1
|
Weaver FE, White E, Peek AM, Nurse CA, Austin RC, Igdoura SA. 4-Phenylbutyric acid mitigates ER stress-induced neurodegeneration in the spinal cords of a GM2 gangliosidosis mouse model. Hum Mol Genet 2025; 34:32-46. [PMID: 39530163 PMCID: PMC11756275 DOI: 10.1093/hmg/ddae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Sandhoff disease (SD), a fatal and rare lysosomal storage disorder (LSD), is caused by a deficiency of the enzyme β-hexosaminidase B and leads to severe accumulation of GM2 gangliosides in lysosomes, primarily within the central nervous system (CNS). This accumulation results in severe neurological impairment, lower motor neuron disease, and death. Currently, there are no effective therapies available for SD. Here, we explored the role of endoplasmic reticulum (ER) stress in the spinal cord during disease progression in an established mouse model of SD and revealed the beneficial outcome of off-label treatment with the FDA-approved drug, 4-phenylbutyric acid (4-PBA). We analyzed the expression and localization of ER stress and cellular apoptosis markers, which revealed significant upregulation of these factors within motor neurons. Additionally, we observed a > 50% reduction in neuronal numbers throughout all spinal cord regions. Our studies also tested the impact of the chemical chaperone 4-PBA on ER stress in mice, and following administration, we observed significant improvements in motor neuromuscular function and life span throughout disease progression. 4-PBA treatment significantly reduced apoptosis in spinal cord neurons and increased the number of choline acetyltransferase (ChAT)-positive neurons, with little effect on astrogliosis or sensory interneurons. Overall, this study provides strong evidence for the role of chronic ER stress in the pathophysiology of SD and highlights 4-PBA as a promising therapeutic treatment for SD and potentially other related LSDs.
Collapse
Affiliation(s)
- Fiona E Weaver
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Elizabeth White
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Allyson M Peek
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4L8, Canada
- The Research Institute of St. Joe’s Hamilton and The Hamilton Center for Kidney Research, 50 Charlton Avenue E., Hamilton, ON, L8N 4A6, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street W., Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
2
|
Li R, Sun K. Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress. Cell Stress Chaperones 2024; 29:750-763. [PMID: 39515603 PMCID: PMC11626768 DOI: 10.1016/j.cstres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
Collapse
Affiliation(s)
- Renzhong Li
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu Province, China; The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Sun
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China; Anhui Acupuncture Hospital, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Xin B, Wang Q, Wang X, Li F, Bai M, Fu H, Yan Z, Zhu Y, Huang X. Reduction of excessive unfolded protein response by 4-phenylbutyric acid may mitigate procymidone-induced testicular damage in mice by changing the levels of circRNA Scar and circZc3h4. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105689. [PMID: 38072544 DOI: 10.1016/j.pestbp.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
Procymidone (PCM) exposure below the no-observed-effect level triggers changes in circRNA Scar and circZc3h4 and overactivation of the unfolded protein response (UPR) in mice, culminating in testicular injury. The 4-phenyl butyric acid (4-PBA) is known to stabilize proteins and reduce the UPR. This study employed an in vitro system in which mouse testes were cultured with 1 × 10-5 M PCM and varying concentrations (0, 20, 40, and 80 mM) of 4-PBA; 4-week-old male mice were subsequently treated with 100 mg/kg/d PCM (suspended in corn oil) and/or 100 mg/kg/d 4-PBA for 21 d, consecutively. The treatments were as follows: the negative control (NC) group was orally administered corn oil; the positive control (PC) group was orally administered PCM; the 4-PBA group was intraperitoneally injected with 4-PBA; the 4-PBA-I group was orally administered PCM and 4-PBA simultaneously; the 4-PBA-II group received daily administration of 4-PBA 24 h prior to PCM; and the 4-PBA-III group was intraperitoneally injected with 4-PBA for 7 d after 21 d of PCM administration. However, the 4-PBA intervention groups showed no considerable changes in the overall or testicular appearance of mice. In vitro, 4-PBA inhibited the PCM-induced testicular injury, with the most significant effect observed at 80 mM. In vivo, the 4-PBA-III group exhibited the best in vivo effects. Our findings indicate that 4-PBA conferred testicular protection by decreasing PCM-induced circRNA Scar, elevating circZc3h4, and suppressing UPR both in vitro and in vivo. It has been hypothesized that 4-PBA mitigates testicular damage by reducing excessive UPR levels.
