1
|
Dawa Y, Hua YC, Hu FD, Chen J. Cellulose filter paper immobilized acetylcholinesterase for rapid screening of enzyme inhibitors in Phyllanthus emblica L. J Pharm Biomed Anal 2025; 256:116669. [PMID: 39818021 DOI: 10.1016/j.jpba.2025.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Acetylcholinesterase (AChE) is widely recognized as a promising therapeutic target enzyme for Alzheimer's disease (AD). The screening of AChE inhibitors (AChEIs) holds great significance for the treatment of AD. In this study, cellulose filter paper (CFP) -immobilized AChE was prepared and firstly applied to screening AChEIs from 30 % ethanol extract of Phyllanthus emblica L. fruits combined with ultra-high performance liquid chromatography quadrupole time-of-fight mass spectrometry (UHPLC-Q-TOF-MS/MS). Using CFP-immobilized AChE as the bait, AChEIs were harvested and the instantaneous separation characteristics of CFP were utilized to further facilitate the separation of the complex from the inactive components. Ultimately, 27 compounds specifically bound with AChE were screened and identified using UHPLC-Q-TOF-MS/MS. Additionally, molecular docking was employed to explore the binding mechanisms between screened potential inhibitors and AChE. The results show that, most of the screened compounds were found to exhibit higher affinity that of the positive control (huperzine A), and all the compounds expect mucic acid to be well embedded into the active pocket of AChE. To verify the reliability of the screening method and molecular docking, two commercial standards geraniin and ellagic acid were experimented with an AChE inhibition assay in vitro. The results showed that both compounds were found to effectively inhibit AChE with IC50 values of 42.42 ± 7.10 μM, 172.43 ± 9.22 μM. The developed method exhibits the advantages of rapidness and effectiveness in screening of AChEIs from complex herbal extracts.
Collapse
Affiliation(s)
- Yangzom Dawa
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Chen Hua
- Lanzhou Foci Pharmaceutical Co., Ltd., Lanzhou 730000, PR China
| | - Fang-Di Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Wu L, Song W, Jiang Y, Dai Y, Qin Z, Liu L, Wei S, Chen H. Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis. Int J Biol Macromol 2025; 298:139909. [PMID: 39818392 DOI: 10.1016/j.ijbiomac.2025.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.49% hydrolyzable tannins and 36.51% flavan-3-ol units. EPTs inhibited both the monophenolase and diphenolase activities of tyrosinase efficiently. This outstanding inhibition was presumably ascribed to the strong copper-ion chelating ability of EPTs and the microenvironment modification and secondary structure rearrangement of tyrosinase caused by the formation of EPTs-tyrosinase complexes. Treatment of EPTs to B16F10 cells also decreased the intracellular tyrosinase activity, induced apoptosis and G2/M cell cycle arrest, suppressed melanoma cell proliferation and downregulated the mRNA expression of tyrosinase, TRP-1 and MITF, consequently leading to a distinct reduction in melanin content. Furthermore, EPTs exhibited powerful antioxidant properties, which maybe contributed to impeding the initial steps of melanin formation. This study offered theoretical guidance for the potential applications of EPTs in cosmetic, functional food and medical industries.
Collapse
Affiliation(s)
- Lang Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wei Song
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Yu Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ying Dai
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zeya Qin
- College of Life Science, Yangtze University, Jingzhou, China
| | - Lulu Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, China.
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Wang C, Zhang H, Wang X, Wang X, Li X, Li C, Wang Y, Zhang M. Comprehensive Review on Fruit of Terminalia chebula: Traditional Uses, Phytochemistry, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2024; 29:5547. [PMID: 39683707 DOI: 10.3390/molecules29235547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Terminalia chebula Retz., known for its dried fruit, namely Chebulae Fructus, is a medicinal plant with a long-standing global reputation, which was initially recognized for its therapeutic properties during the Jin Dynasty. This review consolidates current knowledge on the traditional uses, phytochemistry, pharmacological properties, toxicity, and pharmacokinetics of Chebulae Fructus, highlighting its clinical significance and the promising therapeutic potential of its compounds. To date, studies have identified approximately 149 compounds within the plant, including tannins, phenolic acids, lignans, triterpenes, flavonoids, and volatiles. These compounds confer a broad spectrum of biological activities in vitro and in vivo, such as antioxidant, anti-inflammatory, antiviral, anticancer, antibacterial, hepatoprotective, nephroprotective, neuroprotective, and anti-diabetic, some of which are already integrated into clinical practice. However, despite substantial advancements, considerable gaps remain in understanding the complete mechanisms of action, pharmacokinetics, and safety profiles of its extracts and compounds. This paper advocates for enhanced focus on these areas to fully elucidate the therapeutic capacities and facilitate the clinical application of Chebulae Fructus. This comprehensive analysis not only reinforces the ethnopharmacological significance of Chebulae Fructus but also lays a foundation for future pharmacological explorations.
