1
|
Jiang Y, Nie D, Hu Z, Zhang C, Chang L, Li Y, Li Z, Hu W, Li H, Li S, Xu C, Liu S, Yang F, Wen W, Han D, Zhang K, Qin W. Macrophage-Derived Nanosponges Adsorb Cytokines and Modulate Macrophage Polarization for Renal Cell Carcinoma Immunotherapy. Adv Healthc Mater 2024; 13:e2400303. [PMID: 38647150 DOI: 10.1002/adhm.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Renal cell carcinoma (RCC) is a hot tumor infiltrated by large numbers of CD8+ T cells and is highly sensitive to immunotherapy. However, tumor-associated macrophages (TAMs), mainly M2 macrophages, tend to undermine the efficacy of immunotherapy and promote the progression of RCC. Here, macrophage-derived nanosponges are fabricated by M2 macrophage membrane-coated poly(lactic-co-glycolic acid)(PLGA), which could chemotaxis to the CXC and CC chemokine subfamily-enriched RCC microenvironment via corresponding membrane chemokine receptors. Subsequently, the nanosponges act like cytokine decoys to adsorb and neutralize broad-spectrum immunosuppressive cytokines such as colony stimulating factor-1(CSF-1), transforming growth factor-β(TGF-β), and Lnterleukin-10(IL-10), thereby reversing the polarization of M2-TAMs toward the pro-inflammatory M1 phenotype, and enhancing the anti-tumor effect of CD8+ T cells. To further enhance the polarization reprogramming efficiency of TAMs, DSPE-PEG-M2pep is conjugated on the surface of macrophage-derived nanosponges for specific recognition of M2-TAMs, and the toll like receptors 7/8(TLR7/8) agonist, R848, is encapsulated in these nanosponges to induce M1 polarization, which result in significant efficacy against RCC. In addition, these nanosponges exhibit undetectable biotoxicity, making them suitable for clinical applications. In summary, a promising and facile strategy is provided for immunomodulatory therapies, which are expected to be used in the treatment of tumors, autoimmune diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Urology, Air Force 986 Hospital, Xi'an, 710054, China
| | - Disen Nie
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhihao Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingdi Chang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengxuan Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sikai Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Huang H, Chen R, Deng X, Wang J, Chen J. GSDMB: A novel, independent prognostic marker and potential new therapeutic target in clear cell renal cell carcinoma. Oncol Lett 2024; 27:85. [PMID: 38249806 PMCID: PMC10797315 DOI: 10.3892/ol.2024.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024] Open
Abstract
Gasdermin (GSDM) family members are involved in numerous biological processes, including pyroptosis, as well as in the initiation and progression of various types of cancer. However, the specific role of GSDM genes in clear cell renal cell carcinoma (ccRCC) has yet to be fully clarified. The present study investigated the differential expression and genetic alterations GSDM genes, their effects on prognosis and immune modulation, and their functional enrichment in ccRCC. Several bioinformatics databases were used, including UALCAN, The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, Metascape, Tumor Immune Estimation Resource, GSCALite and cBioPortal. The results revealed that the expression levels of GSDMA, GSDMB, GSDMC and GSDMD were significantly upregulated in cancer tissues compared with those in paracancerous tissues in patients with ccRCC, whereas the expression of DFNB59 exhibited the opposite trend. The results were experimentally validated in patients with ccRCC, and it was confirmed that the expression levels of GSDMA, GSDMB, GSDMC, GSDMD and GSDME (DFNA5) were significantly enhanced, whereas (PJVK, DFNB59) expression was reduced. In addition, elevated GSDMB, GSDMD and DFNA5 expression levels were clearly associated with worse pathological characteristics of ccRCC, including a high pathological stage and high tumor grade. Furthermore, the high expression levels of GSDMB, GSDMC, GSDMD, DFNA5 and PJVK were shown to be associated with worse overall survival (OS) and progression-free interval in patients with ccRCC. Both univariate and multivariate analyses indicated that the expression of GSDMB was independently associated with the OS of patients with ccRCC. Additionally, a high mutation rate of GSDM genes (33%) was observed in patients with ccRCC, and GSDM gene mutations were also significantly associated with a poor OS in patients with ccRCC. Significant associations between GSDM genes and ccRCC immunoprofiling and drug sensitivity were also determined. In conclusion, the findings of the present study indicated that GSDMB, GSDMD and DFNA5 may be considered promising therapeutic agents and potential biomarkers for patients with ccRCC. Furthermore, GSDMB could act as an independent predictor for the OS of patients with ccRCC.