Collapse
Affiliation(s)
- Bingyan Xin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Qing Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China.
| | - Xin Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
4
|
Gourgas O, Lemire G, Eaton AJ, Alshahrani S, Duker AL, Li J, Carroll RS, Mackenzie S, Nikkel SM, Bober MB, Boycott KM, Murshed M. Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia. Nat Commun 2023; 14:7054. [PMID: 37923733 PMCID: PMC10624854 DOI: 10.1038/s41467-023-41651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/13/2023] [Indexed: 11/06/2023] Open
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the cysteine 19 residue to phenylalanine or tyrosine. These individuals present with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous 'knock-in' mice expressing C19F MGP recapitulate most of the skeletal anomalies observed in the affected individuals. Our results suggest that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Overall, our findings support that heterozygous variants in MGP altering the Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly.
Collapse
Affiliation(s)
- Ophélie Gourgas
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison J Eaton
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- University of Alberta, Edmonton, AB, Canada
| | - Sultanah Alshahrani
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Jingjing Li
- Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Monzur Murshed
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
- Shriners Hospitals for Children - Canada, Montreal, QC, Canada.
| |
Collapse
|
5
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
6
|
Möller-Kerutt A, Schönhoff B, Rellmann Y, George B, Braun DA, Pavenstädt H, Weide T. Loss of surface transport is a main cellular pathomechanism of CRB2 variants causing podocytopathies. Life Sci Alliance 2023; 6:6/3/e202201649. [PMID: 36549870 PMCID: PMC9780758 DOI: 10.26508/lsa.202201649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Crumbs2 (CRB2) is a central component of the renal filtration barrier and part of the slit diaphragm, a unique cell contact formed by glomerular podocytes. Some CRB2 variants cause recessive inherited forms of steroid-resistant nephrotic syndrome. However, the disease-causing potential of numerous CRB2 variants remains unknown. Here, we report the establishment of a live-cell imaging-based assay, allowing a quantitative evaluation of the pathogenic potential of so far non-categorized CRB2 variants. Based on in silico data analysis and protein prediction software, putative disease-associated CRB2 missense variants were selected, expressed as CRB2-GFP fusion proteins, and analyzed in reporter cell lines with BFP-labeled plasma membrane. We found that in comparison with PM-localized WT, disease-associated CRB2 variants remained predominantly at the ER. Accumulation at the ER was also present for several non-characterized CRB2 variants and variants in which putative disulfide bridge-forming cysteines were replaced. Strikingly, WT CRB2 retained inside the ER in cells lacking protein disulfide isomerase A3, indicating that posttranslational modification, especially the formation of disulfide bridges, is a crucial step for the CRB2 PM transport.
Collapse
Affiliation(s)
- Annika Möller-Kerutt
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| | - Birgit Schönhoff
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| | - Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Britta George
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| | - Daniela Anne Braun
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| | - Hermann Pavenstädt
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| | - Thomas Weide
- University Hospital of Muenster (UKM), Internal Medicine (MedD), Muenster, Germany
| |
Collapse
|
7
|
Mulchandani V, Banerjee A, Vadlamannati AV, Kumar S, Das Sarma J. Connexin 43 trafficking and regulation of gap junctional intercellular communication alters ovarian cancer cell migration and tumorigenesis. Biomed Pharmacother 2023; 159:114296. [PMID: 36701988 DOI: 10.1016/j.biopha.2023.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer persists to be the most lethal gynecological malignancy, demanding rigorous treatments involving radio-chemotherapy that trigger toxicity and consequently mortality among patients. An improved understanding of the disease progression may pioneer curative therapies. Mouse epithelial ovarian cancer cell lines, ID8 and ID8-VEGF (overexpressing VEGF) were intraperitoneally injected in C57BL/6 female mice to develop a Syngeneic Ovarian cancer mouse model. It was observed that ID8-VEGF cells were able to induce aggressive tumor growth in mice compared to ID8 cells. Furthermore, results of the current in vitro study comparing ID8 and ID8-VEGF demonstrated that highly tumorigenic ID8-VEGF had reduced gap junctional intercellular communication (GJIC) due to intracellular Connexin 43 (Cx43) expression. Additionally, ID8 cells with reduced tumorigenic capability expressed significant GJIC. Furthermore, loss of GJIC in ID8-VEGF cells induced shorter tunneling nanotube formations, while ID8 cells develops longer tunneling nanotube to maintain cellular crosstalk. The administration of a pharmacological drug 4-phenylbutyrate (4PBA) ensured the restoration of GJIC in both the ovarian cancer cell lines. Additionally, 4PBA treatment significantly inhibited the migration of ovarian cancer cell lines and tumor formation in ovarian cancer mice models. In summary, the 4PBA-mediated restoration of GJIC suppressed migration (in vitro) and tumorigenesis (in vivo) of ovarian cancer cells. The present study suggests that Cx43 assembled GJIC and its supportive signaling pathways are a prospective target for restricting ovarian cancer progression.