Collapse
Affiliation(s)
- Changjian Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangdong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinru Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiying Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Gǎlbǎu CŞ, Irimie M, Neculau AE, Dima L, Pogačnik da Silva L, Vârciu M, Badea M. The Potential of Plant Extracts Used in Cosmetic Product Applications-Antioxidants Delivery and Mechanism of Actions. Antioxidants (Basel) 2024; 13:1425. [PMID: 39594566 PMCID: PMC11591253 DOI: 10.3390/antiox13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.
Collapse
Affiliation(s)
- Cristina-Ştefania Gǎlbǎu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Andrea Elena Neculau
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lorena Dima
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lea Pogačnik da Silva
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Mihai Vârciu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| |
Collapse
|
5
|
Liang CC, Zhang FQ, Chen J. Screening and characterization of cosmetic efficacy components of Terminalia chebula based on biological activity-guided methodology. Biomed Chromatogr 2024; 38:e5974. [PMID: 39090681 DOI: 10.1002/bmc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Terminalia chebula exhibits a high level of antioxidant capacity and is highly valued in medicine and cosmetics. However, its main efficacy and active ingredients related to antioxidant, whitening, and anti-aging are still unclear. In this study, the active site responsible for its cosmetic efficacy was specified by the biological activity-guided method and further characterized by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS). T. chebula was ultrasonically extracted by five solvents, and 30% ethanol extract was screened out for subsequent purification by 1,1-D-iphenyl-2-picrylhydrazyl radical (DPPH), 2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS), hydroxyl, and superoxide anion free radical scavenging assays. Five elution fractions were obtained by column chromatography on D101 macroporous adsorbent resin eluted by an increased proportion of ethanol. The 30% ethanol elution fraction was specified as the enrichment site of active ingredients showing good antioxidant capacity and potent inhibitory activity against tyrosinase and elastase. A total of 30 compounds were identified by UHPLC-QTOF-MS/MS in the 30% ethanol elution fraction, including 11 gallotannins, 14 ellagitannins, and 5 other compounds, and these compounds may be the key ingredients in cosmetics beneficial for the skin. Such a biological activity-guided method has provided a simple and rapid venue for specifying the components of medicinal herbs responsible for cosmetic efficacy.
Collapse
Affiliation(s)
- Cai-Cai Liang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Dai Y, Shi C, Qin Z, Song W, Ding B, Wei S, Chen H. Potential application of nanoliposomes loaded with complex tannins from the seed shell of Euryale ferox in the anti-browning of fresh-cut asparagus lettuce. Int J Biol Macromol 2024; 275:133669. [PMID: 38971289 DOI: 10.1016/j.ijbiomac.2024.133669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Surface browning of plant-derived fresh-cut products is mainly caused by conversion of the phenolic compounds into o-quinones under tyrosinase catalysis. In this study, the rarely reported complex tannins from Euryale ferox seed shell (ECTs) constituted by the units of 35.60% condensed tannins and 64.40% hydrolysable tannins were shown to suppress the activity of tyrosinase efficiently, supporting the exploitation of ECTs into novel anti-browning agents. However, the utilization of ECTs in food preservation is often restricted because of their chemical instability to external environment. Further fabrication of nanoliposomes loaded with ECTs (ECTs-NLs) herein was carried out to improve the stability of ECTs. DLS, TEM, FTIR, DSC and XRD confirmed that ECTs were encapsulated into nanoliposomes successfully, and ECTs-NLs appeared as vesicle-like spherical morphology with favorable encapsulation efficiency, uniform particle size distribution and negative zeta-potential. The resulting ECTs-NLs were relatively stable in the dark at 4 °C. Nanoliposomal encapsulation significantly enhanced ECTs stability, thus protecting inhibitory effect of ECTs against tyrosinase. Furthermore, anti-browning evaluation proved that ECTs-NLs had distinct advantages over free ECTs in alleviating surface browning of fresh-cut asparagus lettuces. These results suggested that nanoliposomes were effective in stabilizing ECTs and ECTs-NLs could be potentially applied to the fresh-cut food industry.
Collapse
Affiliation(s)
- Ying Dai
- College of Life Science, Yangtze University, Jingzhou, China
| | - Chenjun Shi
- College of Life Science, Yangtze University, Jingzhou, China
| | - Zeya Qin
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wei Song
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, China.
