1
|
Rajendran L, Sapisochin G. Disappearing colorectal liver metastases: the importance of radiographic-pathologic correlation in oncology care. Hepatobiliary Surg Nutr 2025; 14:131-135. [PMID: 39925904 PMCID: PMC11806128 DOI: 10.21037/hbsn-2024-640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 02/11/2025]
Affiliation(s)
- Luckshi Rajendran
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Transplant Surgery, Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Gonzalo Sapisochin
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Latcu SC, Cumpanas AA, Barbos V, Buciu VB, Raica M, Baderca F, Gaje PN, Ceausu RA, Dumitru CS, Novacescu D, Cut TG, Petrica L. Clinical Tools for Optimizing Therapeutic Decision-Making in Prostate Cancer: A Five-Year Retrospective Analysis. Life (Basel) 2024; 14:838. [PMID: 39063592 PMCID: PMC11278064 DOI: 10.3390/life14070838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The effective staging of prostate cancer is essential for optimizing treatment and predicting outcomes. This study assessed the correlation between detailed preoperative diagnostic scores and postoperative outcomes to evaluate the accuracy of cancer restaging and its impact on treatment decisions and prognosis after prostatectomy. This retrospective study analyzed 133 prostate cancer patients who underwent prostatectomies at "Pius Brinzeu" Clinical Emergency Hospital in Timisoara over five years. Preoperative Gleason scores increased significantly across risk categories, from an average of 6.21 in low-risk patients to 7.57 in high-risk patients. This trend continued postoperatively, with scores rising from 7.04 to 8.33, respectively. The average increase in Gleason scores from preoperative to postoperative assessments was most pronounced in high-risk patients, at 0.76. Significant changes in clinical staging included increases in NCCN risk, where high-risk patients showed a 30% increase, and ISUP grade, with a 26.7% increase in the high-risk category. Notably, nodal status changes were also significant in high-risk patients, showing a 23.3% increase. The incidence of MRI-detected adenopathy was notably higher in the high-risk group (50%). Furthermore, there were significant correlations between the preoperative CAPRA score and postoperative ISUP grade (r = 0.261) and the preoperative PIRADS score and postoperative ISUP grade (r = 0.306). Similar observations were made between the preoperative and postoperative Gleason scores (r = 0.286) and the number of positive fragments (r = 0.227) with the postoperative ISUP grading. Furthermore, the preoperative CAPRA score was significantly correlated (r = 0.261) with the postoperative ISUP grading. Preoperative MRI findings, which included assessments of adenopathy and seminal vesicle invasion, were also significantly correlated (r = 0.218) with the postoperative pathological findings. Additionally, a significant correlation was found between the preoperative PIRADS score and postoperative ISUP grade (r = 0.306). In forecasting the aggressiveness and staging of prostate cancer following surgery, preoperative PSA levels showed an AUC of 0.631; the preoperative Gleason score had an AUC adjusted to 0.582, and the number of positive biopsy fragments indicated an AUC of 0.566. These results highlight the necessity of accurate and comprehensive preoperative assessments to better predict disease progression and refine treatment strategies.
Collapse
Affiliation(s)
- Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.); (V.-B.B.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Vlad Barbos
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.); (V.-B.B.)
| | - Victor-Bogdan Buciu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.); (V.-B.B.)