Collapse
Affiliation(s)
- Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anurag Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arunima Vijaya Vadlamannati
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
8
|
Germon A, Heesom KJ, Amoah R, Adams JC. Protein disulfide isomerase A3 activity promotes extracellular accumulation of proteins relevant to basal breast cancer outcomes in human MDA-MB-A231 breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C113-C132. [PMID: 36374169 PMCID: PMC9799142 DOI: 10.1152/ajpcell.00445.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Metastasis and recurrence of breast cancer remain major causes of patient mortality, and there is an ongoing need to identify new therapeutic targets relevant to tumor invasion. Protein disulfide isomerase A3 (PDIA3) is a disulfide oxidoreductase and isomerase of the endoplasmic reticulum that has known extracellular substrates and has been correlated with aggressive breast cancers. We show that either prior PDIA3 inhibition by the disulfide isomerase inhibitor 16F16 or depletion of heparin-binding proteins strongly reduces the activity of conditioned medium (CM) of MDA-MB-231 human breast cancer cells to support promigratory cell spreading and F-actin organization by newly adherent MDA-MB-231 cells. Quantitative proteomics to investigate effects of 16F16 inhibition on heparin-binding proteins in the CM of MDA-MB-231 cells identified 80 proteins reproducibly decreased at least twofold (at q ≤ 0.05) after 16F16 treatment. By Gene Ontology analysis, many of these have roles in extracellular matrix (ECM) structure and function and cell adhesion; ribosomal proteins that also correlate with extracellular vesicles were also identified. Protein-protein interaction analysis showed that many of the extracellular proteins have known network interactions with each other. The predominant types of disulfide-bonded domains in the extracellular proteins contained β-hairpin folds, with the knottin fold the most common. From human breast cancer data sets, the extracellular proteins were found to correlate specifically with the basal subtype of breast cancer and their high expression in tumors correlated with reduced distant metastasis-free survival. These data provide new evidence that PDIA3 may be a relevant therapeutic target to alter properties of the ECM-associated microenvironment in basal breast cancer.
Collapse
Affiliation(s)
- Anna Germon
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Reiss Amoah
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Koganti R, Yadavalli T, Sutar Y, Mallick S, Date A, Shukla D. Topical phenylbutyrate antagonizes NF-κB signaling and resolves corneal inflammation. iScience 2022; 25:105682. [PMID: 36536680 PMCID: PMC9758524 DOI: 10.1016/j.isci.2022.105682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic inflammation of the immune privileged cornea originating from viral or nonviral conditions results in significant vision loss. Topical corticosteroids are the common treatments for corneal inflammation, but the drugs cause serious and potentially blinding side effects in the long term. Therefore, new standalone and/or synergistic anti-inflammatory therapies with lower side effects are desperately needed. Here, we show that the aromatic fatty acid phenylbutyrate (PBA) acts as a potent inhibitor of inflammation in preclinical ocular-inflammation models. PBA prevents the transcription as well as translation of pro-inflammatory cytokines by LPS and poly(I:C) via persistent inhibition of NF-κB signaling. PBA quickens the resolution of ocular inflammation in mice by decreasing corneal thickness and immune cell infiltration. More importantly, PBA can synergize with the dexamethasone to antagonize NF-κB signaling at lower drug concentrations. Our results demonstrate that PBA therapy exerts previously unreported anti-inflammatory effects in the eye and facilitates corneal healing during persistent inflammation.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