| | - Hui Chen
- College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
7
|
Sehnem GS, Silva JA, da C Silva T, Prado DG, Santiago MB, O Santos AL, Martins MM, Cunha LCS, Sousa RMF, Romero R, Bittar VP, Borges ALS, Martins CHG, Espindola FS, de Oliveira A. Chemical Composition of Extracts and Fractions from Miconia Ibaguensis (Melastomataceae) Leaves and Evaluation of Biological Activities. Chem Biodivers 2024; 21:e202400680. [PMID: 38748618 DOI: 10.1002/cbdv.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
The study aimed to assess the chemical composition of Miconia ibaguensis leaves extracts and fractions obtained from the ethanolic extract (EE), along with evaluating their antifungal, antibacterial, antidiabetic, and antioxidant activities. The ethyl acetate fraction (EAF) exhibited potent antifungal activity against Candida spp (1.95-3.90 μg mL-1) and potent antioxidant activity in the DPPH (1.74±0.07 μg mL-1), FRAP (654.01±42.09 μmol ETrolox/gsample), and ORAC (3698.88±37.28 μmol ETrolox/gsample) methods. The EE displayed inhibition against the α-amylase enzyme (8.42±0.05 μg mL-1). Flavonoids, hydrolysable tannins, triterpenoids, and phenolic acids, identified in the EE and fractions via (-)-HPLC-ESI-MS/MS analysis, were found to contribute to the species' biological activity potentially. These findings suggest promising avenues for further research and potential applications in pharmacology and natural products, offering new possibilities in the fight against global health issues.
Collapse
Affiliation(s)
- Gabriela S Sehnem
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Julia A Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Tiara da C Silva
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Diego G Prado
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Mariana B Santiago
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Anna Lívia O Santos
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Mário M Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Luis C S Cunha
- Bioprospecting Center for Natural Products, Chemistry Department, Federal Institute of Triângulo Mineiro -, MG, Uberaba, Brazil
| | - Raquel M F Sousa
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Rosana Romero
- Institute of Biology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Vinicius P Bittar
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Ana Luiza S Borges
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Carlos H G Martins
- Antimicrobial Testing Laboratory, Institute of Biomedical Sciences, Universidade Federal de Uberlândia -, MG, Uberlândia, Brazil
| | - Foued S Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products, Institute of Chemistry, Federal University of Uberlândia -, MG, Uberlândia, Brazil
| |
Collapse
|
8
|
Poh WH, Ruhazat NS, Yang LK, Shivhare D, Lim PK, Kanagasundaram Y, Rice SA, Mutwil M. Transcriptomic and metabolomic characterization of antibacterial activity of Melastoma dodecandrum. FRONTIERS IN PLANT SCIENCE 2023; 14:1205725. [PMID: 37771487 PMCID: PMC10525717 DOI: 10.3389/fpls.2023.1205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Antibacterial resistance poses a significant global threat, necessitating the discovery of new therapeutic agents. Plants are a valuable source of secondary metabolites with demonstrated anticancer and antibacterial properties. In this study, we reveal that Melastoma dodecandrum exhibits both bacteriostatic and bactericidal effects against Pseudomonas aeruginosa and Staphylococcus aureus. Treatment with plant extracts results in membrane damage and a reduction in P.aeruginosa swimming and swarming motility. A comparative analysis of bacterial transcriptomes exposed to M.dodecandrum extracts and four distinct antibiotics indicates that the extracts may trigger similar transcriptomic responses as triclosan, a fatty acid synthesis inhibitor. Activity-guided fractionation suggests that the antibacterial activity is not attributable to hydrolyzable tannins, but to unidentified minor compounds. Additionally, we identified 104 specialized metabolic pathways and demonstrated a high level of transcriptional coordination between these biosynthetic pathways and phytohormones, highlighting potential regulatory mechanisms of antibacterial metabolites in M.dodecandrum.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nur Syahirah Ruhazat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lay Kien Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- AAVACC PTE LTD, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Agriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Understanding the Seasonal Effect of Metabolite Production in Terminalia catappa L. Leaves through a Concatenated MS- and NMR-Based Metabolomics Approach. Metabolites 2023; 13:metabo13030349. [PMID: 36984789 PMCID: PMC10053923 DOI: 10.3390/metabo13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Terminalia catappa L. (Combretaceae) is a medicinal plant that is part of the Brazilian biodiversity; this plant is popularly used for the treatment of a wide range of diseases. To better understand the chemical composition of T. catappa in different seasons, we conducted a thorough study using LC-MS and NMR data analysis techniques. The study helped obtain a chemical profile of the plant ethanolic extracts in different seasons of the year (spring, summer, autumn, and winter). The dereplication of LC-HRMS data allowed the annotation of 90 compounds in the extracts of T. catappa (hydrolyzable tannins, ellagic acid derivatives, and glycosylated flavonoids). Triterpenes and C-glycosyl flavones were the compounds that significantly contributed to differences observed between T. catappa plant samples harvested in autumn/winter and spring, respectively. The variations observed in the compound composition of the plant leaves may be related to processes induced by environmental stress and leaf development. Data fusion applied in the metabolomic profiling study allowed us to identify metabolites with greater confidence, and provided a better understanding regarding the production of specialized metabolites in T. catappa leaves under different environmental conditions, which may be useful to establish appropriate quality criteria for the standardization of this medicinal plant.
