1
|
Ouyang X, Wang J, Qiu X, Hu D, Cui J. Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 2025; 66:26. [PMID: 39981901 DOI: 10.3892/ijo.2025.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cui
- Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
2
|
Sui X, Gao B, Zhang L, Wang Y, Ma J, Wu X, Zhou C, Liu M, Zhang L. Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway. J Ovarian Res 2024; 17:246. [PMID: 39702302 DOI: 10.1186/s13048-024-01570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) is one of the most effective anticancer drugs, commonly used to treat advanced ovarian cancer (OC). However, DDP has significant limitations of platinum-based drugs, including chemical resistance and high-dose toxic side effects. Traditional Chinese medicines (TCMs) often presented in the form of formula, in which the herb pair was the basic unit. Scutellaria barbata D.Don and Hedyotis diffusa Willd (SB-HD) are famous TCMs herb pair that have been shown to help treat multiple types of cancers. However, the synergistic effects and mechanism of combination of SB-HD and DDP to enhance DDP chemosensitivity in OC are still unknown. RESULTS In vitro, we found that the optimal proportion of SB-HD to inhibit the proliferation of OC cells was 2:1, SB-HD and DDP were shown to synergistically reduce the viability of OC cells, inhibit the colony formation, promote cell cycle arrest and apoptosis, as well as inhibit cell migration and invasion. In vivo, combination treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice and reduced the toxic side effects of DDP. Mechanistically, SB-HD and DDP combination treatment significantly promoted oxidative stress response, decreased MMP, inhibited ATP production, decreased ROS levels and increased SOD activity, increased the expression of NRF2, HO-1, ATG5 and LC3, decreased the expression of p62 and FTH1 both in OC cells and tumor tissue of mice. Inhibitor 3-MA (Methyladenine, autophagy inhibitor) and Fer-1 (Ferrostatin-1, iron ion inhibitor) can effectively reverse the expression changes of the key target proteins, but not ZnPP (Zinc protoporphyrin, HO-1 inhibitor). Through bioinformatics analysis, it was found that the abnormal expression level of NRF2 and FTH1 mRNA has a high prognostic value, at the same time, the other four key proteins respectively or interacting with NRF2 and FTH1, also play important roles in the occurrence and development of OC. CONCLUSION Our findings uncover a synergistic effect of SB-HD and DDP against OC through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway, which may provide an important theoretical foundation for the use of SB-HD and a new strategy for enhancing DDP chemosensitivity as well as reducing toxic side effects.
Collapse
Affiliation(s)
- Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bingqing Gao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- School of Pharmacy, Anhui Xinhua University, Hefei, 230088, China
| | - Liu Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of Dermatology, Dalian Lvshunkou District Hospital of Traditional Chinese Medicine, Dalian, 116041, China
| | - Yanmin Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xingchen Wu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Chenyu Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Shan C, Wang Y, Wang Y. The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: from Biology to Clinical Applications. Int J Biol Sci 2024; 20:6181-6206. [PMID: 39664581 PMCID: PMC11628323 DOI: 10.7150/ijbs.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Autophagy is a catabolic process that has been conserved throughout evolution, serving to degrade and recycle cellular components and damaged organelles. Autophagy is activated under various stress conditions, such as nutrient deprivation, viral infections, and genotoxic stress, and operates in conjunction with other stress response pathways to mitigate oxidative damage and maintain cellular homeostasis. One such pathway is the Nrf2-Keap1-ARE signaling axis, which functions as an intrinsic antioxidant defense mechanism and has been implicated in cancer chemoprevention, tumor progression, and drug resistance. Recent research has identified a link between impaired autophagy, mediated by the autophagy receptor protein p62, and the activation of the Nrf2 pathway. Specifically, p62 facilitates Keap1 degradation through selective autophagy, leading to the translocation of Nrf2 into the nucleus, where it transcriptionally activates downstream antioxidant enzyme expression, thus safeguarding cells from oxidative stress. Furthermore, Nrf2 regulates p62 transcription, so a positive feedback loop involving p62, Keap1, and Nrf2 is established, which amplifies the protective effects on cells. This paper aims to provide a comprehensive review of the roles of Nrf2 and autophagy in cancer progression, the regulatory interactions between the Nrf2 pathway and autophagy, and the potential applications of the Nrf2-autophagy signaling axis in cancer therapy.