- R. Ken Coit College of Pharmacy, The University of Arizona, Tuscon, AZ 85721, USA
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
| | - Abhijit Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, HI 96720, USA
- R. Ken Coit College of Pharmacy, The University of Arizona, Tuscon, AZ 85721, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Wang Y, Fan A, Lu L, Pan Z, Ma M, Luo S, Liu Z, Yang L, Cai J, Yin F. Exosome modification to better alleviates endoplasmic reticulum stress induced chondrocyte apoptosis and osteoarthritis. Biochem Pharmacol 2022; 206:115343. [DOI: 10.1016/j.bcp.2022.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
|
11
|
Icaritin, a metabolite of Icarrin, Alleviates non-alcoholic fatty liver disease via inhibition of lipogenesis and ER stress. Eur J Pharmacol 2022; 937:175378. [DOI: 10.1016/j.ejphar.2022.175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
|
12
|
Mogre S, Blazanin N, Walsh H, Ibinson J, Minnich C, Andrew Hu CC, Glick AB. TGFβ1 regulates HRas-mediated activation of IRE1α through the PERK-RPAP2 axis in keratinocytes. Mol Carcinog 2022; 61:958-971. [PMID: 35975910 PMCID: PMC9486931 DOI: 10.1002/mc.23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Transforming Growth Factor β1 (TGFβ1) is a critical regulator of tumor progression in response to HRas. Recently, TGFβ1 has been shown to trigger ER stress in many disease models; however, its role in oncogene-induced ER stress is unclear. Oncogenic HRas induces the unfolded protein response (UPR) predominantly via the Inositol-requiring enzyme 1α (IRE1α) pathway to initiate the adaptative responses to ER stress, with importance for both proliferation and senescence. Here, we show a role of the UPR sensor proteins IRE1α and (PKR)-like endoplasmic reticulum kinase (PERK) to mediate the tumor-suppressive roles of TGFβ1 in mouse keratinocytes expressing mutant forms of HRas. TGFβ1 suppressed IRE1α phosphorylation and activation by HRas both in in vitro and in vivo models while simultaneously activating the PERK pathway. However, the increase in ER stress indicated an uncoupling of ER stress and IRE1α activation by TGFβ1. Pharmacological and genetic approaches demonstrated that TGFβ1-dependent dephosphorylation of IRE1α was mediated by PERK through RNA Polymerase II Associated Protein 2 (RPAP2), a PERK-dependent IRE1α phosphatase. In addition, TGFβ1-mediated growth arrest in oncogenic HRas keratinocytes was partially dependent on PERK-induced IRE1α dephosphorylation and inactivation. Together, these results demonstrate a critical cross-talk between UPR proteins that is important for TGFβ1-mediated tumor suppressive responses.
Collapse
Affiliation(s)
- Saie Mogre
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Nicholas Blazanin
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Hailey Walsh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Jack Ibinson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Chase Minnich
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
13
|
Park J, Lee SY. A review of osteoarthritis signaling intervention using small-molecule inhibitors. Medicine (Baltimore) 2022; 101:e29501. [PMID: 35960127 PMCID: PMC9371536 DOI: 10.1097/md.0000000000029501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Numerous small-molecule inhibitors (SMIs) have been approved as adjuvant or first-line therapies for malignancies. Based on cancer treatment using SMIs, next-generation SMIs that can be used to optimize the therapeutic index, overcome drug resistance, and establish combination therapies are in development. Osteoarthritis (OA) is the most common chronic joint disease with senescence, and there are various approaches to OA treatment; however, the gold standard treatment is controversial. Therefore, in this manuscript, we demonstrated the potential of using SMIs in OA treatment and described the general strategies for using SMIs in OA treatment.