| | - Marius Raica
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Flavia Baderca
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.R.); (F.B.); (P.N.G.); (R.A.C.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania;
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania
| |
Collapse
|
4
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
5
|
Scimeca M, Rovella V, Caporali S, Shi Y, Bischof J, Woodsmith J, Tisone G, Sica G, Amelio I, Melino G, Mauriello A, Bove P. Genetically driven predisposition leads to an unusually genomic unstable renal cell carcinoma. Discov Oncol 2024; 15:80. [PMID: 38512353 PMCID: PMC10957849 DOI: 10.1007/s12672-024-00894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sabrina Caporali
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Giuseppe Tisone
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Pierluigi Bove
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
6
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
7
|
Ghaleh HEG, Vakilzadeh G, Zahiri A, Farzanehpour M. Investigating the potential of oncolytic viruses for cancer treatment via MSC delivery. Cell Commun Signal 2023; 21:228. [PMID: 37667271 PMCID: PMC10478302 DOI: 10.1186/s12964-023-01232-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable interest as a promising approach for cancer treatment due to their ability to undergo tumor-trophic migration. MSCs possess the unique ability to selectively migrate to tumors, making them an excellent candidate for targeted delivery of oncolytic viruses (OVs) to treat isolated tumors and metastatic malignancies. OVs have attracted attention as a potential treatment for cancer due to their ability to selectively infect and destroy tumor cells while sparing normal cells. In addition, OVs can induce immunogenic cell death and contain curative transgenes in their genome, making them an attractive candidate for cancer treatment in combination with immunotherapies. In combination with MSCs, OVs can modulate the tumor microenvironment and trigger anti-tumor immune responses, making MSC-releasing OVs a promising approach for cancer treatment. This study reviews researches on the use of MSC-released OVs as a novel method for treating cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Gazal Vakilzadeh
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Ali Zahiri
- Students Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran.
| |
Collapse
|
8
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Avolio E, Olivito I, Rosina E, Romano L, Angelone T, Bartolo Anna D, Scimeca M, Bellizzi D, D'Aquila P, Passarino G, Alò R, Maria Facciolo R, Bagni C, De Lorenzo A, Canonaco M. Modifications of behavior and inflammation in mice following transplant with fecal microbiota from children with autism. Neuroscience 2022; 498:174-189. [DOI: 10.1016/j.neuroscience.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
10
|
A Synopsis of Machine and Deep Learning in Medical Physics and Radiology. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.960154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Machine learning (ML) and deep learning (DL) technologies introduced in the fields of medical physics, radiology, and oncology have made great strides in the past few years. A good many applications have proven to be an efficacious automated diagnosis and radiotherapy system. This paper outlines DL's general concepts and principles, key computational methods, and resources, as well as the implementation of automated models in diagnostic radiology and radiation oncology research. In addition, the potential challenges and solutions of DL technology are also discussed.
Collapse
|
11
|
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022; 149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
12
|
Urbano N, Scimeca M, Bonanno E, Schillaci O. Radiopharmaceutical preclinical investigation: an accurate and multidisciplinary approach. Curr Radiopharm 2021; 15:157-163. [PMID: 34886790 DOI: 10.2174/1874471014666211209154317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The development of less expensive and pivotal methodologies, capable to support the researchers in the radiopharmaceutical pre-clinical investigations could provide a crucial incentive for developing biomedical research involved in the realization of tailored target therapies. OBJECTIVE The aim of this pilot study was to evaluate the capability of a digital autoradiography system equipped with a laser scanning device to perform [18F]choline biodistribution evaluation in a xenograft mouse model of prostate cancer. METHODS PC3 prostate cancer cells were used to develop xenografts in NOD/SCID mice. The biodistribution of the radiopharmaceutical was evaluated at 30,60 and 120 min after injection in excised organs by using a digital autoradiography system equipped with super resolution laser screen. Histological and immunohistochemical analysis were performed to correlate the [18F]choline uptake with morphological and molecular tumours characteristics. RESULTS Data here reported clearly indicate the possibility to perform accurate biodistribution studies by using the digital autoradiographic system equipped with a super resolution screen. Specifically, a significant increase in the [18F]choline inhibitor uptake in PC3 tumours as compared to heart, bowel, liver and kidney at both 30 and 60 min was observed. More important, the digital autoradiographic system showed signal uptake almost exclusively in the PC3 tumors at 60 min post-injection. Noteworthy, immunohistochemical analysis demonstrated a strong overlapping between the [18F]choline uptake and the proliferation index (Ki67 expression). CONCLUSIONS The use of autoradiography system in pre-clinical investigations could shed new light on the molecular mechanisms that orchestrate the tissues damage induced by therapeutical radiopharmaceuticals.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata", 00133 Rome. Italy
| | - Manuel Scimeca
- Department of Experimental medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome. Italy
