1
|
Wang R, Yang X, Chi Y, Zhang X, Ma X, Zhang D, Zhao T, Ren Y, Yang H, Ding W, Chu S, Zhou P. Regulation of hydrogen rich water on strawberry seedlings and root endophytic bacteria under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1497362. [PMID: 39640989 PMCID: PMC11617194 DOI: 10.3389/fpls.2024.1497362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Salt stress could lead to plant growth barriers and crop yield reduction. Strawberries are sensitive to salt stress, and improving salt tolerance is important for strawberry production. This study aimed to explore the potential of hydrogen-rich water (HRW) to enhance salt tolerance in strawberries. Through pot experiments, we investigated how HRW affects plant growth, ion absorption, osmotic stress, oxidative stress, antioxidant enzyme levels, hormone levels, and root endophytic bacteria in strawberry seedlings under salt stress. The results showed that under 100 mM NaCl treatment, 50% and 100% HRW treatments significantly increased strawberry biomass by 0.29 g and 0.54g, respectively, wherein, 100% HRW significantly increased the shoot and root length by 15.34% and 24.49%, respectively. In addition, under salt stress the absorption of K+ by strawberry seedlings was increased with the HRW supplement, while the absorption of Na+ was reduced. Meanwhile, HRW treatment reduced the transfer of Na+ from root to shoot. Furthermore, under salt stress, HRW treatment increased the relative water content (RWC) by 12.35%, decreased the electrolyte leakage rate (EL) by 7.56%. HRW modulated phytohormone levels in strawberry seedlings, thereby alleviating the salt stress on strawberries. Moreover, HRW was found to promote plant growth by altering the diversity of bacteria in strawberry roots and recruiting specific microorganisms, such as Tistella. Our findings indicate that HRW could help restore the microecological homeostasis of strawberry seedlings, thus further mitigating salt stress. This study provides a novel perspective on the mechanisms by which HRW alleviates salt stress, thereby enriching the scientific understanding of hydrogen's applications in agriculture.
Collapse
Affiliation(s)
- Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Ting Zhao
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Haiyan Yang
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| |
Collapse
|
2
|
Chitapanarux I, Onchan W, Chakrabandhu S, Muangwong P, Autsavapromporn N, Ariyanon T, Akagi J, Mizoo A. Pilot Feasibility and Safety Study of Hydrogen Gas Inhalation in Locally Advanced Head and Neck Cancer Patients. Onco Targets Ther 2024; 17:863-870. [PMID: 39493677 PMCID: PMC11531231 DOI: 10.2147/ott.s478613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Hydrogen (H2) gas inhalation might alleviate acute radiotherapy toxicities by scavenging free radicals produced by ionizing radiation and anti-inflammatory properties. This study aimed to investigate the feasibility and safety of H2 gas inhalation during concurrent chemoradiotherapy (CCRT) in patients with locally advanced head and neck cancer (LAHNC). Patients and Methods We designed a pilot prospective study combining CCRT with aerosol inhalation of H2 gas. Each patient was scheduled to receive daily intensity-modulated radiotherapy (IMRT) in 33 fractions on a weekday and six cycles of weekly chemotherapy. All patients inhaled H2 gas through a cannula or mask 1 hour per day, 1-2 hours before IMRT. The primary endpoint was the feasibility of H2 inhalation. Eighty percent of the patients who completed at least 20 applications of H2 gas inhalation were considered feasible. The secondary endpoints were safety profiles during H2 gas inhalation (vital signs and symptoms related to H2 gas inhalation) and acute toxicities during CCRT. Results We enrolled 10 patients with LAHNC between July 2023 and December 2023. All patients received 33 fractions of H2 gas inhalation on the same day as the IMRT. Vital signs during and at the end of H2 gas inhalation were stable in all patients. None of the 10 patients had hypertension or hypotension during any of the 33 inhalations. No adverse events related to H2 gas inhalation, such as cough, nasal bleeding, dizziness, headache, nausea, or vomiting, were reported. Grade 3 leukopenia was found in two patients (20%) during the 5th week of CCRT. Grade 2 radiation dermatitis and pharyngitis were found in three patients (30%). Conclusion H2 gas inhalation combined with CCRT is feasible and safe for patients with LAHNC.
Collapse
Affiliation(s)
- Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wimrak Onchan
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pooriwat Muangwong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tapanut Ariyanon
- Division of Head and Neck Surgery and Oncology and Hyperbaric Oxygen Therapy, Department of Otolaryngology, Chiang Mai University, Chiang Mai, Thailand
| | - Junji Akagi
- Kumamoto Immunity Integrative Medical Clinic, Kumamoto, Japan
| | | |
Collapse
|
3
|
Wang J, Wang W, Zhang J, Xiao F, Li Z, Xu P, Wang H, Du H, Liu S, Li H, Zhang X, Chen S, Gao Z, Wang S, Wang J, Song M. Deficiency of flavin-containing monooxygenase 3 protects kidney function after ischemia-reperfusion in mice. Commun Biol 2024; 7:1054. [PMID: 39191965 PMCID: PMC11350001 DOI: 10.1038/s42003-024-06718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The kidney is vulnerable to ischemia and reperfusion (I/R) injury that can be fatal after major surgery. Currently, there are no effective treatments for I/R-induced kidney injury. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite linked to many diseases, but its role in I/R-induced kidney injury remains unclear. Here, our clinical data reveals an association between preoperative systemic TMAO levels and postoperative kidney injury in patients after post-cardiopulmonary bypass surgery. By genetic deletion of TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) and dietary supplementation of choline to modulate TMAO levels, we found that TMAO aggravated acute kidney injury through the triggering of endoplasmic reticulum (ER) stress and worsened subsequent renal fibrosis through TGFβ/Smad signaling activation. Together, our study underscores the negative role of TMAO in I/R-induced kidney injury and highlights the therapeutic potential through the modulation of TMAO levels by targeting FMO3, thereby mitigating acute kidney injury and preventing subsequent renal fibrosis.
Collapse
Affiliation(s)
- Jiawan Wang
- Department of Anaesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei Xiao
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zeya Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haozhou Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heng Du
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huili Li
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- Department of Anaesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing, China.
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
4
|
Wang M, Wen W, Chen Y, Yishajiang S, Li Y, Li Z, Zhang X. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia. Clinics (Sao Paulo) 2024; 79:100368. [PMID: 38703717 PMCID: PMC11087918 DOI: 10.1016/j.clinsp.2024.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE The purpose of this study is to develop an animal model of Chronic Intermittent Hypoxia (CIH) and investigate the role of the TRPC5 channel in cardiac damage in OSAHS rats. METHODS Twelve male Sprague Dawley rats were randomly divided into the CIH group and the Normoxic Control (NC) group. Changes in structure, function, and pathology of heart tissue were observed through echocardiography, transmission electron microscopy, HE-staining, and TUNEL staining. RESULTS The Interventricular Septum thickness at diastole (IVSd) and End-Diastolic Volume (EDV) of rats in the CIH group significantly increased, whereas the LV ejection fraction and LV fraction shortening significantly decreased. TEM showed that the myofilaments in the CIH group were loosely arranged, the sarcomere length varied, the cell matrix dissolved, the mitochondrial cristae were partly flocculent, the mitochondrial outer membrane dissolved and disappeared, and some mitochondria were swollen and vacuolated. The histopathological examination showed that the cardiomyocytes in the CIH group were swollen with granular degeneration, some of the myocardial fibers were broken and disorganized, and most of the nuclei were vacuolar and hypochromic. CONCLUSION CIH promoted oxidative stress, the influx of Ca2+, and the activation of the CaN/NFATc signaling pathway, which led to pathological changes in the morphology and ultrastructure of cardiomyocytes, the increase of myocardial apoptosis, and the decrease of myocardial contractility. These changes may be associated with the upregulation of TRPC5.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Wen Wen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Yulan Chen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China.
| | - Sharezati Yishajiang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Yu Li
- Second Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, China
| | - Zhiqiang Li
- Laboratory Animal Center, Xinjiang Medical University, China
| | - Xiangyang Zhang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, China
| |
Collapse
|
5
|
Khiji MN, Arghidash F, Tanha GK, Zadeh RH, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Lam AKY, Giovannetti E, Ferns GA, Nazari E, Avan A. The Therapeutic Application of Hydrogen in Cancer: The Potential and Challenges. Curr Pharm Des 2024; 30:1295-1306. [PMID: 38638053 DOI: 10.2174/0113816128296710240404040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
Hydrogen therapy has emerged as a possible approach for both preventing and treating cancer. Cancers are often associated with oxidative stress and chronic inflammation. Hydrogen, with its unique physiological functions and characteristics, exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties, making it an attractive candidate for cancer treatment. Through its ability to mitigate oxidative damage, modulate inflammatory responses, and sustain cellular viability, hydrogen demonstrates significant potential in preventing cancer recurrence and improving treatment outcomes. Preclinical studies have shown the efficacy of hydrogen therapy in several cancer types, highlighting its ability to enhance the effectiveness of conventional treatments while reducing associated side effects. Furthermore, hydrogen therapy has been found to be safe and well-tolerated in clinical settings. Nonetheless, additional investigations are necessary to improve a comprehensive understanding of the mechanisms underlying hydrogen's therapeutic potential and refine the administration and dosage protocols. However, further clinical trials are still needed to explore its safety profile and capacity. In aggregate, hydrogen therapy represents an innovative and promising treatment for several malignancies.