Collapse
Affiliation(s)
- Chan Shan
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
4
|
Wang M, Sun Y, Gu R, Tang Y, Han G, Zhao S. Shikonin reduces M2 macrophage population in ovarian cancer by repressing exosome production and the exosomal galectin 3-mediated β-catenin activation. J Ovarian Res 2024; 17:101. [PMID: 38745186 PMCID: PMC11092256 DOI: 10.1186/s13048-024-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and β-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased β-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the β-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated β-catenin activation.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yangyan Sun
- Department of Gynecology, Jiangyin People's Hospital, Wuxi, Jiangsu, 214400, P.R. China
| | - Rui Gu
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yan Tang
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Guorong Han
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China.
| | - Shaojie Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China.
| |
Collapse
|
5
|
Jiang K, Ning N, Huang J, Chang Y, Wang R, Ma J. Psilostachyin C reduces malignant properties of hepatocellular carcinoma cells by blocking CREBBP-mediated transcription of GATAD2B. Funct Integr Genomics 2024; 24:75. [PMID: 38600341 DOI: 10.1007/s10142-024-01353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 μM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Ning Ning
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Yu Chang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Rao Wang
- Department of TCM Orthopedic Center, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi East Road, Beilin District, Xi'an, Shaanxi, 710054, P.R. China.
| | - Jie Ma
- Department of Neurology, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi East Road, Beilin District, Xi'an, Shaanxi, 710054, P.R. China.
| |
Collapse
|
6
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Wang H, Gao C, Li X, Chen F, Li G. Camptothecin enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. Sci Rep 2024; 14:7140. [PMID: 38532022 PMCID: PMC10966085 DOI: 10.1038/s41598-024-57874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Apatinib has been shown to apply to a variety of solid tumors, including advanced hepatocellular carcinoma. Preclinical and preliminary clinical results confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) inhibitors. In this study, we investigated camptothecin (CPT) enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. CPT combined with a PD-1 inhibitor enhances the anti-tumor effects of low-dose apatinib in hepatocellular carcinoma which was evaluated in making use of the H22 mouse model (n = 32), which was divided into four groups. Immunohistochemical staining and western blotting were used to detect nuclear factor erythroid 2-related factor 2 (Nrf2) as well as sequestosome 1 (p62), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), PD-1, and programmed cell death ligand 1 (PD-L1). The results showed that the average size of the tumor of the combination group (Group D) was significantly less than that of the apatinib + PD-1 inhibitor group (Group C). The expression levels of Nrf2, p62, VEGFA, VEGFR2, PD-1, and PD-L1 in the apatinib + PD-1 inhibitor group(Group C) were lower than those in the control group (Group A) (P < 0.05). The expression levels of these genes in the apatinib + PD-1 inhibitor group (Group C) were significantly lower in the combination group (Group D) (P < 0.05). There was no obvious difference in body weight and liver and kidney functions between the four groups of mice. In conclusion, CPT improves the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Congcong Gao
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, 250000, People's Republic of China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
8
|
Li S, Cao C, Huang Z, Tang D, Chen J, Wang A, He Q. SOD2 confers anlotinib resistance via regulation of mitochondrial damage in OSCC. Oral Dis 2024; 30:281-291. [PMID: 36229195 DOI: 10.1111/odi.14404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Previous studies had revealed that anlotinib had outstanding anti-tumor efficacy on oral squamous cell carcinoma. However, the underlying mechanism is still unclear. MATERIALS AND METHODS Anlotinib resistant OSCC cells were established and analyzed by RNA-sequencing. The correlations between SOD2 expression and anlotinib resistance were investigated in OSCC cells and PDX models. Functional assays were performed to verify the SOD2 expression and anlotinib resistance in OSCC cells. RESULTS Anlotinib resistant genes were enriched in the biological processes of mitochondrion organization and the gene pathway of reactive oxygen species. SOD2 expression level was positively correlated with the resistance of anlotinib in OSCC cells and PDX models. Higher SOD2 expression of OSCC cells was more resistant to anlotinib. Anlotinib induced ROS generation, apoptosis and mitochondrial damage in OSCC cells, which can be enhanced by SOD2 knockdown and decreased by SOD2 overexpression. Mitochondrial damage was identified as swelling and cristae disappearance morphology under TEM, decreased mitochondrial membrane potential and lower MFN2 expression. CONCLUSIONS SOD2 may be capable of protecting mitochondria by downregulating ROS generation, which contributes to the resistance of anlotinib in OSCC cells. SOD2 can be utilized as a potential therapeutic target to improve the anti-cancer efficacy of anlotinib in OSCC.