| | - Elena Bonanno
- Department of Experimental medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome. Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome. Italy
| |
Collapse
|
13
|
Urbano N, Scimeca M, Tolomeo A, Dimiccoli V, Bonanno E, Schillaci O. Novel Biological and Molecular Characterization in Radiopharmaceutical Preclinical Design. J Clin Med 2021; 10:4850. [PMID: 34768368 PMCID: PMC8584913 DOI: 10.3390/jcm10214850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the potential of a digital autoradiography system equipped with a super resolution screen has been evaluated to investigate the biodistribution of a 18F-PSMA inhibitor in a prostate cancer mouse model. Twelve double xenograft NOD/SCID mice (LNCAP and PC3 tumours) were divided into three groups according to post-injection time points of an 18F-PSMA inhibitor. Groups of 4 mice were used to evaluate the biodistribution of the radiopharmaceutical after 30-, 60- and 120-min post-injection. Data here reported demonstrated that the digital autoradiography system is suitable to analyse the biodistribution of an 18F-PSMA inhibitor in both whole small-animal bodies and in single organs. The exposure of both whole mouse bodies and organs on the super resolution screen surface allowed the radioactivity of the PSMA inhibitor distributed in the tissues to be detected and quantified. Data obtained by using a digital autoradiography system were in line with the values detected by the activity calibrator. In addition, the image obtained from the super resolution screen allowed a perfect overlap with the tumour images achieved under the optical microscope. In conclusion, biodistribution studies performed by the autoradiography system allow the microscopical modifications induced by therapeutic radiopharmaceuticals to be studied by comparing the molecular imaging and histopathological data at the sub-cellular level.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, 00133 Rome, Italy;
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- San Raffaele Roma Open University, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Anna Tolomeo
- Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., Via Labriola snc, 70037 Ruvo di Puglia, Italy; (A.T.); (V.D.)
| | - Vincenzo Dimiccoli
- Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., Via Labriola snc, 70037 Ruvo di Puglia, Italy; (A.T.); (V.D.)
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
14
|
Urbano N, Scimeca M, Tavolozza M, Bonanno E, Mauriello A, Schillaci O. 18F-FDG-PET/CT analysis in hospitalized patients affected by pulmonary disease: The experience of the Nuclear Medicine Unit of "Policlinico Tor Vegata". Nucl Med Commun 2021; 42:1104-1111. [PMID: 34528930 DOI: 10.1097/mnm.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The main aim of this study was to retrospectively evaluate the clinical data and outcomes of a cohort of 492 hospitalized patients who underwent fluorine-18-fluorodeoxyglucose (F-FDG)-PET/CT analysis at the nuclear medicine unit of 'Policlinico Tor Vergata' in Rome during the years 2017 and 2018 with particular emphasis for patients affected by pulmonary diseases. METHODS Anamnestic data (age and gender), main pathologic conditions, results of F-FDG-PET/CT examination, appropriateness of the request, and medical records of 492 consecutive hospitalized patients who underwent F-FDG-PET/CT analysis (55.38 ± 3.78 years; range 33-81 years) from January 2017 to December 2018 were obtained. RESULTS Considering all examinations, positive results were observed in 66.9% of cases whereas it was not possible to perform a diagnosis in 12.7% of cases (doubt results). About 20-fold increase in the percentage of doubt results was observed in F-FDG-PET/CT analysis with no appropriateness as compared to those with double appropriateness (both the request and clinical). Noteworthy, our data showed a 95% higher concordance between the positive results of the F-FDG-PET/CT examination and the histologic diagnosis. Conversely, the concordance between the analysis of the bronchoalveolar lavages and the PET analysis was very low. CONCLUSION Data here reported showed the high accuracy of the F-FDG-PET/CT performed in our department, mainly for pulmonary diseases, also highlighting the importance of continuously updating the selection criteria for patients who need PET examinations.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1
- San Raffaele University, Via di Val Cannuta 247
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro
| | - Mario Tavolozza
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1
| | - Alessandro Mauriello
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
- Tor Vergata Oncoscience Research (TOR)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", IRCCS Neuromed, Via Atinense, 18, 8607 Pozzilli, Italy
| |
Collapse
|
15
|
Leung D, Bonacorsi S, Smith RA, Weber W, Hayes W. Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic. Front Oncol 2021; 11:698425. [PMID: 34497758 PMCID: PMC8420047 DOI: 10.3389/fonc.2021.698425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the important molecular interplay between PD-1 and PD-L1, a key pathway contributing to immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other treatments, across multiple tumor types. PD-L1 expression has been associated with response to immune checkpoint inhibitors, and treatment strategies are often guided by immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However, challenges related to the implementation, interpretation, and clinical utility of PD-L1 diagnostic tests have led to an increasing number of preclinical and clinical studies exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have been tested in preclinical and clinical studies, with clinical trials in progress to assess their use in a number of cancer types. This review will showcase the development of PD-(L)1 PET tracers from preclinical studies through to clinical use, and will explore the opportunities in drug development and possible future clinical implementation.