Collapse
Affiliation(s)
- Morteza Nazari Khiji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faezeh Arghidash
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Hossein Zadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alfred King-Yin Lam
- Department of Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center [VUMC], Amsterdam, The Netherlands
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Department of Health Information, Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Ke C, Huang Y, Mao Z, Ke Z, Wang Z, Li R, Long S, Guo Y, Wang F, Qian M, Zhao R, Zheng J, Xie S. Calcineurin suppresses rat H9c2 cardiomyocyteprotective autophagy under chronic intermittent hypoxia by downregulating the AMPK pathway. Exp Cell Res 2023; 433:113850. [PMID: 37926341 DOI: 10.1016/j.yexcr.2023.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Calcineurin plays a key role in cardiovascular pathogenesis by exerting pro-apoptotic effects in cardiomyocytes. However, whether calcineurin can regulate cardiomyocyte autophagy under conditions of chronic intermittent hypoxia (CIH) remains unclear. Here, we showed that CIH induced calcineurin activity in H9c2 cells, which attenuated adenosine monophosphate-activated protein kinase (AMPK) signaling and inhibited autophagy. In H9c2 cells, autophagy levels, LC3 expression, and AMPK phosphorylation were significantly elevated under conditions of CIH within 3 days. However, after 5 days of CIH, these effects were reversed and calcineurin activity and apoptosis were significantly increased. The calcineurin inhibitor 17-Allyl-1,14-dihydroxy-12-[2-(4-hydroxy-3-methoxycyclohexyl) -1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo- [22.3.1.04,9]octacos-18- ene-2,3,10,16-tetrone (FK506) restored AMPK activation and LC3 expression and attenuated CIH-induced H9c2 cell apoptosis. In contrast, calcineurin overexpression significantly attenuated the increase in LC3 expression and enhanced H9c2 cell apoptosis under conditions of CIH. Calcineurin inhibition failed to induce autophagy or alleviate apoptosis in H9c2 cells expressing a kinase-dead K45R AMPK mutant. Autophagy inhibition abrogated the protective effects of FK506-mediated calcineurin inhibition. These results indicate that calcineurin suppresses adaptive autophagy during CIH by downregulating AMPK activation. Our findings reveal the underlying mechanism of calcineurin and autophagy regulation during H9c2 cell survival under conditions of CIH and may provide a new strategy for preventing CIH-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Changjiang Ke
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yongjun Huang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghua Ke
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zeng Wang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Ruyou Li
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Shenghua Long
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yuping Guo
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Fei Wang
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Meng Qian
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Ruxia Zhao
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Juan Zheng
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Sheng Xie
- Department of Respiratory and Critical Care Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China.
| |
Collapse
|
7
|
Lu D, Wang K, Jiang W, Zhang H, Zhang H. Effect of renal denervation on cardiac remodelling and function in rats with chronic intermittent hypoxia. Clin Exp Pharmacol Physiol 2023. [PMID: 37311598 DOI: 10.1111/1440-1681.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Chronic intermittent hypoxia (CIH) mimicking obstructive sleep apnea elicits divergent outcomes in the cardiovascular systems. The effect of renal denervation (RDN) on the heart during CIH remains unclear. We aimed to explore the effect of RDN on cardiac remodelling in rats exposed to CIH and to discuss the underlying mechanisms. Adult Sprague Dawley rats were divided into four groups: control, control+RDN, CIH (CIH exposure for 6 weeks, nadir of 5%-7% to peak of 21% O2, 20 cycles/h, 8 h/day) and CIH+ RDN group. Echocardiography, cardiac fibrosis, left ventricle (LV) expressions of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and inflammatory factors were tested at the end of the study. Cardiac structural remodelling and dysfunction were induced by CIH and attenuated by RDN. Myocardial fibrosis was more severe in the CIH group than in the control group and improved in the CIH + RDN group. Sympathetic activity reflected by tyrosine hydroxylase (TH) expression and noradrenaline were significantly elevated after CIH but blunted by RDN. CIH downregulated LV protein expressions of Nrf2 and HO-1, which was activated by RDN. The downstream of Nrf2/HO-1, such as NQO1 and SOD expression, elevated following RDN. RDN also decreased the mRNA expression of IL-1β and IL-6. Notably, control+RDN did not affect cardiac remodelling and Nrf2/HO-1 compared with the control. Taken together, we found that RDN exerted cardio-protective effects in a rat model of CIH involving Nrf2/HO-1 pathway and inflammation.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| | - Kai Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| |
Collapse
|
8
|
Saengsin K, Sittiwangkul R, Chattipakorn SC, Chattipakorn N. Hydrogen therapy as a potential therapeutic intervention in heart disease: from the past evidence to future application. Cell Mol Life Sci 2023; 80:174. [PMID: 37269385 DOI: 10.1007/s00018-023-04818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Excessive oxidative stress and inflammation play an important role in the development and progression of cardiovascular disease. Molecular hydrogen, a small colorless and odorless molecule, is considered harmless in daily life when its concentration is below 4% at room temperature. Owing to the small size of the hydrogen molecule, it can easily penetrate the cell membrane and can be metabolized without residue. Molecular hydrogen can be administered through inhalation, the drinking of hydrogen-rich water, injection with hydrogen-rich-saline, and bathing of an organ in a preservative solution. The utilization of molecular hydrogen has shown many benefits and can be effective for a wide range of purposes, from prevention to the treatment of diseases. It has been demonstrated that molecular hydrogen exerts antioxidant, anti-inflammatory, and antiapoptotic effects, leading to cardioprotective benefits. Nevertheless, the exact intracellular mechanisms of its action are still unclear. In this review, evidence of the potential benefits of hydrogen molecules obtained from in vitro, in vivo, and clinical investigations are comprehensively summarized and discussed with a focus on the cardiovascular aspects. The potential mechanisms involved in the protective effects of molecular hydrogen are also presented. These findings suggest that molecular hydrogen could be used as a novel treatment in various cardiovascular pathologies, including ischemic-reperfusion injury, cardiac injury from radiation, atherosclerosis, chemotherapy-induced cardiotoxicity, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Kwannapas Saengsin
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rekwan Sittiwangkul
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Ma T, Yang L, Zhang B, Lv X, Gong F, Yang W. Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac injury. Int Immunopharmacol 2023; 119:110071. [PMID: 37080067 DOI: 10.1016/j.intimp.2023.110071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
AIMS Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various biological effects such as anti-oxidation, anti-apoptosis and regulation of autophagy. Hydrogen therapy is currently considered to be an emerging therapeutic method, but the effect and mechanism of hydrogen on doxorubicin-induced myocardial injury have not been determined. The purpose of this study was to investigate the protective effect of hydrogen inhalation on doxorubicin-induced chronic myocardial injury and its effect and mechanism on autophagy. METHODS In this study, we established a chronic heart injury model by intraperitoneal injection of doxorubicin in rats for 30 days, accumulating 20 mg/kg. The effect of hydrogen inhalation on the cardiac function in rats was explored by echocardiography, Elisa, and H&E staining. To clarify the influence of autophagy, we detected the expression of LC3 and related autophagy proteins in vivo and in vitro by immunofluorescence and western blot.In order to further explore the mechanism of autophagy, we added pathway inhibitors and used western blot to preliminarily investigate the protective effect of hydrogen inhalation on myocardial injury caused by doxorubicin. RESULTS Hydrogen inhalation can improve doxorubicin-induced cardiac function decline and pathological structural abnormalities in rats. It was confirmed by immunofluorescence that hydrogen treatment could restore the expression of autophagy marker protein LC3 (microtubule-associated protein 1 light chain 3) in cardiomyocytes reduced by doxorubicin, while reducing cardiomyocyte apoptosis. Mechanistically, Western blot results consistently showed that hydrogen treatment up-regulated the ratio of p-AMPK (phosphorylated AMP-dependent protein kinase) to AMPK and down-regulated p-mTOR (phosphorylated mammalian target of rapamycin) and mTOR ratio. CONCLUSIONS These results suggest that hydrogen inhalation can activate autophagy through the AMPK/mTOR pathway and protect against myocardial injury induced by doxorubicin. Hydrogen inhalation therapy may be a potential treatment for doxorubicin-induced myocardial injury.