Collapse
Affiliation(s)
- Junyong Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Sang Yeob Lee
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
- * Correspondence: Sang Yeob Lee, MD, PhD, Division of Rheumatology, Department of Internal Medicine, College of Medicine, Dong-A University, 26 Daeshingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea (e-mail: )
| |
Collapse
|
14
|
Tiwari S, Gupta P, Singh A, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. 4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation. Neurochem Res 2022; 47:3385-3401. [PMID: 35922743 DOI: 10.1007/s11064-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Parul Gupta
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Chaturvedi
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - M Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
15
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
17
|
Dreier R, Ising T, Ramroth M, Rellmann Y. Estradiol Inhibits ER Stress-Induced Apoptosis in Chondrocytes and Contributes to a Reduced Osteoarthritic Cartilage Degeneration in Female Mice. Front Cell Dev Biol 2022; 10:913118. [PMID: 35669511 PMCID: PMC9163336 DOI: 10.3389/fcell.2022.913118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 01/29/2023] Open
Abstract
Gender differences are a common finding in osteoarthritis (OA). This may result from a differential response of males and females to endoplasmic reticulum (ER) stress in articular chondrocytes. We have previously described that ER stress in cartilage-specific ERp57 KO mice (ERp57 cKO) favors the development of knee OA, since this stress condition cannot be adequately compensated in articular chondrocytes with increasing age leading to the induction of apoptotic cell death and subsequent cartilage degeneration. The aim of this study was to enlighten gender-specific differences in ER stress, apoptosis, and OA development in ERp57 cKO mice. The analyses were extended by in vitro studies on the influence of estradiol in CRISPR/Cas9-generated C28/I2 ERp57 knock out (KO) and WT cells. ER stress was evaluated by immunofluorescence analysis of the ER stress markers calnexin (Cnx) and binding-immunoglobulin protein (BiP), also referred to as glucose-regulating protein 78 (GRP78) in vivo and in vitro. Apoptotic cell death was investigated by a commercially available cell death detection ELISA and TUNEL assay. OA development in mice was analyzed by toluidine blue staining of paraffin-embedded knee cartilage sections and quantified by OARSI-Scoring. Cell culture studies exhibited a reduction of ER stress and ER stress-induced apoptosis in C28/I2 cells in presence of physiological estradiol concentrations. This is consistent with a slower increase in age-related ER stress and a reduced number of apoptotic chondrocytes in female mice compared to male littermates contributing to a reduced osteoarthritic cartilage degeneration in female mice. Taken together, this study demonstrates that the female sex hormone estradiol can reduce ER stress and ER stress-induced apoptosis in articular chondrocytes, thus minimizing critical events favoring osteoarthritic cartilage degeneration. Therefore, the inhibition of ER stress through a modulation of effects induced by female sex hormones appears to be attractive for OA therapy.
Collapse
|
18
|
Romeo MA, Montani MSG, Benedetti R, Arena A, Gaeta A, Cirone M. The dysregulation of autophagy and ER stress induced by HHV-6A infection activates pro-inflammatory pathways and promotes the release of inflammatory cytokines and cathepsin S by CNS cells. Virus Res 2022; 313:198726. [DOI: 10.1016/j.virusres.2022.198726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
19
|
Dahiya P, Hussain MA, Mazumder S. mtROS Induced via TLR-2-SOCE Signaling Plays Proapoptotic and Bactericidal Role in Mycobacterium fortuitum-Infected Head Kidney Macrophages of Clarias gariepinus. Front Immunol 2022; 12:748758. [PMID: 34987503 PMCID: PMC8720869 DOI: 10.3389/fimmu.2021.748758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying Mycobacterium fortuitum-induced mycobacteriosis remain unexplored. Using head kidney macrophages (HKM) from catfish (Clarias gariepinus), we report that Ca2+ surge across mitochondrial-Ca2+ uniporter (MICU), and consequent mitochondrial ROS (mtROS) production, is imperative for mycobactericidal activity. Inhibition of mtROS alleviated HKM apoptosis and enhanced bacterial survival. Based on RNA interference (RNAi) and inhibitor studies, we demonstrate that the Toll-like receptor (TLR)-2–endoplasmic reticulum (ER) stress–store-operated calcium entry (SOCE) axis is instrumental for activating the mt-Ca2+/mtROS cascade in M. fortuitum-infected HKM. Additionally, pharmacological inhibition of mtROS attenuated the expression of CHOP, STIM1, and Orai1, which suggests a positive feedback loop between ER-stress-induced SOCE and mtROS production. Elevated tumor necrosis factor alpha (TNF-α) levels and caspase-8 activity were observed in HKM consequent to M. fortuitum infection, and our results implicate that mtROS is crucial in activating the TNF-mediated caspase-8 activation. Our results for the first time demonstrate mitochondria as an innate immune signaling center regulating mycobacteriosis in fish. We conclude that M. fortuitum-induced persistent SOCE signaling leads to mtROS production, which in turn activates the TNF-α/caspase-8 axis culminating in HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Priyanka Dahiya
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Faculty of Life Sciences & Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
20
|