Collapse
Affiliation(s)
- David Leung
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Samuel Bonacorsi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Ralph Adam Smith
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Wolfgang Weber
- Technische Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wendy Hayes
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
16
|
A New Nanomaterial Based Biosensor for MUC1 Biomarker Detection in Early Diagnosis, Tumor Progression and Treatment of Cancer. ACTA ACUST UNITED AC 2021. [DOI: 10.3390/nanomanufacturing1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early detection of cancer disease is vital to the successful treatment, follow-up and survival of patients, therefore sensitive and specific methods are still required. Mucin 1 (MUC1) is a clinically approved biomarker for determining the cancer that is a type I transmembrane protein with a dense glycosylated extracellular domain extending from the cell surface to 200–500 nm. In this study, nanopolymers were designed with a lectin affinity-based recognition system for MUC1 detection as a bioactive layer on electrochemical biosensor electrode surfaces. They were synthesized using a mini emulsion polymerization method and derivatized with triethoxy-3-(2-imidazolin-1-yl) propylsilane (IMEO) and functionalized with Concanavalin a Type IV (Con A) lectin. Advanced characterization studies of nanopolymers were performed. The operating conditions of the sensor system have been optimized. Biosensor validation studies were performed. Real sample blood serum was analyzed and this new method compared with a commercially available medical diagnostic kit (Enzyme-Linked ImmunoSorbent Assay-ELISA). The new generation nanopolymeric material has been shown to be an affordable, sensitive, reliable and rapid device with 0.1–100 U/mL linear range and 20 min response time.
Collapse
|
17
|
Gennaro N, Reijers S, Bruining A, Messiou C, Haas R, Colombo P, Bodalal Z, Beets-Tan R, van Houdt W, van der Graaf WTA. Imaging response evaluation after neoadjuvant treatment in soft tissue sarcomas: Where do we stand? Crit Rev Oncol Hematol 2021; 160:103309. [PMID: 33757836 DOI: 10.1016/j.critrevonc.2021.103309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Soft tissue sarcomas (STS) represent a broad family of rare tumours for which surgery with radiotherapy represents first-line treatment. Recently, neoadjuvant chemo-radiotherapy has been increasingly used in high-risk patients in an effort to reduce surgical morbidity and improve clinical outcomes. An adequate understanding of the efficacy of neoadjuvant therapies would optimise patient care, allowing a tailored approach. Although response evaluation criteria in solid tumours (RECIST) is the most common imaging method to assess tumour response, Choi criteria and functional and molecular imaging (DWI, DCE-MRI and 18F-FDG-PET) seem to outperform it in the discrimination between responders and non-responders. Moreover, the radiologic-pathology correlation of treatment-related changes remains poorly understood. In this review, we provide an overview of the imaging assessment of tumour response in STS undergoing neoadjuvant treatment, including conventional imaging (CT, MRI, PET) and advanced imaging analysis. Future directions will be presented to shed light on potential advances in pre-surgical imaging assessments that have clinical implications for sarcoma patients.