Collapse
Affiliation(s)
- Tianjiao Ma
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Lei Yang
- Department of Urinary Surgery, The First Hospital of Harbin, Harbin 150010, China
| | - Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150001, China
| | - Feifei Gong
- Department of Imaging, Chest Hospital of Harbin, 150056, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
10
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
11
|
Yang XY, Geng L, Li R, Song JX, Jia CL, An JR, Sun MF, Xu S, Guo YJ, Zhao Y, Ji ES. Huperzine A-Liposomes Efficiently Improve Neural Injury in the Hippocampus of Mice with Chronic Intermittent Hypoxia. Int J Nanomedicine 2023; 18:843-859. [PMID: 36824413 PMCID: PMC9942512 DOI: 10.2147/ijn.s393346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background Chronic intermittent hypoxia (CIH) could cause neuronal damage, accelerating the progression of dementia. However, safe and effective therapeutic drugs and delivery are needed for successful CIH therapy. Purpose To investigate the neuroprotective effect of Huperzine A (HuA) packaged with nanoliposomes (HuA-LIP) on neuronal damage induced by CIH. Methods The stability and release of HuA-LIP in vitro were identified. Mice were randomly divided into the Control, CIH, HuA-LIP, and HuA groups. The mice in the HuA and HuA-LIP groups received HuA (0.1 mg/kg, i.p.), and HuA-LIP was administered during CIH exposure for 21 days. HuA-LIP contains the equivalent content of HuA. Results We prepared a novel formulation of HuA-LIP that had good stability and controlled release. First, HuA-LIP significantly ameliorated cognitive dysfunction and neuronal damage in CIH mice. Second, HuA-LIP elevated T-SOD and GSH-Px abilities and decreased MDA content to resist oxidative stress damage induced by CIH. Furthermore, HuA-LIP reduced brain iron levels by downregulating TfR1, hepcidin, and FTL expression. In addition, HuA-LIP activated the PKAα/Erk/CREB/BDNF signaling pathway and elevated MAP2, PSD95, and synaptophysin to improve synaptic plasticity. Most importantly, compared with HuA, HuA-LIP showed a superior performance against neuronal damage induced by CIH. Conclusion HuA-LIP has a good sustained-release effect and targeting ability and efficiently protects against neural injury caused by CIH.
Collapse
Affiliation(s)
- Xin-Yue Yang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Ronghui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Cui-Ling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Meng-Fan Sun
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Shan Xu
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Ya-Jing Guo
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - En-Sheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| |
Collapse
|
12
|
Song JX, Zhao YS, Zhen YQ, Yang XY, Chen Q, An JR, Ji ES. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. PHARMACEUTICAL BIOLOGY 2022; 60:609-620. [PMID: 35286247 PMCID: PMC8928803 DOI: 10.1080/13880209.2022.2043392] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
CONTEXT Obstructive sleep apnoea (OSA) causes chronic intermittent hypoxia (CIH), which results in mitochondrial dysfunction and generates reactive oxygen species (ROS) in the heart. Excessive free iron could accelerate oxidative damage, which may be involved in this process. Banxia-Houpu decoction (BHD) was reported to improve the apnoea hypopnoea index in OSA patients, but the specific mechanism was still unclear. OBJECTIVE To investigate whether BHD could reduce CIH-induced heart damage by regulating iron metabolism and mitochondrial function. MATERIALS AND METHODS C57BL/6N mice were randomly divided into control, CIH and BHD groups. Mice were exposed to CIH (21 - 5% O2, 20 times/h, 8 h/d) and administered BHD (3.51, 7.01 and 14.02 g/kg, intragastrically) for 21 d. Cardiac and mitochondrial function, iron levels, apoptosis and mitophagy were determined. RESULTS BHD (7.01 g/kg) significantly improved cardiac dysfunction, pathological change and mitochondrial structure induced by CIH. BHD increased the Bcl-2/Bax ratio (1.4-fold) and inhibited caspase 3 cleavage in CIH mice (0.45-fold). BHD activated mitophagy by upregulating Parkin (1.94-fold) and PINK1 (1.26-fold), inhibiting the PI3K-AKT-mTOR pathway. BHD suppressed ROS generation by decreasing NOX2 (0.59-fold) and 4-HNE (0.83-fold). BHD reduced the total iron in myocardial cells (0.72-fold) and mitochondrial iron by downregulating Mfrn2 (0.81-fold) and MtFt (0.78-fold) proteins, and upregulating ABCB8 protein (1.33-fold). Rosmarinic acid, the main component of Perilla Leaf in BHD, was able to react with Fe2+ and Fe3+ in vitro. DISCUSSION AND CONCLUSIONS These findings encourage the use of BHD to resist cardiovascular injury and provide the theoretical basis for clinical treatment in OSA patients.
Collapse
Affiliation(s)
- Ji-Xian Song
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ya-Qin Zhen
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Xin-Yue Yang
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Qi Chen
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ji-Ren An
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| |
Collapse
|
13
|
Liu Q, Hao T, Li L, Huang D, Lin Z, Fang Y, Wang D, Zhang X. Construction of a mitochondrial dysfunction related signature of diagnosed model to obstructive sleep apnea. Front Genet 2022; 13. [PMID: 36468038 PMCID: PMC9714559 DOI: 10.3389/fgene.2022.1056691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background: The molecular mechanisms underlying obstructive sleep apnea (OSA) and its comorbidities may involve mitochondrial dysfunction. However, very little is known about the relationships between mitochondrial dysfunction-related genes and OSA. Methods: Mitochondrial dysfunction-related differentially expressed genes (DEGs) between OSA and control adipose tissue samples were identified using data from the Gene Expression Omnibus database and information on mitochondrial dysfunction-related genes from the GeneCards database. A mitochondrial dysfunction-related signature of diagnostic model was established using least absolute shrinkage and selection operator Cox regression and then verified. Additionally, consensus clustering algorithms were used to conduct an unsupervised cluster analysis. A protein-protein interaction network of the DEGs between the mitochondrial dysfunction-related clusters was constructed using STRING database and the hub genes were identified. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were conducted to explore the mechanisms involved in mitochondrial dysfunction in OSA. Immune cell infiltration analyses were conducted using CIBERSORT and single-sample GSEA (ssGSEA). Results: we established mitochondrial dysfunction related four-gene signature of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could easily distinguish between OSA patients and controls. In addition, based on mitochondrial dysfunction-related gene expression, we identified two clusters among all the samples and three clusters among the OSA samples. A total of 10 hub genes were selected from the PPI network of DEGs between the two mitochondrial dysfunction-related clusters. There were correlations between the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested that autophagy, inflammation pathways, and immune pathways are crucial in mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages were significantly different between the OSA and control samples, while several immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory T cells, and type 17 T helper cells), were significantly different among mitochondrial dysfunction-related clusters of OSA samples. Conclusion: A novel mitochondrial dysfunction-related four-gen signature of diagnostic model was built. The genes are potential biomarkers for OSA and may play important roles in the development of OSA complications.
Collapse
Affiliation(s)
- Qian Liu
- Shantou University Medical College, Shantou, China
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Daqi Huang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Ze Lin
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dong Wang
- Department of Cardiology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Natural polysaccharides as potential anti-fibrotic agents: A review of their progress. Life Sci 2022; 308:120953. [PMID: 36103957 DOI: 10.1016/j.lfs.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis, as a common disease which could be found in nearly all organs, is normally initiated by organic injury and eventually ended in cellular dysfunction and organ failure. Currently, effective and safe therapeutic strategies targeting fibrogenesis still in highly demand. Natural polysaccharides derived from natural resources possess promising anti-fibrosis potential, with no deleterious side effects. Based on the etiology and pathogenesis of fibrosis, this review summarizes the intervention effects and mechanisms of natural polysaccharides in the prevention and treatment of fibrosis. Natural polysaccharides are able to regulate each phase of the fibrogenic response, including primary injury to organs, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. In addition, polysaccharides significantly reduce fibrosis levels in multiple organs including heart, lung, liver and kidney. The investigation of the pathogenesis of fibrosis indicates that mechanisms including the inhibition of TGF-β/Smad, NF-κB, HMGB1/TLR4, cAMP/PKA signaling pathways, MMPs/TIMPs system as well as microRNAs are promising therapeutic targets. Natural polysaccharides can target these mediators or pathways to alleviate fibrosis. The information reviewed here offer new insights into the understanding the protective role of natural polysaccharides against fibrosis, help design further experimental studies related to polysaccharides and fibrotic responses, and shed light on a potential treatment for fibrosis.