Collapse
Affiliation(s)
- Hongshuang Huang
- Department of Urology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinxi Deng
- Department of Urology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Jie Wang
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
3
|
Ma F, Wang S, Xu L, Huang W, Shi G, Sun Z, Cai W, Wu Z, Huang Y, Meng J, Sun Y, Fang M, Cheng M, Ji Y, Hu T, Zhang Y, Gu B, Zhang J, Song S, Sun Y, Yan W. Single-cell profiling of the microenvironment in human bone metastatic renal cell carcinoma. Commun Biol 2024; 7:91. [PMID: 38216635 PMCID: PMC10786927 DOI: 10.1038/s42003-024-05772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Bone metastasis is of common occurrence in renal cell carcinoma with poor prognosis, but no optimal treatment approach has been established for bone metastatic renal cell carcinoma. To explore the potential therapeutic targets for bone metastatic renal cell carcinoma, we profile single cell transcriptomes of 6 primary renal cell carcinoma and 9 bone metastatic renal cell carcinoma. We also include scRNA-seq data of early-stage renal cell carcinoma, late-stage renal cell carcinoma, normal kidneys and healthy bone marrow samples in the study to better understand the bone metastasis niche. The molecular properties and dynamic changes of major cell lineages in bone metastatic environment of renal cell carcinoma are characterized. Bone metastatic renal cell carcinoma is associated with multifaceted immune deficiency together with cancer-associated fibroblasts, specifically appearance of macrophages exhibiting malignant and pro-angiogenic features. We also reveal the dominance of immune inhibitory T cells in the bone metastatic renal cell carcinoma which can be partially restored by the treatment. Trajectory analysis showes that myeloid-derived suppressor cells are progenitors of macrophages in the bone metastatic renal cell carcinoma while monocytes are their progenitors in primary tumors and healthy bone marrows. Additionally, the infiltration of immune inhibitory CD47+ T cells is observed in bone metastatic tumors, which may be a result of reduced phagocytosis by SIRPA-expressing macrophages in the bone microenvironment. Together, our results provide a systematic view of various cell types in bone metastatic renal cell carcinoma and suggest avenues for therapeutic solutions.
Collapse
Affiliation(s)
- Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Guohai Shi
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Juan Meng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Meng Fang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Mo Cheng
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yingzheng Ji
- Department of Orthopedic, Naval Medical Center of PLA, Second Military Medical University, 338 Huaihai West Road, Shanghai, China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Yunkui Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Medical College Road, Shanghai, China.
| |
Collapse
|
4
|
Chien TL, Wu YC, Lee HL, Sung WW, Yu CY, Chang YC, Lin CC, Wang CC, Tsai MC. PNU-74654 Induces Cell Cycle Arrest and Inhibits EMT Progression in Pancreatic Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1531. [PMID: 37763649 PMCID: PMC10532988 DOI: 10.3390/medicina59091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: PNU-74654, a Wnt/β-catenin pathway inhibitor, has an antiproliferative effect on many cancer types; however, its therapeutic role in pancreatic cancer (PC) has not yet been demonstrated. Here, the effects of PNU-74654 on proliferation and cell cycle phase distribution were studied in PC cell lines. Materials and Methods: The cancer-related molecular pathways regulated by PNU-74654 were determined by a proteome profiling oncology array and confirmed by western blotting. Results: The cell viability and proliferative ability of PC cells were decreased by PNU-74654 treatment. G1 arrest was observed, as indicated by the downregulation of cyclin E and cyclin-dependent kinase 2 (CDK2) and the upregulation of p27. PNU-74654 inhibited the epithelial-mesenchymal transition (EMT), as determined by an increase in E-cadherin and decreases in N-cadherin, ZEB1, and hypoxia-inducible factor-1 alpha (HIF-1α). PNU-74654 also suppressed cytoplasmic and nuclear β-catenin and impaired the NF-κB pathway. Conclusions: These results demonstrate that PNU-74654 modulates G1/S regulatory proteins and inhibits the EMT, thereby suppressing PC cell proliferation, migration, and invasion. The synergistic effect of PNU-74654 and chemotherapy or the exclusive use of PNU-74654 may be therapeutic options for PC and require further investigation.