Collapse
Affiliation(s)
- Nicolò Gennaro
- Humanitas Research and Cancer Center, Dept. of Radiology, Rozzano, Italy; Humanitas University, Dept. of Biomedical Sciences, Pieve Emanuele, Italy; The Netherlands Cancer Institute, Dept. of Radiology, Amsterdam, the Netherlands.
| | - Sophie Reijers
- The Netherlands Cancer Institute, Dept. of Surgical Oncology, Amsterdam, the Netherlands
| | - Annemarie Bruining
- The Netherlands Cancer Institute, Dept. of Radiology, Amsterdam, the Netherlands
| | - Christina Messiou
- The Royal Marsden NHS Foundation Trust, Dept. Of Radiology Sarcoma Unit, Sutton, United Kingdom; The Institute of Cancer Research, Sutton, United Kingdom
| | - Rick Haas
- The Netherlands Cancer Institute, Dept. of Radiation Oncology, Amsterdam, the Netherlands; Leiden University Medical Center, Dept. of Radiation Oncology, the Netherlands
| | | | - Zuhir Bodalal
- The Netherlands Cancer Institute, Dept. of Radiology, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Regina Beets-Tan
- The Netherlands Cancer Institute, Dept. of Radiology, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Danish Colorectal Cancer Center South, Vejle University Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark
| | - Winan van Houdt
- The Netherlands Cancer Institute, Dept. of Surgical Oncology, Amsterdam, the Netherlands
| | - Winette T A van der Graaf
- The Netherlands Cancer Institute, Dept. of Medical Oncology, Amsterdam, the Netherlands; Erasmus MC Cancer Institute, Dept. of Medical Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Liu JTC, Glaser AK, Bera K, True LD, Reder NP, Eliceiri KW, Madabhushi A. Harnessing non-destructive 3D pathology. Nat Biomed Eng 2021; 5:203-218. [PMID: 33589781 PMCID: PMC8118147 DOI: 10.1038/s41551-020-00681-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
High-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays. However, the large size of the feature-rich datasets that they generate poses challenges for data management and computer-aided analysis. In this Perspective, we provide an overview of the imaging technologies that enable 3D pathology, and the computational tools-machine learning, in particular-for image processing and interpretation. We also discuss the integration of various other diagnostic modalities with 3D pathology, along with the challenges and opportunities for clinical adoption and regulatory approval.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
19
|
Berrino E, Annaratone L, Miglio U, Maldi E, Piccinelli C, Peano E, Balmativola D, Cassoni P, Pisacane A, Sarotto I, Venesio T, Sapino A, Marchiò C. Cold Formalin Fixation Guarantees DNA Integrity in Formalin Fixed Paraffin Embedded Tissues: Premises for a Better Quality of Diagnostic and Experimental Pathology With a Specific Impact on Breast Cancer. Front Oncol 2020; 10:173. [PMID: 32140450 PMCID: PMC7042205 DOI: 10.3389/fonc.2020.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 11/29/2022] Open
Abstract
Formalin fixation and paraffin embedding (FFPE) represent the standard method to preserve tissue specimens for diagnostic pathology, however formalin fixation induces severe fragmentation of nucleic acids. We investigated whether formalin fixation at 4°C could preserve DNA integrity in FFPE specimens. Paired samples from 38 specimens were formalin fixed at room temperature (stdFFPE) and at 4°C (coldFFPE), respectively. Two independent cohorts were prospectively collected, cohort A (collected 6 years prior to the study, n = 21), cohort B (collected at time of the study, n = 17). DNA was extracted and its integrity evaluated with a qPCR-based assay that produces a normalized integrity index, the QC score (ratio between the quantity of a long and a short amplicon of the same gene). We observed higher QC scores in coldFFPE compared to stdFFPE samples (mean values: 0.69 vs. 0.36, p < 0.0001) and stdFFPE breast cancer specimens showed the most detrimental effect overall. Comparable QC scores were obtained between coldFFPE tissues of both cohorts; conversely, DNA integrity of stdFFPE was significantly lower in cohort A compared to cohort B (p < 0.0001). Of note, QC scores of stdFFPE (but not of coldFFPE) samples were significantly reduced following 6 months of storage (p = 0.0001). Monitored formalin fixation at 4°C outperforms standard fixation in ensuring high-quality DNA, which is key to feasibility of downstream high-throughput molecular analyses. An important effect was observed over storage time, thus suggesting a likely better preservation of archival samples when this cold fixation protocol is used.