Collapse
|
15
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Fu F. The Significance of NO-Synthase, Reactive Oxygen Species, Kinases and KATP-Channels in the Development of the Infarct-Limiting Effect of Adaptation to Hypoxia. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kong X, Lu T, Lu YY, Yin Z, Xu K. Effect of Hydrogen Inhalation Therapy on Hearing Loss of Patients With Nasopharyngeal Carcinoma After Radiotherapy. Front Med (Lausanne) 2022; 9:828370. [PMID: 35433731 PMCID: PMC9008775 DOI: 10.3389/fmed.2022.828370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Objective To evaluate the clinical efficacy and safety of hydrogen inhalation in improving hearing loss in patients with long-term survival of nasopharyngeal carcinoma after radiotherapy. Methods The eustachian tube dysfunction score, pure tone air conduction threshold, bone conduction threshold, the score of tympanogram and otoscope were prospectively observed in patients with deafness after radiotherapy only or combined radiotherapy and chemotherapy for nasopharyngeal carcinoma. Paired t test and one-way analysis of variance were used to analyze the data before and after treatment. Results A total of 17 patients were observed. The median time from radiotherapy to now was 228 months, and the median time from the diagnose of deafness to now was 92 months. After 4 weeks of hydrogen inhalation, the score of eustachian tube dysfunction, air conduction and bone conduction hearing thresholds were significantly reduced, P values were 0.0293, 0.0027, 0.0404, respectively. The mean air-bone gap, the score of otoendoscopy and tympanogram were also decreased, but the differences were not significant (P = 0.2079, P = 0.0536, P = 0.1056). Patients with radiotherapy alone and concurrent chemo-radiotherapy had significantly lower air conduction hearing threshold after hydrogen absorption (P = 0.0142, P = 0.0495). The results of air and bone hearing thresholds before, 4 and 12 weeks after hydrogen inhalation showed a descending trend. The air and bone hearing thresholds before hydrogen inhalation were 74.69 ± 27.03 dB and 45.70 ± 21.58 dB, respectively. At the 12th week, the mean values of air and bone hearing thresholds were the lowest, which were 66.88 ± 20.88 dB and 40.94 ± 18.93 dB, respectively, but there was no significant difference in air and bone hearing thresholds among all groups (P = 0.6755, P = 0.7712). After hydrogen inhalation treatment, no adverse reactions such as nosebleed, chest pain, dyspnea, nausea, vomiting, dizziness, earache and allergic reaction were observed. Conclusion This is the first prospective study on the effect of hydrogen inhalation on hearing improvement in patients with deafness after radiotherapy/chemotherapy for nasopharyngeal carcinoma, suggesting that continuous hydrogen inhalation may be an alternative rehabilitation therapy for these patients.
Collapse
Affiliation(s)
- Xiaofeng Kong
- Hydrogen Medicine Institute, The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Tianyu Lu
- Department of Oncology, Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - You-Yong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhinan Yin
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Kecheng Xu
- Department of Oncology, Fuda Cancer Hospital, Jinan University, Guangzhou, China
- *Correspondence: Kecheng Xu
| |
Collapse
|
17
|
Wu X, Pan Z, Liu W, Zha S, Song Y, Zhang Q, Hu K. The Discovery, Validation, and Function of Hypoxia-Related Gene Biomarkers for Obstructive Sleep Apnea. Front Med (Lausanne) 2022; 9:813459. [PMID: 35372438 PMCID: PMC8970318 DOI: 10.3389/fmed.2022.813459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While there is emerging evidence that hypoxia critically contributes to the pathobiology of obstructive sleep apnea (OSA), the diagnostic value of measuring hypoxia or its surrogates in OSA remains unclear. Here we investigated the diagnostic value of hypoxia-related genes and explored their potential molecular mechanisms of action in OSA. Expression data from OSA and control subjects were downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) between OSA and control subjects were identified using the limma R package and their biological functions investigated with the clusterProfiler R package. Hypoxia-related DEGs in OSA were obtained by overlapping DEGs with hypoxia-related genes. The diagnostic value of hypoxia-related DEGs in OSA was evaluated by receiver operating curve (ROC) analysis. Random forest (RF) and lasso machine learning algorithms were used to construct diagnostic models to distinguish OSA from control. Geneset enrichment analysis (GSEA) was performed to explore pathways related to key hypoxia-related genes in OSA. Sixty-three genes associated with hypoxia, transcriptional regulation, and inflammation were identified as differentially expressed between OSA and control samples. By intersecting these with known hypoxia-related genes, 17 hypoxia-related DEGs related to OSA were identified. Protein-protein interaction network analysis showed that 16 hypoxia-related genes interacted, and their diagnostic value was further explored. The 16 hypoxia-related genes accurately predicted OSA with AUCs >0.7. A lasso model constructed using AREG, ATF3, ZFP36, and DUSP1 had a better performance and accuracy in classifying OSA and control samples compared with an RF model as assessed by multiple metrics. Moreover, GSEA revealed that AREG, ATF3, ZFP36, and DUSP1 may regulate OSA via inflammation and contribute to OSA-related cancer risk. Here we constructed a reliable diagnostic model for OSA based on hypoxia-related genes. Furthermore, these transcriptional changes may contribute to the etiology, pathogenesis, and sequelae of OSA.
Collapse
|
18
|
Hasegawa T, Ito M, Hasegawa S, Teranishi M, Takeda K, Negishi S, Nishiwaki H, Takeda JI, LeBaron TW, Ohno K. Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. Int J Mol Sci 2022; 23:ijms23052888. [PMID: 35270030 PMCID: PMC8910898 DOI: 10.3390/ijms23052888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular hydrogen ameliorates pathological states in a variety of human diseases, animal models, and cell models, but the effects of hydrogen on cancer have been rarely reported. In addition, the molecular mechanisms underlying the effects of hydrogen remain mostly unelucidated. We found that hydrogen enhances proliferation of four out of seven human cancer cell lines (the responders). The proliferation-promoting effects were not correlated with basal levels of cellular reactive oxygen species. Expression profiling of the seven cells showed that the responders have higher gene expression of mitochondrial electron transport chain (ETC) molecules than the non-responders. In addition, the responders have higher mitochondrial mass, higher mitochondrial superoxide, higher mitochondrial membrane potential, and higher mitochondrial spare respiratory capacity than the non-responders. In the responders, hydrogen provoked mitochondrial unfolded protein response (mtUPR). Suppression of cell proliferation by rotenone, an inhibitor of mitochondrial ETC complex I, was rescued by hydrogen in the responders. Hydrogen triggers mtUPR and induces cell proliferation in cancer cells that have high basal and spare mitochondrial ETC activities.
Collapse
Affiliation(s)
- Tomoya Hasegawa
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Satoru Hasegawa
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Koki Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Shuto Negishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
| | - Tyler W. LeBaron
- Molecular Hydrogen Institute, Enoch City, UT 84721, USA;
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (T.H.); (M.I.); (S.H.); (M.T.); (K.T.); (S.N.); (H.N.); (J.-i.T.)
- Correspondence: ; Tel.: +81-52-744-2447
| |
Collapse
|
19
|
Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022; 28:27. [PMID: 35240982 PMCID: PMC8892414 DOI: 10.1186/s10020-022-00455-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
20
|
Wang S, He X, Li Q, Zhang Y, Hu J, Zong R, Zhuang J, Quantock AJ, Gao Y, Li W, Liu Z. Obstructive Sleep Apnea Affects Lacrimal Gland Function. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35238868 PMCID: PMC8899859 DOI: 10.1167/iovs.63.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose To determine the effect of obstructive sleep apnea syndrome (OSA) on lacrimal gland function and its mechanism. Methods Male mice aged seven to eight weeks were housed in cages with cyclic intermittent hypoxia to mimic OSA, and the control group was kept in a normal environment. Slit-lamp observation, fluorescein staining, and corneal sensitivity detection are used to assess cornea changes. Tear secretion was detected by phenol red cotton thread, and the pathological changes of lacrimal gland were observed by hematoxylin and eosin staining, oil red O staining, cholesterol and triglyceride kits, immunofluorescence staining, immunohistochemical staining, real-time polymerase chain reaction, transmission electron microscopy, and Western blot. Results Studies revealed a decreased tear secretion, corneal epithelial defects and corneal hypersensitivity. Myoepithelial cell damage, abnormal lipid accumulation, reduced cell proliferation, increased apoptosis and inflammatory cell infiltration in the lacrimal gland were also seen. Hifα and NF-κB signaling pathways, moreover, were activated, while Pparα was downregulated, in the lacrimal glands of OSA mice. Fenofibrate treatment significantly alleviated pathological changes of the lacrimal gland induced by OSA. Conclusion OSA disturbs the Hifα/Pparα/NF-κB signaling axis, which affects lacrimal gland structure and function and induces dry eye.