Collapse
Affiliation(s)
- Tai-Long Chien
- Department of Gastroenterology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Yao-Cheng Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chun-Che Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chi-Chih Wang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
5
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
6
|
Kalantzakos TJ, Sebel LE, Trussler J, Sullivan TB, Burks EJ, Sarita-Reyes CD, Canes D, Moinzadeh A, Rieger-Christ KM. MicroRNA Associated with the Invasive Phenotype in Clear Cell Renal Cell Carcinoma: Let-7c-5p Inhibits Proliferation, Migration, and Invasion by Targeting Insulin-like Growth Factor 1 Receptor. Biomedicines 2022; 10:2425. [PMID: 36289686 PMCID: PMC9598558 DOI: 10.3390/biomedicines10102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 01/20/2025] Open
Abstract
Differential microRNA (miRNA) expression can portend clear cell renal cell carcinoma (ccRCC) progression. In a previous study, we identified a subset of dysregulated miRNA in small renal masses, pT1 ccRCC (≤5 cm) that are associated with an aggressive phenotype. The present study investigated miRNA expression in clinical stage I (cT1) tumors (≤5 cm), comparing pathologic stage I (pT1) tumors to those upstaged to pathologic stage 3 (pT3) after surgery following identification of renal vein invasion or invasion into adjacent fat tissue within Gerota's fascia. Twenty cT1 tumors were examined in an miRNA screening, 10 pT1 and 10 pT3 tumors. The ccRCC cell lines 786-O and Caki-1 were used to assess the impact of let-7c-5p and its protein target insulin-like growth factor 1 receptor (IGF1R). Cells were transfected with pre-let-7c-5p and assessed through cell proliferation, migration, and invasion assays. IGF1R expression was evaluated through Simple Western, and interaction between let-7c-5p and IGF1R was confirmed via luciferase reporter assay. Screening identified 20 miRNA, including let-7c-5p, that were dysregulated between pT1 and pT3 upstaged tumors. This miRNA was also downregulated in our previous study of pT1 tumors that progressed to metastatic disease. Transfection of ccRCC cells with pre-let-7c-5p significantly inhibited proliferation, migration, invasion, and IGF1R expression. These findings suggest that miRNA dysregulation is involved in ccRCC progression, specifically through invasion, and that let-7c-5p downregulation contributes to the aggressiveness of small ccRCC tumors, in part, through its regulation of IGF1R.
Collapse
Affiliation(s)
- Thomas J. Kalantzakos
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Luke E. Sebel
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - James Trussler
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Travis B. Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Eric J. Burks
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Carmen D. Sarita-Reyes
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - David Canes
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Alireza Moinzadeh
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| | - Kimberly M. Rieger-Christ
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
- Department of Urology, Lahey Hospital & Medical Center, Burlington, MA 01805, USA
| |
Collapse
|
7
|
Zhang P, Xu Y, Chen S, Wang Z, Zhao L, Chen C, Kang W, Han R, Qiu J, Wang Q, Gao H, Wu G, Xia Q. ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/ β-Catenin Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:2724515. [PMID: 35774359 PMCID: PMC9239764 DOI: 10.1155/2022/2724515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the expression of the ADP-ribosylation factor (ARF)-like proteins (ARLs) and ARL4C in clear cell renal cell carcinoma (ccRCC) based on bioinformatics analysis and experimentally determine the effect and mechanism of ARL4C on cellular properties involved in ccRCC progression. METHODS After downloading the data of cancer patients from the TCGA database, we used various bioinformatics analysis websites and methods to analyze the expression and function of ARLs and ARL4C. The differential expression of ARL4C in clinical renal cancer tissues versus adjacent normal tissues was further verified using immunohistochemistry and real-time quantitative reverse-transcription (qRT-PCR). qRT-PCR was used to explore the expression of ARL4C mRNA in normal renal cells versus different ccRCC cell lines, and the protein expression of ARL4C was further verified using western blotting. CCK-8, colony formation, and EdU assays were used to determine the effect of ARL4C knockdown on ccRCC cell proliferation. We also used wound healing and Transwell assays to analyze the changes in ccRCC cell migration and invasion following ARL4C knockdown. Finally, we used western blotting to probe the molecular mode of action of ARL4C in ccRCC cells after exposure to Wnt signaling pathway agonists. RESULTS Biological function analysis showed that methylation of ARL4C and changes in immune cell infiltration and targeted drug sensitivity caused by altered ARL4C expression affected the prognosis of ccRCC. Further bioinformatics analysis suggested that the expression of ARL4C mRNA was increased in ccRCC, and this was associated with a poor prognosis in ccRCC patients. Increased expression of ARL4C was further verified using qRT-PCR and western blotting of human ccRCC tissue samples. Downregulation of ARL4C significantly inhibited the proliferation, migration, and invasion of ccRCC cells, and activation of the Wnt/β-catenin pathway promoted the expression of ARL4C. As an essential downstream effector of the Wnt signaling pathway, ARL4C increased the expression of cyclin D1 and c-myc, thereby increasing the ability of the cells to undergo epithelial-mesenchymal transition (EMT) and ccRCC progression. CONCLUSIONS As a critical factor in the Wnt/β-catenin pathway, ARL4C regulates EMT and progression in ccRCC.