Collapse
Affiliation(s)
- Enrico Berrino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Umberto Miglio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elena Maldi
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Chiara Piccinelli
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Erica Peano
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Alberto Pisacane
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Ivana Sarotto
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Tiziana Venesio
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
20
|
Vhriterhire R, Ngbea J, Akpor I. Histological spectrum of soft-tissue tumors in a tertiary hospital. SAHEL MEDICAL JOURNAL 2020. [DOI: 10.4103/smj.smj_39_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019; 9:jcm9010089. [PMID: 31905769 PMCID: PMC7019574 DOI: 10.3390/jcm9010089] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
The development of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners opened a new scenario for cancer diagnosis, treatment, and follow-up. Multimodal imaging combines functional and morphological information from different modalities, which, singularly, cannot provide a comprehensive pathophysiological overview. Molecular imaging exploits multimodal imaging in order to obtain information at a biological and cellular level; in this way, it is possible to track biological pathways and discover many typical tumoral features. In this context, nanoparticle-based contrast agents (CAs) can improve probe biocompatibility and biodistribution, prolonging blood half-life to achieve specific target accumulation and non-toxicity. In addition, CAs can be simultaneously delivered with drugs or, in general, therapeutic agents gathering a dual diagnostic and therapeutic effect in order to perform cancer diagnosis and treatment simultaneous. The way for personalized medicine is not so far. Herein, we report principles, characteristics, applications, and concerns of nanoparticle (NP)-based PET/MRI CAs.
Collapse
|
22
|
Urbano N, Scimeca M, Crocco A, Mauriello A, Bonanno E, Schillaci O. 18F-Choline PET/CT Identifies High-Grade Prostate Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2019; 8:1657. [PMID: 31614564 PMCID: PMC6832450 DOI: 10.3390/jcm8101657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The main aim of this study was to investigate the possible association between 18F-choline uptake and histopathological features of prostate biopsies such as the Gleason Group and the expression of both epithelial to mesenchymal transition (vimentin) and bone mineralization (bone morphogenetics protein (BMP)-2, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor-κB ligand (RANKL), vitamin D receptor (VDR), and pentraxin 3 (PTX3) in situ biomarkers. To this end, we enrolled 79 consecutive prostate cancer patients that underwent both the 18F-choline PET/CT analysis and the prostate bioptic procedure. The standardized uptake value (SUV) average values were collected from 18F-choline PET/CT analysis whereas Gleason Group and immunostaining data were collected from paraffin-embedded sections. Histological classification showed a heterogenous population including both low/intermediate and high-grade prostate cancers. A significant increase of 18F-choline uptake in high-grade prostate lesions (Gleason Score ≥8) was found. Also, linear regression analysis showed a significant correlation between 18F-choline uptake and the number of vimentin, RANKL, VDR, or PTX3 positive prostate cancer cells. Conversely, we observed no significant association between 18F-choline uptake and the expression of bone biomarkers involved in the early phases of osteoblast differentiation (BMP-2, RUNX2). In conclusion, results here reported can lay the foundation for the use of 18F-choline positron emission tomography (PET)/computed tomography (CT) as a diagnostic tool capable of identifying high-grade prostate cancer lesions expressing bone biomarkers.
Collapse
Affiliation(s)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Fondazione Umberto Veronesi (FUV), 20122 Milano, Italy.
| | - Antonio Crocco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
- Neuromed Group, 'Diagnostica Medica' & 'Villa dei Platani', 83100 Avellino, Italy.
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|