Collapse
|
10
|
Bikiaris ND, Koumentakou I, Samiotaki C, Meimaroglou D, Varytimidou D, Karatza A, Kalantzis Z, Roussou M, Bikiaris RD, Papageorgiou GZ. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers (Basel) 2023; 15:1196. [PMID: 36904437 PMCID: PMC10007491 DOI: 10.3390/polym15051196] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Meimaroglou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Varytimidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Karatza
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Zisimos Kalantzis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Magdalini Roussou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rizos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
| |
Collapse
|
11
|
Galvão F, Dos Santos E, Gomes da Silva Dantas F, Irlan da Silva Santos J, da Paz Costa Sauda T, Carvalho Dos Santos A, Carvalho Souza RI, da Silva Pinto L, Ferreira Moraes CA, Sangalli A, Leite Kassuya CA, Nogueira CR, Pires de Oliveira KM. Chemical composition and effects of ethanolic extract and gel of Cochlospermum regium (Schrank) Pilg. Leaves on inflammation, pain, and wounds. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115881. [PMID: 36349588 DOI: 10.1016/j.jep.2022.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cochlospermum regium is well-known as "Algodãozinho do cerrado" in folk Brazilian medicine, and is used to fight infections, inflammation and skin disorders. AIM OF THE STUDY To identify the phytochemical constituents and the effects of the ethanolic extract of C. regium leaves (EECR) on inflammation and pain, and the effects of C. regium gel (GEECR) on wound healing. MATERIALS AND METHODS Animals were treated with EECR (30-300 mg/kg) or GEECR (1.25 and 2.5%) and studies were conducted using carrageenan-induced pleurisy and paw edema tests, formalin-induced pain model, and excision wound model. RESULTS In total, 25 compounds, including quercitrin, methyl gallate, and 1,2,3,4,6-pentagalloylhexose, with highest detectability were identified. The treatments reduced leukocyte migration, nitric oxide production, protein extravasation, edema, mechanical hyperalgesia, pain in both phases (neurogenic and inflammatory), cold hypersensitivity, and improved wound closure and tissue regeneration. CONCLUSIONS The present findings established the anti-inflammatory, anti-nociceptive, and wound healing potential of the leaves of C. regium, confirming the potential therapeutic effect of this plant.
Collapse
Affiliation(s)
- Fernanda Galvão
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Elisangela Dos Santos
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - José Irlan da Silva Santos
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Talita da Paz Costa Sauda
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Ariany Carvalho Dos Santos
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Luciano da Silva Pinto
- Departamento de Química, Universidade Federal de São Carlos (UFSCAR), São Carlos, São Paulo, Brazil
| | | | - Andréia Sangalli
- Faculdade Intercultural Indígena, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Cláudio Rodrigo Nogueira
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil; Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
12
|
Antioxidant, Alpha-Glucosidase Inhibition Activities, In Silico Molecular Docking and Pharmacokinetics Study of Phenolic Compounds from Native Australian Fruits and Spices. Antioxidants (Basel) 2023; 12:antiox12020254. [PMID: 36829816 PMCID: PMC9952698 DOI: 10.3390/antiox12020254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Native Australian fruits and spices are enriched with beneficial phytochemicals, especially phenolic compounds, which are not fully elucidated. Therefore, this study aimed to analyze native Australian mountain-pepper berries (Tasmannia lanceolata), rosella (Hibiscus sabdariffa), lemon aspen (Acronychia acidula), and strawberry gum (Eucalyptus olida) for phenolic and non-phenolic metabolites and their antioxidant and alpha-glucosidase inhibition activities. Liquid chromatography-mass spectrometry-electrospray ionization coupled with quadrupole time of flight (LC-ESI-QTOF-MS/MS) was applied to elucidate the composition, identities, and quantities of bioactive phenolic metabolites in Australian native commercial fruits and spices. This study identified 143 phenolic compounds, including 31 phenolic acids, 70 flavonoids, 10 isoflavonoids, 7 tannins, 3 stilbenes, 7 lignans, 10 other compounds, and 5 limonoids. Strawberry gum was found to have the highest total phenolic content (TPC-36.57 ± 1.34 milligram gallic acid equivalent per gram (mg GAE/g), whereas lemon aspen contained the least TPC (4.40 ± 0.38 mg GAE/g). Moreover, strawberry gum and mountain pepper berries were found to have the highest antioxidant and anti-diabetic potential. In silico molecular docking and pharmacokinetics screening were also conducted to predict the potential of the most abundant phenolic compounds in these selected plants. A positive correlation was observed between phenolic contents and biological activities. This study will encourage further research to identify the nutraceutical and phytopharmaceutical potential of these native Australian fruits.