Collapse
Affiliation(s)
- Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shaoan Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Urology, Dongying People's Hospital, Dongying 257000, China
| | - Chen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Urology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng 252000, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Rongyu Han
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qingliang Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Han Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| |
Collapse
|
8
|
Kadian LK, Arora M, Prasad CP, Pramanik R, Chauhan SS. Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clin Transl Oncol 2022; 24:1014-1032. [PMID: 34990001 DOI: 10.1007/s12094-021-02763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is a complex gastrointestinal malignancy with an extremely poor outcome. Approximately 80% of cases of this malignancy in Asian countries including India are of squamous cell origin, termed Esophageal Squamous Cell Carcinoma (ESCC).The five-year survival rate in ESCC patients is less than 20%. Neo-adjuvant chemo-radiotherapy (NACRT) followed by surgical resection remains the major therapeutic strategy for patients with operable ESCC. However, resistance to NACRT and local recurrence after initial treatment are the leading cause of dismal outcomes in these patients. Therefore, an alternative strategy to promote response to the therapy and reduce the post-operative disease recurrence is highly needed. At the molecular level, wide variations have been observed in tumor characteristics among different populations, nevertheless, several common molecular features have been identified which orchestrate disease progression and clinical outcome in the malignancy. Therefore, determination of candidate molecular pathways for targeted therapy remains the mainstream idea of focus in ESCC research. In this review, we have discussed the key signaling pathways associated with ESCC, i.e., Notch, Wnt, and Nrf2 pathways, and their crosstalk during disease progression. We further discuss the recent developments of novel agents to target these pathways in the context of targeted cancer therapy. In-depth research of the signaling pathways, gene signatures, and a combinatorial approach may help in discovering targeted therapy for ESCC.
Collapse
Affiliation(s)
- L K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - C P Prasad
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - R Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - S S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Wu G, Li J, Xu Y, Che X, Chen F, Wang Q. A New Survival Model Based on ADAMTSs for Prognostic Prediction in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:2606213. [PMID: 34603444 PMCID: PMC8486512 DOI: 10.1155/2021/2606213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
The main purpose of this study was to explore the genetic variation, gene expression, and clinical significance of ADAMTSs (a disintegrin and metalloprotease domains with thrombospondin motifs) across cancer types. Analysis of data from the TCGA (The Cancer Genome Atlas) database showed that the ADAMTSs have extensive CNV (copy number variation) and SNV (single nucleotide variation) across cancer types. Compared with normal tissues, the methylation of ADAMTSs in cancer tissues is also significantly different, which affects the expression of ADAMTS gene and the prognosis of cancer patients. Through gene expression analysis, we found that ADAMTS family has significant changes in gene expression across cancer types and is closely related to the prognosis of carcinoma, especially in ccRCC (clear cell renal cell carcinoma). LASSO regression analysis was used to establish a prognostic model based on the ADAMTSs to judge the prognosis of patients with ccRCC. Multiple Cox regression analysis suggested that age, grade, stage, and risk score of the prognostic model of ccRCC were independent prognostic factors in patients with renal clear cell carcinoma. These findings indicate that the ADAMTSs-based survival model can accurately predict the prognosis of patients with ccRCC and suggest that ADAMTSs are a potential prognostic biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianyi Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Targeting of Deregulated Wnt/β-Catenin Signaling by PRI-724 and LGK974 Inhibitors in Germ Cell Tumor Cell Lines. Int J Mol Sci 2021; 22:ijms22084263. [PMID: 33923996 PMCID: PMC8073733 DOI: 10.3390/ijms22084263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of patients with testicular germ cell tumors (GCTs) can be cured with cisplatin-based chemotherapy. However, for a subset of patients present with cisplatin-refractory disease, which confers a poor prognosis, the treatment options are limited. Novel therapies are therefore urgently needed to improve outcomes in this challenging patient population. It has previously been shown that Wnt/β-catenin signaling is active in GCTs suggesting that its inhibitors LGK974 and PRI-724 may show promise in the management of cisplatin-refractory GCTs. We herein investigated whether LGK-974 and PRI-724 provide a treatment effect in cisplatin-resistant GCT cell lines. Taking a genoproteomic approach and utilizing xenograft models we found the increased level of β-catenin in 2 of 4 cisplatin-resistant (CisR) cell lines (TCam-2 CisR and NCCIT CisR) and the decreased level of β-catenin and cyclin D1 in cisplatin-resistant NTERA-2 CisR cell line. While the effect of treatment with LGK974 was limited or none, the NTERA-2 CisR exhibited the increased sensitivity to PRI-724 in comparison with parental cell line. Furthermore, the pro-apoptotic effect of PRI-724 was documented in all cell lines. Our data strongly suggests that a Wnt/β-catenin signaling is altered in cisplatin-resistant GCT cell lines and the inhibition with PRI-724 is effective in NTERA-2 CisR cells. Further evaluation of Wnt/β-catenin pathway inhibition in GCTs is therefore warranted.
Collapse
|
11
|
Wang Y, Chen Y, Zhu B, Ma L, Xing Q. A Novel Nine Apoptosis-Related Genes Signature Predicting Overall Survival for Kidney Renal Clear Cell Carcinoma and its Associations with Immune Infiltration. Front Mol Biosci 2021; 8:567730. [PMID: 33748185 PMCID: PMC7969794 DOI: 10.3389/fmolb.2021.567730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: This study was designed to establish a sensitive prognostic model based on apoptosis-related genes to predict overall survival (OS) in patients with clear cell renal cell carcinoma (ccRCC). Methods: Obtaining the expression of apoptosis-related genes and associated clinical parameters from online datasets (The Cancer Genome Atlas, TCGA), their biological function analyses were performed through differently expressed genes. By means of LASSO, unadjusted and adjusted Cox regression analyses, this predictive signature was constructed and validated by internal and external databases (both TCGA and ArrayExpress). Results: A total of nine apoptosis-related genes (SLC27A2, TNFAIP2, IFI44, CSF2, IL4, MDK, DOCK8, WNT5A, APP) were ultimately screened as associated hub genes and utilized to construct a prognosis model. Then our constructed riskScore model significantly passed the validation in both the internal and external datasets of OS (all p < 0.05) and verified their expressions by qRT-PCR. Moreover, we conducted the Receiver Operating Characteristic (ROC), finding the area under the ROC curves (AUCs) were all above 0.70 which indicated that riskScore was a stable independent prognostic factor (p < 0.05). Furthermore, prognostic nomograms were established to figure out the relationship between 1-, 3- and 5-year OS and individual parameters for ccRCC patients. Additionally, survival analyses indicated that our riskScore worked well in predicting OS in subgroups of age, gender, grade, stage, T, M, N0, White (all p < 0.05), except for African, Asian and N1 (p > 0.05). We also explored its association with immune infiltration and applied cMap database to seek out highly correlated small molecule drugs. Conclusion: Our study successfully constructed a prognostic model containing nine hub apoptosis-related genes for ccRCC, helping clinicians predict patients' OS and making the prognostic assessment more standardized. Future prospective studies are required to validate our findings.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bingye Zhu
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
12
|
