1
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Zhu L, Wang M, Fu S, Li K, Liu J, Wang Z. BPA disrupted the testis testosterone levels by interfering ER enrichments within StAR 5' flanking region in rare minnow Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109338. [PMID: 35381366 DOI: 10.1016/j.cbpc.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) is a widely used endocrine disruptor, which has attracted much attention due to its harmful effects on male reproduction. To investigate the interference of BPA on steroid synthesis in males, male rare minnows (Gobiocypris rarus) were exposed to 15 μg L-1 BPA for 7, 14 and 21 d. Meanwhile, a positive control group was performed with 25 ng L-1 17α-ethynyl estradiol (EE2). Results showed that BPA exposure induced lower testosterone (T) levels, while affecting the transcripts of steroidogenic gene StAR. Moreover, BPA induced abnormal germ cells proliferation in the testis in rare minnow. Transcriptome analysis showed that 354 transcripts significantly differentially expressed after BPA exposure for 14 d, several of them were enriched in the signaling pathways of cell cycle process, PPAR signaling pathway, the steroid synthesis pathway and estrogen signaling pathway. BPA significantly increased estrogen receptor (ER) levels and induced abnormal protein levels of PPARγ. BPA disrupted the StAR expression by interfering ER enrichments within StAR 5' flanking region. Additionally, our study also revealed that BPA and EE2 might have different mechanisms for interfering with steroid hormone levels and germ cells proliferation in the testis.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Jeminiwa BO, Knight RC, Abbot KL, Pondugula SR, Akingbemi BT. Gonadal sex steroid hormone secretion after exposure of male rats to estrogenic chemicals and their combinations. Mol Cell Endocrinol 2021; 533:111332. [PMID: 34038751 PMCID: PMC9310441 DOI: 10.1016/j.mce.2021.111332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022]
Abstract
Environmental chemicals can interfere with the endocrine axis hence they are classified as endocrine disrupting chemicals (EDCs). Bisphenol S (BPS) is used in the manufacture of consumer products because of its superior thermal stability and is thought to be a safe replacement chemical for its analog bisphenol A (BPA). However, the safety profile of these compounds alone or in the presence of other EDCs is yet to be fully investigated. Also, the estrogenic chemical 17α-ethinyl estradiol (EE2) and a constituent of female oral contraceptives for women, is present in water supplies. To simulate concurrent exposure of the population to chemical mixtures, we investigated the effects of BPA, BPS, EE2, and their combinations on sex steroid secretion in the growing male rat gonad. Prepubertal and pubertal male rats at 21 and 35 days of age were provided test chemicals in drinking water (parts per billion) for 14 days. At termination of exposure, some individual chemical effects were modified by exposure to chemical combinations. Single chemical exposures markedly decreased androgen secretion but their combination (e.g., BPA + BPS + EE2) caused the opposite effect, i.e., increased Leydig cell T secretion. Also, the test chemicals acting alone or in combination increased testicular and Leydig cell 17β-estradiol (E2) secretion. Chemical-induced changes in T and E2 secretion were associated with altered testicular expression of the cholesterol side-chain cleavage (Cyp11a1) and 17β-hydroxysteroid dehydrogenase (Hsd17β) enzyme protein. Additional studies are warranted to understand the mechanisms by which single and chemical combinations impact function of testicular cells and disrupt their paracrine regulation.
Collapse
Affiliation(s)
- B O Jeminiwa
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R C Knight
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - K L Abbot
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - S R Pondugula
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - B T Akingbemi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells. Int J Mol Sci 2021; 22:ijms22052540. [PMID: 33802611 PMCID: PMC7961766 DOI: 10.3390/ijms22052540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.
Collapse
|
5
|
Komarowska MD, Grubczak K, Czerniecki J, Hermanowicz A, Hermanowicz JM, Debek W, Matuszczak E. Identification of the Bisphenol A (BPA) and the Two Analogues BPS and BPF in Cryptorchidism. Front Endocrinol (Lausanne) 2021; 12:694669. [PMID: 34335471 PMCID: PMC8318035 DOI: 10.3389/fendo.2021.694669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE to explore the association of plasma concentrations of bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) with unilateral cryptorchidism. In addition, to analyze selected demographic and intraoperative characteristics. DESIGN Retrospective analysis to determine plasma concentrations of total BPA, BPS and BPF using gas chromatography - mass spectrometry (GC-MS) among prepubertal boys with cryptorchidism and prebupertal male control subjects. During operation, the size, turgor and location of the cryptorchid testes were assessed. MAIN OUTCOME MEASURE Plasma concentrations of total BPA, BPS and BPF. RESULTS In children with cryptorchidism, plasma levels of BPA, BPS and BPF were significantly higher compared to the control subjects. For BPA, it was: median value: 9.95 ng/mL vs. 5.54 ng/mL, p<0.05. For BPS, it was: median value: 3.93 ng/mL vs. 1.45 ng/mL, p<0.001. For BPF, it was: median value: 3.56 ng/mL vs. 1.83 ng/mL, p<0.05. In cryptorchid group, BPA was detected in 61.4% samples, BPS in 19.3% and BPF in 19.3%. All the three bisphenols were detected in plasma samples of both the healthy subjects and the study cohort. In the latter group, we found significant higher levels of BPA in boys from urban areas. We found a weak positive correlation between the levels of BPS and BPF and reduced turgor of the testes. Furthermore, results showed weak positive correlations between BPA and BPS levels and the age of the children as well as between BPS and BPF concentrations and the place of residence. CONCLUSIONS Results provide a first characterization of prepubertal boys suffering from cryptorchidism and exposed to different kind of bisphenols. Our study suggests that cryptorchid boys are widely exposed to BPA and, to a lesser extent, also to its alternatives, such as BPS and BPF.
Collapse
Affiliation(s)
- Marta Diana Komarowska
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Jan Czerniecki
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Adam Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Wojciech Debek
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
6
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|