Bian C, Sun J, Huang X, Ji S, Ji H. Endoplasmic reticulum stress is involved in lipid accumulation induced by oleic acid in adipocytes of grass carp (Ctenopharyngodon idella): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:275-284. [PMID: 35091868 DOI: 10.1007/s10695-021-01031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
It has been extensively claimed that endoplasmic reticulum stress (ER stress) is related to lipid accumulation in mammals, but little is known in fish. This study aims at elucidating the role of ER stress in mediating lipid accumulation induced by monounsaturated oleic acid (OA) with a focus on the transcriptional level. We treated the adipocytes of grass carp with 200 μM and 400 μM OA, respectively, while the control group was treated with 2% bovine serum albumin (BSA). The results showed that cell viability was significantly improved, while 400 μM OA treatment promoted neutral lipid accumulation along with stimulating ER stress more obviously. Although lipolysis and fatty acid β-oxidation were activated simultaneously, the primary effect of OA seems to be promotion of lipid accumulation. To further explore whether ER stress affects lipid accumulation, 4-phenyl butyric acid (4-PBA), an effective inhibitor of ER stress, was used to pretreat the cells for 4 h. Unsurprisingly, it was found that the mRNA expressions of genes linked with ER stress were decreased. Intracellular triglyceride (TG) content was also decreased, which was in accordance with the mRNA expressions of adipogenic and lipogenic transcription factors as well as their target genes. Collectively, our data shows that ER stress may take part in OA-induced lipid accumulation in adipocytes via activating adipogenesis and lipogenesis. Based on this, strategies for protecting ER could be used to alleviate excessive accumulation of lipid in grass carp adipose tissue.
Collapse
Affiliation(s)
- Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
21
|
Rellmann Y, Eidhof E, Hansen U, Fleischhauer L, Vogel J, Clausen-Schaumann H, Aszodi A, Dreier R. ER Stress in ERp57 Knockout Knee Joint Chondrocytes Induces Osteoarthritic Cartilage Degradation and Osteophyte Formation. Int J Mol Sci 2021; 23:ijms23010182. [PMID: 35008608 PMCID: PMC8745280 DOI: 10.3390/ijms23010182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building D3, 48149 Muenster, Germany;
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Jonas Vogel
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
- Correspondence: ; Tel.: +49-251-8355573
| |
Collapse
|
22
|
Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl) 2021; 238:1833-1845. [PMID: 33723660 DOI: 10.1007/s00213-021-05812-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)-induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.
Collapse
|
23
|
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 2020; 78:109880. [PMID: 33307190 DOI: 10.1016/j.cellsig.2020.109880] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany.
| |
Collapse
|
24
|
The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19. J Clin Med 2020; 9:jcm9113518. [PMID: 33143379 PMCID: PMC7693988 DOI: 10.3390/jcm9113518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts’ chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the development of autoimmunity and its widespread pathogenic impact in COVID-19 patients. Viral proteins share highly antigenic epitopes with human chaperones, eliciting anti-viral antibodies that crossreact with the chaperones. Both, the critical functions of chaperones in the infectious cycle of viruses and the possible role of these molecules in COVID-19 autoimmune phenomena, make clear that molecular chaperones are promising candidates for the development of antiviral strategies. These could consist of inhibiting-blocking those chaperones that are necessary for the infectious viral cycle, or those that act as autoantigens in the autoimmune reactions causing generalized destructive effects on human tissues.
Collapse
|
25
|
4-Phenylbutyrate ameliorates apoptotic neural cell death in Down syndrome by reducing protein aggregates. Sci Rep 2020; 10:14047. [PMID: 32820178 PMCID: PMC7441064 DOI: 10.1038/s41598-020-70362-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Individuals with Down syndrome (DS) commonly show unique pathological phenotypes throughout their life span. Besides the specific effects of dosage-sensitive genes on chromosome 21, recent studies have demonstrated that the gain of a chromosome exerts an adverse impact on cell physiology, regardless of the karyotype. Although dysregulated transcription and perturbed protein homeostasis are observed in common in human fibroblasts with trisomy 21, 18, and 13, whether and how this aneuploidy-associated stress acts on other cell lineages and affects the pathophysiology are unknown. Here, we investigated cellular stress responses in human trisomy 21 and 13 neurons differentiated from patient-derived induced pluripotent stem cells. Neurons of both trisomies showed increased vulnerability to apoptotic cell death, accompanied by dysregulated protein homeostasis and upregulation of the endoplasmic reticulum stress pathway. In addition, misfolded protein aggregates, comprising various types of neurodegenerative disease-related proteins, were abnormally accumulated in trisomic neurons. Intriguingly, treatment with sodium 4-phenylbutyrate, a chemical chaperone, successfully decreased the formation of protein aggregates and prevented the progression of cell apoptosis in trisomic neurons. These results suggest that aneuploidy-associated stress might be a therapeutic target for the neurodegenerative phenotypes in DS.