Collapse
|
13
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
14
|
Alaiya MA, Odeniyi MA. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023; 9:29. [PMID: 37035527 PMCID: PMC10074368 DOI: 10.1186/s43094-023-00479-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Antimicrobial resistance and the environmental threat posed by some synthetic antimicrobial agents necessitate more research into development of novel pharmaceutical products that are environmentally friendly. Also, the use of plant derived excipients is growing and opening up new avenue to solve current drug delivery issues in the pharmaceutical industry. Main body This review summarizes studies related to the antimicrobial property of Mangifera indica extracts, possible mechanisms of antimicrobial action and antimicrobial formulations from the plant and overview of researches relating to the use of M. indica as a pharmaceutical excipient. Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL) and Google Scholar with focus on published articles relating to M. indica. Inclusion and exclusion criteria include publications relating to antimicrobial properties of M. indica extracts, its antimicrobial formulations and its use as a pharmaceutical excipient. The electronic searches yielded about 190 articles. From the studies reviewed, the mechanisms of action of phytochemicals described corroborate the antimicrobial activity exhibited by M. indica extracts and its selected formulations. In addition, mango pectin was observed to possess potential as a pharmaceutical excipient. Very few previous review articles based their focus on incorporating mechanism of action of phytochemicals with antimicrobial activity.This review examined antimicrobial properties of M. indica extracts and formulations, major phytochemicals in the plant parts and their possible modes of action. In addition, the study assessed the use of natural polymer derived from mango plant as excipients in pharmaceutical and pharmacological preparations. Conclusion The study concluded that effective antimicrobial activity of mango plant extracts and formulations requires synergy of actions among various phytochemical constituents of the extract or formulation. It is recommended that more researches focused on discovery of new phytochemicals in M. indica, their mechanisms of action and effective utilization of the plant in the pharmaceutical industry should be further explored.
Collapse
Affiliation(s)
- Mojisola Atinuke Alaiya
- grid.448723.eDepartment of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Michael A. Odeniyi
- grid.9582.60000 0004 1794 5983Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Anokwuru CP, Chen W, van Vuuren S, Combrinck S, Viljoen AM. Bioautography-guided HPTLC-MS as a rapid hyphenated technique for the identification of antimicrobial compounds from selected South African Combretaceae species. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1177-1189. [PMID: 35949064 PMCID: PMC10087861 DOI: 10.1002/pca.3167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Many species within Combretaceae are traditionally used for the treatment of bacterial infections. The similarity in chemistry and antimicrobial activities within the family pose a challenge in selecting suitable species for herbal drug development. OBJECTIVE This study aimed at rapidly identifying antimicrobial compounds using bioautography-guided high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS). METHODS Hierarchical cluster analysis of ultra-performance liquid chromatography-mass spectrometry data from the methanol extracts of 77 samples, representing four genera within Combretaceae, was carried out. Based on groupings on the dendrogram, 15 samples were selected for bioautography analysis against four pathogens (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhimurium). Active compounds were identified using HPTLC-MS analysis of bands corresponding to the inhibition zones. RESULTS Bioautography revealed 15 inhibition zones against the four pathogens, with the most prominent present for Combretum imberbe. Analysis of the active bands, using HPTLC-MS indicated that flavonoids, triterpenoids and combretastatin B5 contributed to the antibacterial activity. The compounds corresponding to molecular ions m/z 471 (Combretum imberbe) and 499 (Combretum elaeagnoides) inhibited all four pathogens, and were identified as imberbic acid and jessic acid, respectively. Chemotaxonomic analysis indicated that arjunic acid, ursolic acid and an unidentified triterpenoid (m/z 471) were ubiquitous in the Combretaceae species and could be responsible for their antibacterial activities. CONCLUSION Application of HPTLC-MS enabled the rapid screening of extracts to identify active compounds within taxonomically related species. This approach allows for greater efficiency in the natural product research workflow to identify bioactive compounds in crude extracts.
Collapse
Affiliation(s)
- Chinedu P. Anokwuru
- Department of Pharmaceutical Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health SciencesUniversity of the WitwatersrandParktownSouth Africa
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
- SAMRC Herbal Drug Research Unit, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
| |
Collapse
|
16
|
Selectivity Tuning by Natural Deep Eutectic Solvents (NADESs) for Extraction of Bioactive Compounds from Cytinus hypocistis—Studies of Antioxidative, Enzyme-Inhibitive Properties and LC-MS Profiles. Molecules 2022; 27:molecules27185788. [PMID: 36144535 PMCID: PMC9502194 DOI: 10.3390/molecules27185788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the extracts of Cytinus hypocistis (L.) L using both traditional solvents (hexane, ethyl acetate, dichloromethane, ethanol, ethanol/water, and water) and natural deep eutectic solvents (NADESs) were investigated in terms of their total polyphenolic contents and antioxidant and enzyme-inhibitive properties. The extracts were found to possess total phenolic and total flavonoid contents in the ranges of 26.47–186.13 mg GAE/g and 0.68–12.55 mg RE/g, respectively. Higher total phenolic contents were obtained for NADES extracts. Compositional differences were reported in relation to antioxidant potential studied by several assays (DPPH: 70.19–939.35 mg TE/g, ABTS: 172.56–4026.50 mg TE/g; CUPRAC: 97.41–1730.38 mg TE/g, FRAP: 84.11–1534.85 mg TE/g). Application of NADESs (choline chloride—urea 1:2, a so-called Reline) allowed one to obtain the highest number of extracts having antioxidant potential in the radical scavenging and reducing assays. NADES-B (protonated by HCl L-proline-xylitol 5:1) was the only extractant from the studied solvents that isolated a specific fraction without chelating activity. Reline extract exhibited the highest acetylcholinesterase inhibition compared to NADES-B and NADES-C (protonated by H2SO4 L-proline-xylitol 5:1) extracts, which showed no inhibition. The NADES extracts were observed to have higher tyrosinase inhibitory properties compared to extracts obtained by traditional organic solvents. Furthermore, the NADES extracts were relatively better inhibitors of the diabetic enzymes. These findings provided an interesting comparison in terms of total polyphenolic content yields, antioxidant and enzyme inhibitory properties (cholinesterase, amylase, glucosidase, and tyrosinase) between traditional solvent extracts and NADES extracts, used as an alternative. While the organic solvents showed better antioxidant activity, the NADES extracts were found to have some other improved properties, such as higher total phenolic content and enzyme-inhibiting properties, suggesting functional prospects for their use in phytonutrient extraction and fractionation. The obtained results could also be used to give a broad overview of the different biological potentials of C. hypocistis.