Collapse
Affiliation(s)
- Shaopan Wang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Qingmin Li
- Department of Ophthalmology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Yuhan Zhang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zhuang
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yingying Gao
- Department of Ophthalmology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.,Xiamen University Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Wang B, Li Z, Mao L, Zhao M, Yang B, Tao X, Li Y, Yin G. Hydrogen: A Novel Treatment Strategy in Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:126-136. [PMID: 35527991 PMCID: PMC9021642 DOI: 10.1159/000520981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hydrogen is a chemical substance that has yet to be widely used in medicine. However, recent evidence indicates that hydrogen has multi-faceted pharmacological effects such as antioxidant, anti-inflammatory, and antiapoptotic properties. An increased number of studies are being conducted on the application of hydrogen in various diseases, especially those affecting the renal system. SUMMARY Hydrogen can be inhaled, as a gas or liquid, and can be administered orally, intravenously, or locally. Hydrogen can rapidly enter suborganelles such as mitochondria and nucleus by simple diffusion, producing reactive oxygen species (ROS) and triggering DNA damage. Hydrogen can selectively scavenge hydroxyl radical (•OH) and peroxynitrite (ONOO-), but not other reactive oxygen radicals with physiological functions, such as peroxyanion (O2-) and hydrogen peroxide (H2O2). Although the regulatory effect of hydrogen on the signal transduction pathway has been confirmed, the specific mechanism of its influence on signal molecules remains unknown. Although many studies have investigated the therapeutic and preventive effects of H2 in cellular and animal experiments, clinical trials are few and still far behind. As a result, more clinical trials are required to investigate the role of hydrogen in kidney disease, as well as the effect of its dose, timing, and form on the overall efficacy. Large-scale randomized controlled clinical trials will be required before hydrogen can be used to treat renal illnesses. KEY MESSAGES This article reviews the mechanisms of hydrogen in the treatment of renal disease and explores the possibilities of its use in clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Longfei Mao
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingchang Yang
- Department of Critical Care Medicine, Central South University, Changsha, China
| | - Xiaowu Tao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Wei Q, Xu X, Chen L, Wang T, Xie L, Yu FC, Song SF, Sheng ZQ, Tong JY. Effects of chronic intermittent hypoxia on left cardiac function in young and aged mice. Am J Physiol Regul Integr Comp Physiol 2022; 322:R241-R252. [PMID: 35080993 DOI: 10.1152/ajpregu.00256.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease that is characterized by chronic intermittent hypoxia (CIH), and its impact is related to age. This study aims to assess the age-related impact of CIH on cardiac function and to further explore the mechanism. After 8 weeks of severe CIH exposure, the hearts of young mice showed slight physiological hypertrophy, decreased diastolic function, and collagen I accumulation but no obvious change in contractile function. However, the contractile function of the hearts of aged mice was severely decreased. CIH exposure promoted the fragmentation of mitochondria in the hearts of aged mice and decreased the mitochondrial membrane potential of cardiomyocytes, but these effects were not observed in young mice exposed to the same conditions. CIH induced significant decreases in basal respiration, maximum respiration and ATP production in cardiac mitochondria of aged mice compared to those of young mice. The assessment of mitochondrial-related proteins showed that young mouse hearts had upregulated adaptive nuclear respiratory factors (Nrf)1/2 sirtuin (SIRT)1/3 and transcription factor A (TFAM) expression that stabilized mitochondrial function in response to CIH exposure. Aged mouse hearts exhibited maladaptation to CIH exposure, and downregulation of SIRT1 and TFAM expression resulted in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qin Wei
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Xuan Xu
- Southeast University, Nanjing, Jiangsu, China
| | - Long Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Tao Wang
- Southeast University, Nanjing, Jiangsu, China
| | - Liang Xie
- Southeast University, Nanjing, Jiangsu, China
| | - Fu-Chao Yu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Si-Fan Song
- Southeast University, Nanjing, Jiangsu, China
| | | | - Jia-Yi Tong
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Tian Y, Zhang Y, Wang Y, Chen Y, Fan W, Zhou J, Qiao J, Wei Y. Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front Physiol 2022; 12:789507. [PMID: 34987419 PMCID: PMC8721893 DOI: 10.3389/fphys.2021.789507] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.
Collapse
Affiliation(s)
- Yan Tian
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Yafang Zhang
- Department of Pediatrics, Taian City Central Hospital, Taian, China
| | - Yu Wang
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China.,Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yunxi Chen
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Jing Qiao
- Department of Pediatrics, Tongji University Affiliated East Hospital, Shanghai, China
| | - Youzhen Wei
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| |
Collapse
|
24
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
25
|
Li C, Cao Y, Kohei F, Hao H, Peng G, Cheng C, Ye J. Nano-bubble hydrogen water: an effective therapeutic agent against inflammation related disease caused by viral infection in zebrafish model. Virol Sin 2022; 37:277-283. [PMID: 35249853 PMCID: PMC9170933 DOI: 10.1016/j.virs.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Since the anti-inflammatory effect of hydrogen has been widely known, it was supposed that hydrogen could suppress tissue damage by inhibiting virus-related inflammatory reactions. However, hydrogen is slightly soluble in water, which leads to poor effect of oral hydrogen-rich water therapy. In this study, the nano-bubble hydrogen water (nano-HW) (about 0.7 ppm) was prepared and its therapeutic effect against viral infection was investigated by utilizing spring viraemia of carp virus (SVCV)-infected zebrafish as model. Three-month-old zebrafish were divided into nano-HW treatment–treated group and aquaculture water treated group (control group). The results revealed that the cumulative mortality rate of SVCV-infected zebrafish was reduced by 40% after treatment with nano-bubble hydrogen water, and qRT-PCR results showed that SVCV replication was significantly inhibited. Histopathological examination staining showed that SVCV infection caused tissue damage was greatly alleviated after treatment with nano-bubble hydrogen water. Futhermore, SVCV infection caused reactive oxygen species (ROS) accumulation was significantly reduced upon nano-HW treatment. The level of proinflammatory cytokines IL-1β, IL-8, and TNF-α was remarkably reduced in the nano-HW-treated group in vivo and in vitro. Taken together, our data demonstrated for the first time that nano-HW could inhibit the inflammatory response caused by viral infection in zebrafish, which suggests that nano-HW can be applied to antiviral research,and provides a novel therapeutic strategy for virus-caused inflammation related disease. Nano-HW treatment reduces the mortality of SVCV-infected zebrafish. Nano-HW alleviates the inflammatory response caused by SVCV infection. Nano-HW inhibits SVCV replication.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiran Cao
- Wuhan Britain-China School, Wuhan, 430070, China
| | - Fukuda Kohei
- Shenzhen Nano Buddy Technology Co., Ltd., Shenzhen, 518000, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Cheng
- Wuhan Britain-China School, Wuhan, 430070, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Singh RB, Halabi G, Fatima G, Rai RH, Tarnava AT, LeBaron TW. Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID-19 patient. Clin Case Rep 2021; 9:e05039. [PMID: 34765212 PMCID: PMC8572338 DOI: 10.1002/ccr3.5039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
Administration of molecular hydrogen dissolved in water to patient with COVID-19-like symptoms may improve oxygen levels and exercise capacity.
Collapse
Affiliation(s)
- Ram B. Singh
- Halberg Hospital and Research InstituteMoradabadIndia
| | | | | | - Richa H. Rai
- School of PhysiotherapyDelhi Pharmaceutical Sciences and Research University DelhiIndia
| | | | - Tyler W. LeBaron
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesFaculty of Natural Sciences of Comenius UniversityBratislavaSlovak Republic
- Molecular Hydrogen InstituteCedar CityUtahUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedarUtahUSA
| |
Collapse
|
27
|
Shu S, Wang H, Zhu J, Liu Z, Yang D, Wu W, Cai J, Chen A, Tang C, Dong Z. Reciprocal regulation between ER stress and autophagy in renal tubular fibrosis and apoptosis. Cell Death Dis 2021; 12:1016. [PMID: 34716302 PMCID: PMC8556380 DOI: 10.1038/s41419-021-04274-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Both endoplasmic reticulum (ER) stress and autophagy have been implicated in chronic kidney injury and renal fibrosis. However, the relationship and regulatory mechanisms between ER stress and autophagy under this condition remain largely unknown. In this study, we first established a mouse model of ER stress-induced chronic kidney injury by 2 weekly injections of a low dose of tunicamycin (TM), a classical ER stress inducer. This model showed the induction of ER stress, autophagy, fibrosis and apoptosis in kidney tissues. In vitro, TM also induced ER stress, autophagy, fibrosis and apoptosis in HK-2 human kidney proximal tubular cells and BUMPT-306 mouse kidney proximal tubular cells. In these cells, autophagy inhibitor suppressed TM-induced fibrotic changes and apoptosis, suggesting an involvement of autophagy in ER stress-associated chronic kidney injury. PERK inhibitor ameliorated autophagy, fibrotic protein expression and apoptosis in TM-treated cells, indicating a role of the PERK/eIF2α pathway in autophagy activation during ER stress. Similar results were shown in TGF-β1-treated HK-2 cells. Interestingly, in both TM- or TGF-β1-treated kidney proximal tubular cells, inhibition of autophagy exaggerated ER stress, suggesting that autophagy induced by ER stress provides a negative feedback mechanism to reduce the stress. Together, these results unveil a reciprocal regulation between ER stress and autophagy in chronic kidney injury and fibrosis.
Collapse
Affiliation(s)
- Shaoqun Shu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Hui Wang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Jiefu Zhu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Zhiwen Liu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Danyi Yang
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Wenwen Wu
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Juan Cai
- grid.452708.c0000 0004 1803 0208Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011 China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011, China.