Collapse
|
26
|
Chen P, Chen C, Hu M, Cui R, Liu F, Yu H, Ren Y. S-allyl-L-cysteine protects hepatocytes from indomethacin-induced apoptosis by attenuating endoplasmic reticulum stress. FEBS Open Bio 2020; 10:1900-1911. [PMID: 32790969 PMCID: PMC7459406 DOI: 10.1002/2211-5463.12945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Drug‐induced liver injury (DILI) can lead to acute liver failure, a lethal condition which may require liver transplantation. Hepatotoxicity associated with nonsteroidal anti‐inflammatory drugs (NSAIDs) accounts for ~ 10% of all DILI. In the current study, we determined whether indomethacin, one of the most commonly used NSAIDS, induced apoptosis in hepatocytes and investigated the underlying mechanism. Meanwhile, we investigated the protective effect of S‐allyl‐L‐cysteine (SAC), an active garlic derivative, on indomethacin‐induced hepatocyte apoptosis, and its implication on endoplasmic reticulum (ER) stress. We found that indomethacin triggered ER stress, as indicated by the elevated expression of phosphorylated eukaryotic translation initiation factor 2α (eIF2α), C/EBP homologous protein (CHOP) and spliced XBP1 in a rat liver BRL‐3A cell line. Following indomethacin treatment, caspase 3 activation and hepatocyte apoptosis were also observed. Inhibition of ER stress by chemical chaperone 4‐phenyl butyric acid alleviated cell apoptosis caused by indomethacin, indicating that ER stress is involved in indomethacin‐induced hepatocyte apoptosis. Moreover, SAC abated indomethacin‐induced eIF2α phosphorylation, inhibited CHOP upregulation and its nuclear translocation, abrogated the activation of caspase 3 and finally, protected hepatocytes from apoptosis. In conclusion, SAC protects indomethacin‐induced hepatocyte apoptosis through mitigating ER stress and may be suitable for development into a potential new therapeutic agent for the treatment of DILI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Chen
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Mingdao Hu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feng Liu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Henghai Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuling Ren
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
27
|
Abstract
Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.
Collapse
Affiliation(s)
- Michael D Briggs
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen F Dietmar
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
28
|
Zhu S, Chen M, Chen M, Ye J, Ying Y, Wu Q, Dou H, Bai L, Mao F, Ni W, Yu K. Fibroblast Growth Factor 22 Inhibits ER Stress-Induced Apoptosis and Improves Recovery of Spinal Cord Injury. Front Pharmacol 2020; 11:18. [PMID: 32116697 PMCID: PMC7026669 DOI: 10.3389/fphar.2020.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Currently, inhibiting or reducing neuronal cell death is the main strategy to improve recovery of spinal cord injury (SCI). Therapies using nerve growth factors to treat SCI mainly focused on reducing the area damaged by postinjury degeneration to promote functional recovery. In this report, we investigated the mechanism of ER (endoplasmic reticulum) stress-induced apoptosis and the protective action of fibroblast growth factor 22 (FGF22) in vivo. Our results demonstrated that ER stress-induced apoptosis plays a significant role in injury of SCI model rats. FGF22 administration promoted recovery and increased neuron survival in the spinal cord lesions of model mice. The protective effect of FGF22 is related to decreased expression of CHOP (C/EBP-homologous protein), GRP78 (glucose-regulated protein 78), caspase-12, X-box binding protein 1 (XBP1), eukaryotic initiation factor 2α (Eif-2α) and Bad which are ER stress-induced apoptosis response proteins. Moreover, FGF22 administration also increased the number of neurons and the expression of growth-associated protein 43 (GAP43) which was related to axon regeneration. We also demonstrated that the protective effect of FGF22 effectively reduces neuronal apoptosis and promotes axonal regeneration. Our study first illustrated that the function of FGF22 is related to the inhibition of ER stress-induced cell death in SCI recovery via activation of downstream signals. This study also suggested a new tendency of FGF22 therapy development in central neural system injuries, which involved chronic ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengji Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liyunian Bai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Second Medical College of Wenzhou Medical University, Wenzhou, China
| | - Fangmin Mao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|