL-HB disease mechanism network. Other networks included a pathway of HB disease targets, the HB disease protein-protein interaction cluster analysis network, and the YGL-HB target clustering network. Conclusion This study successfully forecasted, illuminated, and confirmed the synergistic effects of HB disease molecules and discovered the potential of HB relevant targets, clusters, and target-related biological processes and signaling pathways. Our research not only provides theoretical support for the molecular and pharmacological mechanisms of YGL capsule in HB treatment, but also provides new research methods for the study of the other traditional Chinese medicinal compounds.
Collapse
Affiliation(s)
- Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
18
|
Wang Y, Liu T, Ma F, Lu X, Mao H, Zhou W, Yang L, Li P, Zhan Y. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. J Diabetes Res 2020; 2020:2421631. [PMID: 33274236 PMCID: PMC7695487 DOI: 10.1155/2020/2421631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) poses a major public-health burden globally. Tripterygium wilfordii Hook F (TwHF) is a widely employed herbal medicine in decreasing albuminuria among diabetic patients. However, a holistic network pharmacology strategy to investigate the active components and therapeutic mechanism underlying DKD is still unavailable. METHODS We collected TwHF ingredients and their targets by traditional Chinese Medicine databases (TCMSP). Then, we obtained DKD targets from GeneCards and OMIM and collected and analyzed TwHF-DKD common targets using the STRING database. Protein-protein interaction (PPI) network was established by Cytoscape and analyzed by MCODE plugin to get clusters. In addition, the cytoHubba software was used to identify hub genes. Finally, all the targets of clusters were subjected for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses via DAVID. RESULTS A total of 51 active ingredients in TwHF were identified and hit by 88 potential targets related to DKD. Compounds correspond to more targets include kaempferol, beta-sitosterol, stigmasterol, and Triptoditerpenic acid B, which appeared to be high-potential compounds. Genes with higher degree including VEGFA, PTGS2, JUN, MAPK8, and HSP90AA1 are hub genes of TwHF against DKD, which are involved in inflammation, insulin resistance, and lipid homeostasis. Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. DAVID results indicated that TwHF may play a role in treating DKD through AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, insulin resistance, and calcium signaling pathway (P < 0.05). CONCLUSION Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. The key mechanisms of TwHF against DKD might be involved in the reduction of renal inflammation by downregulating VEGFA.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tongtong Liu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Fang Ma
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoguang Lu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Huimin Mao
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Weie Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Liping Yang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yongli Zhan
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|