Collapse
Affiliation(s)
- Shuai Li
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhexun Huang
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxiao Tang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
Autophagy is a self-digestion process by which misfolded proteins and damaged organelles in eukaryotic cells are degraded to maintain cellular homeostasis. This process is involved in the tumorigenesis, metastasis, and chemoresistance of various tumors such as ovarian cancer (OC). Noncoding RNAs (ncRNAs), mainly including microRNAs, long noncoding RNAs, and circular RNAs, have been extensively investigated in cancer research for their roles in the regulation of autophagy. Recent studies have shown that in OC cells, ncRNAs can modulate the formation of autophagosomes, which affect tumor progression and chemoresistance. An understanding of the role of autophagy in OC progression, treatment, and prognosis is important, and the identification of the regulatory roles of ncRNAs in autophagy leads to intervention strategies for OC therapy. This review summarizes the role of autophagy in OC and discusses the role of ncRNA-mediated autophagy in OC, as an understanding of these roles may contribute to the development of potential therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
- Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, P.R. China
| |
Collapse
|
10
|
Gao Y, Li M, Wang B, Ma Y. Prognostic value of Nrf2/HO-1 expression and its correlation with occurrence in esophageal squamous cell carcinoma. Genes Genomics 2023; 45:723-739. [PMID: 37043130 DOI: 10.1007/s13258-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is thought to be started and developed by genes associated with inflammation. A cancer's ability to spread and grow can be aided by nuclear factor erythroid-2 related factor 2 (Nrf2) hyperactivation, which can also make a tumor more resistant to chemotherapy and radiation treatment. However, it is still unknown how Nrf2 gene expression affects ESCC prognosis and controls function throughout ESCC advancement. OBJECTIVE The expression of Nrf2 and HO-1 in ESCC and precancerous esophageal precancerous lesions was analyzed, and their relationship with esophageal squamous cell carcinoma was analyzed. METHODS Immunohistochemistry (IHC) was used to confirm the expression of Nrf2 and heme oxygenase-1 (HO-1) proteins in tissue microarrays from Chinese populations with ESCC. We looked at the connections between Nrf2/HO-1 expression and invading immune cells using the TIMER database. RESULTS Ethnicity and N stage are associated with Nrf2 overexpression. Differentiation, N stage, vascular invasion, distant metastasis, and American Joint Committee on Cancer (AJCC) staging are all associated with HO-1 overexpression. The expression of Nrf2 and HO-1 had a favorable correlation. Patients with elevated Nrf2 and HO-1 expression had lower progression-free survival (PFS) and overall survival (OS). In high-grade intraepithelial neoplasia, Nrf2 and HO-1 expression generally occurred, partially in low-grade intraepithelial neoplasia specimens, and rarely in normal mucosa. We further show that Nrf2 suppression is linked to higher immunological marker expression and lower immune cell infiltration. CONCLUSION The prognosis of ESCC may be improved by inhibiting the expression of Nrf2 and HO-1. A lack of immune cells was seen in ESCC with Nrf2 impairment.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Wang
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
11
|
Pan Z, Luo Z, He H, Chen Y, Zhao B, Yang Z, Li L. Observation of the therapeutic effect of apatinib in advanced platinum-resistant recurrent epithelial ovarian cancer. J Ovarian Res 2023; 16:44. [PMID: 36823642 PMCID: PMC9948331 DOI: 10.1186/s13048-022-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/26/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Apatinib is an oral anti-angiogenic drug that mainly targets vascular endothelial growth factor receptor 2 (VEGFR-2) and is widely used in a variety of solid tumours. The purpose of this study is to evaluate the clinical efficacy and safety of apatinib in patients with advanced platinum-resistant relapsed epithelial ovarian cancer (EOC). METHODS A retrospective analysis was performed, the clinical data of patients with stage IIIC-IV platinum-resistant relapsed EOC between January 2014 and May 2018 were collected. The objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were reviewed and evaluated. The propensity score matching (PSM) method was used to determine the final case data included in this study. RESULTS According to 1:2 propensity matching, 108 patients were finally taken into account: 36 in the apatinib group and 72 in the control group. The follow-up ended in January 2019, and the median follow-up time was 28 months. In the apatinib group, ORR was 30.56% and DCR was 66.67%, whereas in the control group, ORR was 16.67% and DCR was 44.44%. In the apatinib group, median PFS was 6.0 months (95% CI 3.69-8.31) and median OS was 15.8 months (95% CI 6.99-24.6), while in the control group, median PFS was 3.3 months (95% CI 2.44-4.16) and median OS was 9.2 months (95% CI 6.3-12.06); the difference was statistically significant (P < 0.05). Apatinib was more effective than conventional chemotherapy in reducing the risk of PFS [HR 0.40 (95% CI 0.22-0.76), P = 0.0017] and OS [HR 0.40 (95% CI 0.21-0.73), P = 0.002]. Multivariate Cox analysis showed that the course of treatment and decrease in serum CA125 levels are independent risk factors for PFS in patients, while apatinib, the length of treatment course and the location of the lesion are independent risk factors for recurrence affecting the OS of patients. The main grade 3-4 adverse events in the apatinib group were hypertension, hand-foot syndrome, and oral mucosal ulcers, and all adverse events were controllable. CONCLUSION Apatinib was found to be both safe and effective in patients with advanced platinum-resistant relapsed EOC. More in-depth clinical research and applications should be carried out.