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, 410011, China. .,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
28
|
Alwazeer D, Liu FFC, Wu XY, LeBaron TW. Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5513868. [PMID: 34646423 PMCID: PMC8505069 DOI: 10.1155/2021/5513868] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is a widespread global pandemic with nearly 185 million confirmed cases and about four million deaths. It is caused by an infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which primarily affects the alveolar type II pneumocytes. The infection induces pathological responses including increased inflammation, oxidative stress, and apoptosis. This situation results in impaired gas exchange, hypoxia, and other sequelae that lead to multisystem organ failure and death. As summarized in this article, many interventions and therapeutics have been proposed and investigated to combat the viral infection-induced inflammation and oxidative stress that contributes to the etiology and pathogenesis of COVID-19. However, these methods have not significantly improved treatment outcomes. This may partly be attributable to their inability at restoring redox and inflammatory homeostasis, for which molecular hydrogen (H2), an emerging novel medical gas, may complement. Herein, we systematically review the antioxidative, anti-inflammatory, and antiapoptotic mechanisms of H2. Its small molecular size and nonpolarity allow H2 to rapidly diffuse through cell membranes and penetrate cellular organelles. H2 has been demonstrated to suppress NF-κB inflammatory signaling and induce the Nrf2/Keap1 antioxidant pathway, as well as to improve mitochondrial function and enhance cellular bioenergetics. Many preclinical and clinical studies have demonstrated the beneficial effects of H2 in varying diseases, including COVID-19. However, the exact mechanisms, primary modes of action, and its true clinical effects remain to be delineated and verified. Accordingly, additional mechanistic and clinical research into this novel medical gas to combat COVID-19 complications is warranted.
Collapse
Affiliation(s)
- Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76000 Igdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 Igdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000 Igdır, Turkey
| | - Franky Fuh-Ching Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Tyler W. LeBaron
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, Utah, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, 84720 Utah, USA
| |
Collapse
|
29
|
Fei W, Jiao W, Feng X, Chen X, Wang Y. Intermittent hypoxia mimicking obstructive sleep apnea aggravates early brain injury following ICH via neuroinflammation and apoptosis. Mol Med Rep 2021; 24:824. [PMID: 34558649 PMCID: PMC8485128 DOI: 10.3892/mmr.2021.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke associated with high mortality and morbidity due to the lack of effective therapy. Obstructive sleep apnea (OSA) has been reported to aggravate early brain injury (EBI) and worsen the overall outcome of patients with ICH. However, the precise role of OSA-mediated neuroinflammation and apoptosis following ICH has not been confirmed. The present study aimed to investigate the neuronal damage induced by OSA and the potential molecular mechanisms by which ICH-induced EBI regulates neural apoptosis in a C57BL/6 mouse ICH model. Mortality, neurological score, brain water content and neuronal death were evaluated by Evans blue extravasation, TUNEL staining, ELISA, analysis of reactive oxygen species/lipid peroxidation and western blotting. The results showed that OSA induction decreased survival rate, neurological score and neuron survival and upregulated the protein expression levels of Caspase-3, Bax, cytokines IL-1β, IL-6 and TNF-α and NF-κB, which indicated that OSA-mediated induction of apoptosis and neuroinflammation aggravated neuronal death following ICH. The molecular mechanism was partly dependent on the activating transcription factor/CHOP pathway. Taken together, the results demonstrated that OSA worsens neurological outcomes in mice and increases neuronal death by enhancing neural apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Wenjing Fei
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei Jiao
- Department of Nursing, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xiaoyan Feng
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xufeng Chen
- Department of Gastroenterology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yuhai Wang
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
30
|
MKRN1 Ubiquitylates p21 to Protect against Intermittent Hypoxia-Induced Myocardial Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9360339. [PMID: 34504644 PMCID: PMC8423574 DOI: 10.1155/2021/9360339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Although chronic intermittent hypoxia- (IH-) induced myocardial apoptosis is an established pathophysiological process resulting in a poor prognosis for patients with obstructive sleep apnea syndrome, its underlying mechanism remains unclear. This study is aimed at exploring the role of makorin ring finger protein 1 (MKRN1) in IH-induced myocardial apoptosis and elucidating its molecular activity. First, the GSE2271 dataset was downloaded from the Gene Expression Omnibus database to identify the differentially expressed genes. Then, an SD rat model of IH, together with rat cardiomyocyte H9C2 and human cardiomyocyte AC16 IH models, was constructed. TUNEL, Western blot, and immunohistochemistry assays were used to detect cell apoptosis. Dihydroethidium staining was conducted to analyze the concentration of reactive oxygen species. In addition, RT-qPCR, Western blot, and immunohistochemistry were performed to measure the expression levels of MKRN1 and p21. The direct interaction between MKRN1 and p21 was determined using coimmunoprecipitation and ubiquitination analysis. MKRN1 expression was found to be downregulated in IH rat myocardial tissues as well as in H9C2 and AC16 cells. Upregulated expression of MKRN1 in H9C2 and AC16 cells alleviated the IH-induced reactive oxygen species production and cell apoptosis. Mechanistically, MKRN1 promoted p21 protein ubiquitination and the proteasome pathway degradation to negatively regulate p21 expression. Thus, MKRN1 regulates p21 ubiquitination to prevent IH-induced myocardial apoptosis.
Collapse
|
31
|
Involvement of Hepcidin in Cognitive Damage Induced by Chronic Intermittent Hypoxia in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8520967. [PMID: 34394834 PMCID: PMC8357469 DOI: 10.1155/2021/8520967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) patients exhibit different degrees of cognitive impairment, which is related to the activation of reactive oxygen species (ROS) production by chronic intermittent hypoxia (CIH) and the deposition of iron in the brain. As a central regulator of iron homeostasis, whether hepcidin is involved in OSA-induced cognitive impairment has not been clarified. In order to simulate OSA, we established the mouse model by reducing the percentage of inspired O2 (FiO2) from 21% to 5%, 20 times/h for 8 h/day. We found hepcidin was rising during CIH, along with increasing iron levels and neuron loss. Then, we constructed a mouse with astrocyte-specific knockdown hepcidin gene (shHamp). During CIH exposure, the shHamp mice showed a lower level of total iron and neuronal iron in the hippocampus, via stabilizing ferroportin 1 (FPN1) and decreasing L-ferritin (FTL) levels, when compared with wild-type (WT) mice. Furthermore, the shHamp mice showed a decrease of ROS by downregulating the elevated NADPH oxidase (NOX2) and 4-hydroxynonenal (4-HNE) levels mediated by CIH. In addition, the shHamp mice presented improved cognitive deficit by improving synaptic plasticity and BDNF expression in the hippocampus when subjected to CIH. Therefore, our data revealed that highly expressed hepcidin might promote the degradation of FPN1, resulting in neuronal iron deposition, oxidative stress damage, reduced synaptic plasticity, and impaired cognitive performance during CIH exposure.
Collapse
|
32
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Lu H, Wang W, Kang X, Lin Z, Pan J, Cheng S, Zhang J. Hydrogen (H 2) Alleviates Osteoarthritis by Inhibiting Apoptosis and Inflammation via the JNK Signaling Pathway. J Inflamm Res 2021; 14:1387-1402. [PMID: 33880054 PMCID: PMC8053515 DOI: 10.2147/jir.s297622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a very common condition and leads to joint pain, disability, and price tag all over the world. Pathogenesis of OA is closely related to numerous inflammatory and apoptosis cytokines. Hydrogen (H2) reportedly exhibits a diversity of effects such as anti-apoptotic, anti-inflammatory, and anti-oxidative properties via the JNK pathway. However, it is unknown whether H2 has a protective effect against OA via the JNK signaling pathway. Therefore, the aim of this study was to figure out whether hydrogen has protective effect on chondrocyte and further explore the possible underlying mechanism. METHODS The chondrocytes were obtained from the human cartilage tissues. Cells were stimulated by TBHP and treated with hydrogen. In vitro treatment effects were evaluated by Western blot assay, real-time PCR, immunofluorescence and TUNEL method. We conducted mice model of destabilization of the medial meniscus (DMM) and treated with hydrogen. In vivo treatment effects were evaluated by X-ray imaging assay, safranin O (SO) staining, TUNEL staining and immunohistochemical assay. RESULTS Our results showed that hydrogen can inhibit inflammatory factors (ADAMTS5 and MMP13) and apoptosis factors (cleaved caspase-3, cytochrome c, and Bax) in TBHP-induced chondrocytes. Furthermore, hydrogen can suppress the activation of JNK signaling pathway, whereas the effect of hydrogen can be abolished by anisomycin (a JNK activator). In vivo results showed that hydrogen can down-regulate the expression of p-JNK and cleaved caspase-3 expression. CONCLUSION We uncovered that hydrogen (H2) could alleviate apoptosis response and ECM degradation in human chondrocytes via inhibiting the activation of the JNK signaling pathway. Meanwhile, in the surgically-induced DMM mice model, treatment with hydrogen (H2) performed a significant role in OA progression.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Wei Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Xiaodiao Kang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Shaowen Cheng
- Trauma Center, First Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, People’s Republic of China
| |
Collapse
|
34
|
Liu Z, Gao Z, Zeng L, Liang Z, Zheng D, Wu X. Nobiletin ameliorates cardiac impairment and alleviates cardiac remodeling after acute myocardial infarction in rats via JNK regulation. Pharmacol Res Perspect 2021; 9:e00728. [PMID: 33660406 PMCID: PMC7931132 DOI: 10.1002/prp2.728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Nobiletin was found to protect against acute myocardial infarction (AMI)-induced cardiac function decline and myocardial remodeling, although the dose-effect relationship and underlying pathways remained unclear. In the current research, different doses of Nobiletin (7.5, 15 and 30 mg/kg/day) were administered to AMI rat model for 21 days. Survival rate, echocardiography, and histological analysis were assessed in vivo. In addition, MTT assay, flow cytometry, and Western blotting were conducted to explore Nobiletin's cytotoxicity and antiapoptotic effect on H9C2 cells. Mechanistically, the activation of MAPK effectors and p38 in vivo was studied. The results showed medium- and high-dose Nobiletin could significantly improve survival rate and cardiac function and reduce the area of infarction and cardiac fibrosis. Medium dose showed the best protection on cardiac functions, whereas high dose showed the best protective effect on cellular apoptosis and histological changes. JNK activation was significantly inhibited by Nobiletin in vivo, which could help to explain the partial contribution of autophagy to AMI-induced apoptosis and the discrepancy on dose-effect relationships. Together, our study suggested that JNK inhibition plays an important role in Nobiletin-induced antiapoptotic effect in myocardial infarction, and medium-dose Nobiletin demonstrated the strongest effect in vivo.