Zhang Y, Chen M, Liu M, Xu Y, Wu G. Glycolysis-Related Genes Serve as Potential Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6699808. [PMID: 33564363 PMCID: PMC7850857 DOI: 10.1155/2021/6699808] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Metabolic rearrangement is a marker of cancer that has been widely studied in recent years. One of the major metabolic characteristics of tumor cells is the high levels of glycolysis, even under aerobic conditions, a phenomenon that is called the "Warburg effect." We investigated the expression and copy number variation (CNV) frequency of all glycolysis-related genes in multiple cancer types and found many differentially expressed genes, particularly in clear cell renal cell carcinoma (ccRCC). Single nucleotide variants (SNVs) showed that the overall average mutation frequency for all genes was low. The purpose of this study was to establish a predictive model by studying glycolysis-related genes in ccRCC. We compared the expression of glycolysis-related genes in 539 ccRCC tissues and 72 normal renal tissues from The Cancer Genome Atlas dataset and identified 17 upregulated and 26 downregulated genes. Pathway analysis revealed that PSAT1 and SDHB could activate the cell cycle, RPIA could activate the DNA damage response, and HK3 could activate apoptosis and EMT signaling, while PDK2 could inhibit apoptosis. The results of the drug sensitivity analysis suggested that some of these differentially expressed genes were positively correlated with drug sensitivity. Thirteen genes were selected from the gene coexpression network and the LASSO regression analysis. The Kaplan-Meier overall survival curves showed that the expression of upregulated genes in ccRCC patients was associated with lower overall survival. We established a predictive model consisting of 13 genes (RPIA, G6PD, PSAT1, ENO2, HK3, IDH1, PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2, and SUCLG2). This predictive model correlated well with the development and progression of ccRCC. Thus, it is of great value in the diagnosis and prognostic evaluation of ccRCC and may aid the identification of potential prognostic biomarkers and drug targets.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
- Department of Clinical Laboratory, The First People's Hospital of Linhai, Taizhou, Zhejiang 317000, China
| | - Mingying Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Meihong Liu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
13
|
Xu Y, Wu G, Zhang J, Li J, Ruan N, Zhang J, Zhang Z, Chen Y, Zhang Q, Xia Q. TRIM33 Overexpression Inhibits the Progression of Clear Cell Renal Cell Carcinoma In Vivo and In Vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8409239. [PMID: 32908919 PMCID: PMC7468622 DOI: 10.1155/2020/8409239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate the expression of tripartite motif-containing 33 (TRIM33) in ccRCC tissues and explore the biological effect of TRIM33 on the progress of ccRCC. METHOD The Cancer Genome Atlas (TCGA) database was used to examine the mRNA expression levels of TRIM33 in ccRCC tissues and its clinical relevance. Immunohistochemistry (IHC) was performed to evaluate its expression in ccRCC tissues obtained from our hospital. The correlation between TRIM33 expression and clinicopathological features of the patients was also investigated. The effects of TRIM33 on the proliferation of ccRCC cells were examined using the CCK-8 and colony formation assays. The effects of TRIM33 on the migration and invasion of ccRCC cells were explored through wound healing and transwell assays, along with the use of Wnt signaling pathway agonists in rescue experiments. Western blotting was used to explore the potential mechanism of TRIM33 in renal cancer cells. A xenograft model was used to explore the effect of TRIM33 on tumor growth. RESULT Bioinformatics analysis showed that TRIM33 mRNA expression in ccRCC tissues was downregulated, and low TRIM33 expression was related to poor prognosis in ccRCC patients. In agreement with this, low TRIM33 expression was detected in human ccRCC tissues. TRIM33 expression levels were correlated with clinical characteristics, including tumor size and Furman's grade. Furthermore, TRIM33 overexpression inhibited proliferation, migration, and invasion of 786-O and ACHN cell lines. The rescue experiment showed that the originally inhibited migration and invasion capabilities were restored. TRIM33 overexpression reduced the expression levels of β-catenin, cyclin D1, and c-myc, and inhibited tumor growth in ccRCC cells in vivo. CONCLUSION TRIM33 exhibits an abnormally low expression in human ccRCC tissues. TRIM33 may serve as a potential therapeutic target and prognostic marker for ccRCC.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Jiayao Zhang
- Liver Transplantation Center and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianfeng Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Zhiyu Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|