Collapse
|
17
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
18
|
Phan ADT, Zhang J, Seididamyeh M, Srivarathan S, Netzel ME, Sivakumar D, Sultanbawa Y. Hydrolysable tannins, physicochemical properties, and antioxidant property of wild-harvested Terminalia ferdinandiana (exell) fruit at different maturity stages. Front Nutr 2022; 9:961679. [PMID: 35967775 PMCID: PMC9372433 DOI: 10.3389/fnut.2022.961679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Terminalia ferdinandiana Exell., also known as Kakadu plum, is a wild-harvested native Australian fruit with limited information on how maturity is affecting the phytonutritional properties and bioactivities of the fruit. Thus, this study investigated changes in hydrolysable tannins, phenolic acids, sugar profile, standard physicochemical parameters, and antioxidant-scavenging capacity of wild-harvested Kakadu plum fruits at four different maturity stages, from immature to fully mature. Fruits harvested <25, 25-50, 50-75, and 75-100% degree of fullness were classified as highly immature (stage 1), immature (stage 2), semi-mature (stage 3), and fully mature (stage 4), respectively. Results showed that chebulagic acid, geraniin, chebulinic acid, castalagin, punicalagin, and gallic acid continuously decreased during fruit maturity, while elaeocarpusin, helioscopin B, corilagin, 3,4,6-tri-O-galloyl-S-glucose, and ellagic acid increased at the beginning of fruit growth (from stage 1 to 2), but decreased when the fruits reached their full maturity (stage 4). The levels of hydrolysable tannins and phenolic acids in fully mature fruits (stage 4) were significantly (p ≤ 0.05) lower than that in their immature counterparts (stages 1 and 2). Total phenolic content (TPC) and DPPH antioxidant radical-scavenging activity did not vary significantly between different maturity stages. Pearson's correlation coefficient test indicated that TPC and DPPH positively (p ≤ 0.05) correlate with most of the studied tannin compounds. Sugars (glucose, fructose, and sucrose), total soluble solid content, and titratable acidity increased during the fruit development. Furthermore, principal component analysis (PCA) revealed the difference between the immature and mature samples, based on their nutritional profile and bioactive compounds. The PCA results also suggested a considerable variability between the individual trees, highlighting the challenges of wild-harvest practice.
Collapse
Affiliation(s)
- Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Jiale Zhang
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Sukirtha Srivarathan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Dharini Sivakumar
- Department of Crop Sciences, Phytochemical Food Network Research Group, Tshwane University of Technology, Pretoria, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| |
Collapse
|
19
|
Rudrapal M, Celik I, Khan J, Ansari MA, Alomary MN, Yadav R, Sharma T, Tallei TE, Pasala PK, Sahoo RK, Khairnar SJ, Bendale AR, Zothantluanga JH, Chetia D, Walode SG. Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101826. [PMID: 35035181 PMCID: PMC8744360 DOI: 10.1016/j.jksus.2022.101826] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 05/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus disease (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic is the present worldwide health emergency. The global scientific community faces a significant challenge in developing targeted therapies to combat the SARS-CoV-2 infection. Computational approaches have been critical for identifying potential SARS-CoV-2 inhibitors in the face of limited resources and in this time of crisis. Main protease (Mpro) is an intriguing drug target because it processes the polyproteins required for SARS-CoV-2 replication. The application of Ayurvedic knowledge from traditional Indian systems of medicine may be a promising strategy to develop potential inhibitor for different target proteins of SARS-CoV-2. With this endeavor, we docked bioactive molecules from Triphala, an Ayurvedic formulation, against Mpro followed by molecular dynamics (MD) simulation (100 ns) to investigate their inhibitory potential against SARS-CoV-2. The top four best docked molecules (terflavin A, chebulagic acid, chebulinic acid, and corilagin) were selected for MD simulation study and the results obtained were compared to native ligand X77. From docking and MD simulation studies, the selected molecules showed promising binding affinity with the formation of stable complexes at the active binding pocket of Mpro and exhibited negative binding energy during MM-PBSA calculations, indication their strong binding affinity with the target protein. The identified bioactive molecules were further analyzed for drug-likeness by Lipinski's filter, ADMET and toxicity studies. Computational (in silico) investigations identified terflavin A, chebulagic acid, chebulinic acid, and corilagin from Triphala formulation as promising inhibitors of SARS-CoV-2 Mpro, suggesting experimental (in vitro/in vivo) studies to further explore their inhibitory mechanisms.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabaia
| | - Mohammad N Alomary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | | | - Ranjan Kumar Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India
| | | | - Atul R Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik 422213, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjay G Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| |
Collapse
|
20
|
Patil VS, Harish DR, Vetrivel U, Roy S, Deshpande SH, Hegde HV. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules 2022; 27:molecules27031076. [PMID: 35164341 PMCID: PMC8839135 DOI: 10.3390/molecules27031076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of −8.6 kcal/mol and −7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of −7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.