Collapse
Affiliation(s)
- Zumei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- Department of Central LaboratoryGuangdong Second Provincial General HospitalGuangzhouGuangdongPR China
| | - Zhimin Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Zhenye Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| | - Dechong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauPR China
| | - Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical SciencesThe Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouPR China
| |
Collapse
|
35
|
Zhang L, Yu H, Tu Q, He Q, Huang N. New Approaches for Hydrogen Therapy of Various Diseases. Curr Pharm Des 2021; 27:636-649. [PMID: 33308113 DOI: 10.2174/1381612826666201211114141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Hydrogen therapy has recently received increasing attention as an emerging and promising therapeutic technology due to its selective antioxidant property and cell energy regulatory capability in vivo. To solve the low solubility issue of hydrogen, a variety of nanomaterials and devices for hydrogen supply have recently been developed, aiming to increase the concentration of hydrogen in the specific disease site and realize controlled hydrogen release and combined treatment. In this review, we mainly focus on the latest advances in using hydrogen-generating devices and nanomaterials for hydrogen therapy. These developments include sustained release of H2, controlled release of H2, versatile modalities of synergistic therapy, etc. Also, bio-safety issues and challenges are discussed to further promote the clinical applications of hydrogen therapy and the development of hydrogen medicine.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Han Yu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiufen Tu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qianjun He
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nan Huang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
36
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
37
|
Naryzhnaya NV, Ma HJ, Maslov LN. The involvement of protein kinases in the cardioprotective effect of chronic hypoxia. Physiol Res 2020; 69:933-945. [PMID: 33129243 DOI: 10.33549/physiolres.934439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this review is to analyze the involvement of protein kinases in the cardioprotective mechanism induced by chronic hypoxia. It has been reported that chronic intermittent hypoxia contributes to increased expression of the following kinases in the myocardium: PKCdelta, PKCalpha, p-PKCepsilon, p-PKCalpha, AMPK, p-AMPK, CaMKII, p-ERK1/2, p-Akt, PI3-kinase, p-p38, HK-1, and HK-2; whereas, chronic normobaric hypoxia promotes increased expression of the following kinases in the myocardium: PKCepsilon, PKCbetaII, PKCeta, CaMKII, p-ERK1/2, p-Akt, p-p38, HK-1, and HK-2. However, CNH does not promote enhanced expression of the AMPK and JNK kinases. Adaptation to hypoxia enhances HK-2 association with mitochondria and causes translocation of PKCdelta, PKCbetaII, and PKCeta to the mitochondria. It has been shown that PKCdelta, PKCepsilon, ERK1/2, and MEK1/2 are involved in the cardioprotective effect of chronic hypoxia. The role of other kinases in the cardioprotective effect of adaptation to hypoxia requires further research.
Collapse
Affiliation(s)
- N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | | | | |
Collapse
|
38
|
Li Y, Li G, Suo L, Zhang J. Recent advances in studies of molecular hydrogen in the treatment of pancreatitis. Life Sci 2020; 264:118641. [PMID: 33148420 DOI: 10.1016/j.lfs.2020.118641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is an inflammatory disease of the pancreas characterized by acinar cell injury and is associated with the abnormal release of trypsin, which results in high mortality due to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). The inflammatory response, impaired autophagic flux, endoplasmic reticulum stress (ERS) and their interactions are involved in the development of pancreatitis. Molecular hydrogen (H2) is a novel antioxidant that possesses the features of selective scavenging of oxygen free radicals and nontoxic metabolites and has been shown to be efficacious for treating infection, injury, tumors, ischemia-reperfusion organ injury, metabolic disease and several other diseases. Recent studies have found that H2 is also useful in the treatment of pancreatitis, which may be related to the mechanism of antioxidative stress, anti-inflammation, anti-apoptosis, regulation of immunity and regulation of molecular pathways. This review focuses on the pathogenesis of pancreatitis and the research progress and potential mechanisms of H2 against pancreatitis to provide theoretical bases for future research and clinical application of H2 therapy for pancreatitis.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Shenyang, Liaoning 110042, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
39
|
Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C. Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Funct 2020; 39:218-234. [PMID: 32975319 DOI: 10.1002/cbf.3589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS), formed by the partial reduction of oxygen, were for a long time considered to be a byproduct of cellular metabolism. Since, increase in cellular levels of ROS results in oxidative stress leading to damage of nucleic acids, proteins, and lipids resulting in numerous pathological conditions; ROS was considered a bane for aerobic species. Hence, the discovery of NADPH oxidases (NOX), an enzyme family that specifically generates ROS as its prime product came as a surprise to redox biologists. NOX family proteins participate in various cellular functions including cell proliferation and differentiation, regulation of genes and protein expression, apoptosis, and host defence immunological response. Balanced expression and activation of NOX with subsequent production of ROS are critically important to regulate various genes and proteins to maintain homeostasis of the cell. However, dysregulation of NOX activation leading to enhanced ROS levels is associated with various pathophysiologies including diabetes, cardiovascular diseases, neurodegenerative diseases, ageing, atherosclerosis, and cancer. Although our current knowledge on NOX signifies its importance in the normal functioning of various cellular pathways; yet the choice of ROS producing enzymes which can tip the scale from homeostasis toward damage, as mediators of biological functions remain an oddity. Though the role of NOX in maintaining normal cellular functions is now deemed essential, yet its dysregulation leading to catastrophic events cannot be denied. Hence, this review focuses on the involvement of NOX enzymes in various pathological conditions imploring them as possible targets for therapies. SIGNIFICANCE OF THE STUDY: The NOXs are multi-subunit enzymes that generate ROS as a prime product. NOX generated ROS are usually regulated by various molecular factors and play a vital role in different physiological processes. The dysregulation of NOX activity is associated with pathological consequences. Recently, the dynamic proximity of NOX enzymes with different molecular signatures of pathologies has been studied extensively. It is essential to identify the precise role of NOX machinery in its niche during the progression of pathology. Although inhibition of NOX could be a promising approach for therapeutic interventions, it is critical to expand the current understanding of NOX's dynamicity and shed light on their molecular partners and regulators.
Collapse
Affiliation(s)
- Bhargav N Waghela
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Foram U Vaidya
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Yashika Agrawal
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Laboratory of Molecular Cancer Biology and Epigenetics, National Centre for Cell Science, Pune, Maharashtra, India
| | - Vinita Mishra
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Chandramani Pathak
- School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
40
|
Wang J, Gong X, Meng F, Deng S, Dai H, Bao B, Feng J, Li H, Wang B. Biological Network Model of Effect of Chronic Intermittent Hypoxia on Spermatogenesis in Rats. Med Sci Monit 2020; 26:e925579. [PMID: 32892203 PMCID: PMC7493457 DOI: 10.12659/msm.925579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to explore the effect of obstructive sleep apnea hypopnea syndrome (OSAHS) on spermatogenesis and the effects of the expression of related proteins. Material/Methods Rats in Group A were normoxic (exposed to a normal level of oxygen). Rats in Group B were exposed to intermittent hypoxia. After 6 weeks, the rats were killed and their epididymides were removed. The epididymis of one testis was used to test indices of semen quality. The epididymis of the other testis was stained with hematoxylin & eosin to observe pathologic changes in the testis. We used real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting to measure expression of the protein and mRNA of leptin, Janus kinase (JAK), and signal transducer and activator of transcription (STAT) in rat testicular cells. Cytoscape v3.7.1 was employed to construct the OSAHS–male infertility network and protein–protein interactions network. Information on common targets of OSAHS and male infertility was imported into the Database for Annotation, Visualization and Integrated Discovery (DAVID). Then, analyses of pathway enrichment were undertaken using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Results Data were obtained 6 weeks after completion of OSAHS modeling. Compared with Group A, the total sperm count and sperm motility in Group B showed a downward trend (P<0.05). Staining showed no obvious abnormality in Group A. However, numerous structurally abnormal spermatogenic tubules were observed in Group B samples, and the lumen was atrophied and thinned, arranged unevenly, and the gap between the tubules was markedly increased. Western blotting and RT-qPCR showed that, compared with Group A, expression of the protein and mRNA of leptin, JAK, and STAT in the testes of rats in Group B was significantly increased (P<0.05 for all). Conclusions These data suggest that: (1) Chronic intermittent hypoxia can cause pathologic damage to rat testes; (2) Oligozoospermia was highly correlated and regulated by the JAK2/STAT6 signaling pathway; and (3) Chronic intermittent hypoxia can lead to decreased spermatogenesis in rats.