Collapse
Affiliation(s)
- Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| | - Darasaguppe R. Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Sanjay H. Deshpande
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, India
| | - Harsha V. Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| |
Collapse
|
21
|
The Inhibitory Effects of Terminalia catappa L. Extract on the Migration and Invasion of Human Glioblastoma Multiforme Cells. Pharmaceuticals (Basel) 2021; 14:ph14111183. [PMID: 34832965 PMCID: PMC8620508 DOI: 10.3390/ph14111183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and common types of brain tumor. Due to its high proliferation ability, a high lethality rate has been observed with this malignant glial tumor. Terminalia catappa L. (T. catappa) is currently known to have anti-inflammatory and anti-carcinogenesis effects. However, few studies have examined the mechanisms of the leaf extracts of T. catappa (TCE) on GBM cells. In the current study, we demonstrated that TCE can significantly inhibit the migration and invasion capabilities of GBM cell lines without showing biotoxic effects. Matrix metalloproteinases-2 (MMP-2) activity and protein expression were attenuated by reducing the p38 phosphorylation involved in the mitogen-activated protein kinase (MAPK) pathway. By treating with TCE and/or p38 inhibitor (SB203580), we confirmed that p38 MAPK is involved in the inhibition of cell migration. In conclusion, our results demonstrated that TCE inhibits human GBM cell migration and MMP-2 expression by regulating the p38 pathway. These results reveal that TCE contains potent therapeutic compounds which could be applied for treating GBM brain tumors.
Collapse
|
22
|
Molino RJEJ, Rellin KFB, Nellas RB, Junio HA. Sustainable Hues: Exploring the Molecular Palette of Biowaste Dyes through LC-MS Metabolomics. Molecules 2021; 26:6645. [PMID: 34771057 PMCID: PMC8587104 DOI: 10.3390/molecules26216645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Underutilized biowaste materials are investigated for their potential as sustainable textile colorants through an approach based on mass spectrometry, bioinformatics, and chemometrics. In this study, colorful decoctions were prepared from the outer bark of Eucalyptus deglupta and fruit peels of Syzygium samarangense, Syzygium malaccense, Diospyros discolor, and Dillenia philippinensis. Textile dyeing was performed along with liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics to determine the small molecules responsible for the observed colors. Global Natural Products Social Molecular Networking (GNPS) guided the annotation of black-producing proanthocyanidins in D. philippinensis and E. deglupta through complexation with FeSO4 mordant. Flavonoids from the yellow-colored D. philippinensis extracts were found to be similar to those in Terminalia catappa, a known traditional dye source. A higher intensity of epicatechin in E. deglupta produced a red-brown color in the presence of Cu2+. Furthermore, Syzygium fruit peels have poor wash-fastness in cotton fibers, but bioactive chalcone unique to S. samarangense samples may be a potential nutritional food colorant. Unsupervised PCA and supervised OPLS-DA chemometrics distinguished chemical features that affect dyeing properties beyond the observed color. These findings, along with growing data on natural dyes, could guide future research on sustainable colorants.
Collapse
Affiliation(s)
- Ralph John Emerson J. Molino
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| | - Klidel Fae B. Rellin
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| | - Ricky B. Nellas
- Virtual Biochemical Simulations Laboratory (Good VIBEs), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines;
| | - Hiyas A. Junio
- Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines; (R.J.E.J.M.); (K.F.B.R.)