Collapse
Affiliation(s)
- Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Xuefeng Gong
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Hengheng Dai
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China (mainland).,Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Haisong Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| |
Collapse
|
41
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
42
|
Liu TH, Tu WQ, Tao WC, Liang QE, Xiao Y, Chen LG. Verification of Resveratrol Inhibits Intestinal Aging by Downregulating ATF4/Chop/Bcl-2/Bax Signaling Pathway: Based on Network Pharmacology and Animal Experiment. Front Pharmacol 2020; 11:1064. [PMID: 32754039 PMCID: PMC7366860 DOI: 10.3389/fphar.2020.01064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most well-known drugs used in the treatment of aging. However, the potential mechanisms of resveratrol on intestinal aging have not yet been fully investigated. Herein, we aimed to further explore the pharmacological mechanisms of resveratrol as a therapy for intestinal aging. We performed network construction and enrichment analysis via network pharmacology. Then a further animal experimental validation containing 20 female C57BL/6J (wild type, WT) and 16 female ATF4+/- (knock down, KD) naturally aging mice and oral supplementary resveratrol (44 mg/kg/day) for 30 days were conducted. The expression of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), linear alkylethoxylate (AE), and malondialdehyde (MDA) were measured by ELISA, the observation of pathological changes and apoptosis in intestinal tissue were performed by HE, PAS, and TUNEL staining, the ATF4/Chop/Bcl-2/Bax signaling pathway-related proteins and mRNAs expression were measured by western blotting and real-time PCR. The network pharmacology showed 132 targets of resveratrol on aging. The enrichment analysis showed resveratrol antiaging involved mainly included protein heterodimerization activity, apoptosis, etc. Then ATF4/Chop/Bcl-2/Bax signaling pathway in biological process of apoptosis was selected to verify the potential mechanisms. Animal studies showed resveratrol upregulated the relative expression of SOD, GSH-Px, CAT, AE, whereas it downregulated the relative expression of MDA in intestine compared with the control group. There was also higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice. Moreover, there was higher relative expression of SOD, GSH-Px, CAT, AE, and lower relative expression of MDA in KD mice than that in WT mice after resveratrol treatment. Decreased ATF4, Chop, Bax but increased Bcl-2 proteins and mRNAs expression were determined after resveratrol treatment compared with the control group; lower ATF4, Chop, Bax but higher Bcl-2 proteins and mRNAs expression were found in KD mice than that in WT mice. Additionally, lower relative proteins and mRNAs expression of ATF4, Chop, Bax and higher relative expression of Bcl-2 in KD mice than that in WT mice after resveratrol treatment. These findings demonstrated that resveratrol substantially inhibited intestinal aging via downregulating ATF4/Chop/Bcl-2/Bax signaling pathway.
Collapse
Affiliation(s)
- Tian-Hao Liu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wan-Qing Tu
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Wen-Cong Tao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiu-Er Liang
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Ya Xiao
- College of Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Guo Chen
- College of Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Jiang S, Jiao G, Chen Y, Han M, Wang X, Liu W. Astragaloside IV attenuates chronic intermittent hypoxia-induced myocardial injury by modulating Ca 2+ homeostasis. Cell Biochem Funct 2020; 38:710-720. [PMID: 32306464 DOI: 10.1002/cbf.3538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is an important consequence of chronic intermittent hypoxia (CIH). Astragaloside IV (AS-IV) exerts multiple protective effects in diverse diseases. However, whether AS-IV can attenuate CIH-induced myocardial injury is unclear. In this study, rats exposed to CIH were established and treated with AS-IV for 4 weeks. In vitro, H9C2 cardiomyocytes subjected to CIH exposure were treated with AS-IV for 48 hours. Then the cardiac function, morphology, fibrosis, apoptosis and Ca2+ homeostasis were determined to assess cardiac damage. Results showed that AS-IV attenuated cardiac dysfunction and histological lesions in CIH rats. The increased TUNEL-positive cells and activated apoptotic proteins in CIH rats were reduced by AS-IV. We also noticed that AS-IV reversed the accumulation of Ca2+ and altered expressions of Ca2+ handling proteins (decreases of SERCA2a and RYR2, and increases of p-CaMKII and NCX1) under CIH exposure. Furthermore, CIH-induced reduction of SERCA2a activity was increased by AS-IV in rats. Similar results were also observed in H9C2 cells. Altogether, these findings indicate that AS-IV modulates Ca2+ homeostasis to inhibit apoptosis, protecting against CIH-induced myocardial injury eventually, suggesting it may be a potential agent for cardiac damage of OSAS patients. SIGNIFICANCE OF THE STUDY: Chronic intermittent hypoxia (CIH) is a great contributor of OSAS, which is closely associated with cardiovascular diseases. It is necessary for developing a promising drug to attenuate CIH-induced myocardial injury. This work suggests that AS-IV can attenuate myocardial apoptosis and calcium disruption, thus protecting against CIH-induced myocardial injury. It may represent a novel therapeutic for cardiac damage of OSAS.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Guangyu Jiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunqiu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingxin Han
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinzhuo Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenjuan Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
44
|
An JR, Zhao YS, Luo LF, Guan P, Tan M, Ji ES. Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci 2020; 250:117573. [PMID: 32209423 DOI: 10.1016/j.lfs.2020.117573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a consequence of obstructive sleep apnea (OSA), which increases reactive oxygen species (ROS) generation, resulting in oxidative damage and neurocognitive impairment. This study was designed to determine whether abnormal iron metabolism occurs in the brain under conditions of CIH and whether Huperzine A (HuA) could improve abnormal iron metabolism and neurological damage. The mouse model of CIH was established by reducing the percentage of inspired O2 (FiO2) from 21% to 9% 20 times/h for 8 h/day, and Huperzine A (HuA, 0.1 mg/kg, i.p.) was administered during CIH exposure for 21 days. HuA significantly improved cognitive impairment and neuronal damage in the hippocampus of CIH mice via increasing the ratio of Bcl-2/Bax and inhibiting caspase-3 cleavage. HuA considerably decreased ROS levels by downregulating the high levels of NADPH oxidase (NOX 2, NOX 4) mediated by CIH. There was an overload of iron, which was characterized by high levels of ferritin (FTL and FTH) and transferrin receptor 1 (TfR1) and low levels of ferroportin 1 (FPN1) in the hippocampus of CIH mice. Decreased levels of TfR1 and FTL proteins observed in HuA treated CIH group, could reduce iron overload in hippocampus. HuA increased PSD 95 protein expression, CREB activation and BDNF protein expression to protect against synaptic plasticity impairment induced by CIH. HuA acts as an effective iron chelator to attenuate apoptosis, oxidative stress and synaptic plasticity mediated by CIH.
Collapse
Affiliation(s)
- Ji-Ren An
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Fei Luo
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Peng Guan
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Miao Tan
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
45
|
Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF- κB/HIF-1 α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4596368. [PMID: 31885794 PMCID: PMC6927050 DOI: 10.1155/2019/4596368] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia caused by upper airway collapse is a main cause of excessive oxidative stress and systemic inflammation in obstructive sleep apnea (OSA) patients. Increased reactive oxygen species (ROS) and inflammatory responses affect cell survival and ultimately contribute to tissue injury. In the present study, we proposed that the induction of ROS by hypoxia, as an intrinsic stress, activates myoblast pyroptosis in OSA. We found increased cell death and abnormal expression of pyroptosis markers in the skeletal muscle of OSA mice. In vitro studies showed hypoxia-induced pyroptotic death of C2C12 myoblasts, as evidenced by the activation of caspase-1 and gasdermin D (GSDMD). Hypoxia induced ROS overproduction and accumulation in myoblasts. More importantly, applying N-acetylcysteine (NAC), an ROS scavenger, rescued cell swelling, downregulated the inflammatory response, and prevented pyroptotic death in hypoxia-cultured myoblasts. Hypoxia stimulation promoted NF-κB P65 phosphorylation and HIF-1α nuclear translocation. Moreover, hypoxia increased the nuclear level of cleaved caspase-1 and GSDMD. NAC inhibited hypoxia-induced variations in the HIF-1α and NF-κB signaling pathway. Taken together, our results determined that hypoxia-induced ROS contribute to myoblast pyroptosis. Therefore, our findings suggest that ROS may be a potential therapeutic target for ameliorating hypoxia-induced cell death and tissue injury, especially in OSA and hypoxia-related diseases.
Collapse
|