| |
Collapse
|
23
|
Zeng Y, Fang G, Fu Q, Dionysiou DD, Wang X, Gao J, Zhou D, Wang Y. Photochemical characterization of paddy water during rice cultivation: Formation of reactive intermediates for As(III) oxidation. WATER RESEARCH 2021; 206:117721. [PMID: 34624658 DOI: 10.1016/j.watres.2021.117721] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Although the photochemical behavior of surface water and its effects on pollutant transformation have been studied extensively in recent years, the photochemistry of paddy water remains largely unknown. In this study, we examined the photochemical processes involving paddy water samples collected at four different cultivation stages of rice. Triplet dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH) were found to be the dominant reactive intermediates (RIs), and their apparent quantum yields and steady-state concentrations were quantified. Compared with the typical surface water, quantum yields of 3DOM* and •OH were comparable, while quantum yields of 1O2 were about 2.4-6.7 times higher than those of surface water. Fluorescence emission-excitation matrix (EEM) spectra, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), and statistical analysis revealed that DOM properties and nitrite concentration were the main factor influencing RIs generation. The results suggest that DOM with lower molecular weight and humification extent generated more RIs, and nitrite contributed to 23.9%-100% of •OH generation. EEM and FTICR-MS data showed that DOM with more saturated and less aromatic formulas could produce more 3DOM* under the irradiation, while the polyphenolic components of DOM inhibited the formation of RIs. Moreover, RIs significantly enhanced arsenite (As(III)) oxidation with oxidation rate increased by 1.8-4.1 times in paddy water, and •OH and 3DOM* were the main RIs responsible for As(III) oxidation. This study provides new insight into the pathways of arsenite abiotic transformation in paddy soil and water.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - Xiaolei Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
24
|
Kisiriko M, Anastasiadi M, Terry LA, Yasri A, Beale MH, Ward JL. Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants. Molecules 2021; 26:6343. [PMID: 34770752 PMCID: PMC8588183 DOI: 10.3390/molecules26216343] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Biostimulants and bioprotectants are derived from natural sources and can enhance crop growth and protect crops from pests and pathogens, respectively. They have attracted much attention in the past few decades and contribute to a more sustainable and eco-friendly agricultural system. Despite not having been explored extensively, plant extracts and their component secondary metabolites, including phenolic compounds have been shown to have biostimulant effects on plants, including enhancement of growth attributes and yield, as well as bioprotectant effects, including antimicrobial, insecticidal, herbicidal and nematicidal effects. Medicinal and aromatic plants are widely distributed all over the world and are abundant sources of phenolic compounds. This paper reviews the characterisation of phenolic compounds and extracts from medicinal and aromatic plants, including a brief overview of their extraction, phytochemical screening and methods of analysis. The second part of the review highlights the potential for use of phenolic compounds and extracts as biostimulants and bioprotectants in agriculture as well as some of the challenges related to their use.
Collapse
Affiliation(s)
- Musa Kisiriko
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (M.K.); (M.A.); (L.A.T.)
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco;
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK;
| | - Maria Anastasiadi
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (M.K.); (M.A.); (L.A.T.)
| | - Leon Alexander Terry
- Plant Science Laboratory, Cranfield University, Cranfield MK43 0AL, UK; (M.K.); (M.A.); (L.A.T.)
| | - Abdelaziz Yasri
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco;
| | | | | |
Collapse
|
25
|
Hydrolyzable tannins (ellagitannins), flavonoids, pentacyclic triterpenes and their glycosides in antimycobacterial extracts of the ethnopharmacologically selected Sudanese medicinal plant Combretum hartmannianum Schweinf. Biomed Pharmacother 2021; 144:112264. [PMID: 34624680 DOI: 10.1016/j.biopha.2021.112264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-β-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.
Collapse
|
26
|
Das G, Kim DY, Fan C, Gutiérrez-Grijalva EP, Heredia JB, Nissapatorn V, Mitsuwan W, Pereira ML, Nawaz M, Siyadatpanah A, Norouzi R, Sawicka B, Shin HS, Patra JK. Plants of the Genus Terminalia: An Insight on Its Biological Potentials, Pre-Clinical and Clinical Studies. Front Pharmacol 2020; 11:561248. [PMID: 33132909 PMCID: PMC7578430 DOI: 10.3389/fphar.2020.561248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
The evaluation and confirmation of healing properties of several plant species of genus Terminalia based on their traditional uses and the clinical claims are of utmost importance. Genus Terminalia has received more attention to assess and validate the therapeutic potential and clinical approval due to its immense folk medicinal and traditional applications. Various species of Terminalia genus are used in the form of herbal medicine and formulations, in treatment of diseases, including headache, fever, pneumonia, flu, geriatric, cancer, to improve memory, abdominal and back pain, cough and cold, conjunctivitis, diarrhea, heart disorder, leprosy, sexually transmitted diseases, and urinary tract disorders. These are reported to possess numerous biological properties, counting: antibacterial, antifungal, antiinflammatory, antiviral, antiretroviral, antioxidant, and antipa7rasitic. This current research review aims to update the detailed biological activities, pre-clinical and clinical studies of various extracts and secondary metabolites from several plant species under the genus Terminalia, along with information on the traditional uses and chemical composition to develop a promising strategy for their potential applications in the form of medicine or use in modern drug formulations for treating diseases like pneumonia, flu, and other types of viral infections or controlling human contagions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Do-Yeong Kim
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore, Singapore
| | - Erick P. Gutiérrez-Grijalva
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Cátedras CONACYT–Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - J. Basilio Heredia
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Barbara Sawicka
- Faculty of Agrobioengineering, Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Lublin, Poland
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|