Collapse
Affiliation(s)
- Zhongmian Pan
- grid.256607.00000 0004 1798 2653Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021 China
| | - Zhongbin Luo
- grid.256607.00000 0004 1798 2653Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021 China
| | - Hongying He
- grid.460075.0Department of Obstetrics and Gynecology, Liuzhou Workers Hospital, Liuzhou, China
| | - Yujie Chen
- grid.477425.7Department of Obstetrics and Gynecology, Liuzhou People’s Hospital, Liuzhou, China
| | - Bingbing Zhao
- grid.256607.00000 0004 1798 2653Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021 China
| | - Zhijun Yang
- grid.256607.00000 0004 1798 2653Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021 China
| | - Li Li
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
12
|
Ye L, Zhang L, Li R, Pan X, Li J, Dou S, Jiang W, Wang C, Chen W, Zhu G. Combined all-trans retinoic acid with low-dose apatinib in treatment of recurrent/metastatic head and neck adenoid cystic carcinoma: A single-center, secondary analysis of a phase II study. Cancer Med 2023; 12:9144-9155. [PMID: 36734294 PMCID: PMC10166967 DOI: 10.1002/cam4.5653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Treatment options are limited for recurrent/metastatic adenoid cystic carcinoma of the head and neck (R/M ACCHN). We aimed to evaluate the preliminary results of the efficacy and safety of all-trans retinoic acid (ATRA) combined with low-dose apatinib in patients with R/M ACCHN according to a secondary analysis of a phase II study. METHODS Patients from a phase II study (NCT02775370) who orally administered 500 milligram (mg) apatinib daily until treatment-related adverse events (AEs) intolerance or progression occurred were eligible for inclusion. Patients were further treated with combination therapy of ATRA (25 mg/m2 /day) and apatinib (250 mg/day) between March 2019 and October 2021 until progression of disease (PD). RESULTS A total of 16 patients were included with nine (56.3%) males and aged 35-69 years old. All recruited patients previously received anti-angiogenic therapy then withdrew due to toxicities or progression occurred. The objective response rate (ORR) and disease control rate (DCR) were 18.8% and 100%, respectively. During a median follow-up of 23.9 months (range:17.8-31.7 months), 11 (68.8%) patients developed PD and one of them died in 20.9 months. The median of progression-free survival (PFS) was 16.3 months (95% CI: 7.2-25.4 months), and the 6-month, 12-month, and 24-month PFS rates were 100%, 81.3%, and 33.3%, respectively. The grade 3 adverse events were albuminuria (n = 2, 12.5%) and hand-foot syndrome (n = 1, 6.25%). CONCLUSION All-trans retinoic acid combined with low-dose apatinib might be a potential efficacy therapeutic option for patients with R/M ACCHN. This finding will be further confirmed by our registered ongoing trial, the APLUS study (NCT04433169).
Collapse
Affiliation(s)
- Lulu Ye
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lin Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rongrong Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjin Dou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen Jiang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guopei Zhu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
14
|
Chen J, Wei Z, Fu K, Duan Y, Zhang M, Li K, Guo T, Yin R. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed Pharmacother 2022; 150:112929. [PMID: 35429741 DOI: 10.1016/j.biopha.2022.112929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is mostly diagnosed at an advanced stage due to the absence of effective screening methods and specific symptoms. Repeated chemotherapy resistance and recurrence before PARPi are used as maintenance therapies, lead to low survival rates and poor prognosis. Apoptotic cell death plays a crucial role in ovarian cancer, which is proved by current researches. With the ongoing development of targeted therapy, non-apoptotic cell death has shown substantial potential in tumor prevention and treatment, including autophagy, ferroptosis, necroptosis, immunogenic cell death, pyroptosis, alkaliptosis, and other modes of cell death. We systematically reviewed the research progress on the role of non-apoptotic cell death in the onset, development, and outcome of ovarian cancer. This review provides a more theoretical basis for exploring therapeutic targets, reversing drug resistance in refractory ovarian cancer, and establishing risk prediction models that help realize the clinical transformation of vital drugs.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhichen Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kemin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tao Guo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rutie Yin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
15
|
Zhao L, Yu Q, Gao C, Xiang J, Zheng B, Feng Y, Li R, Zhang W, Hong X, Zhan YY, Xiao L, Hu T. Studies of the Efficacy of Low-Dose Apatinib Monotherapy as Third-Line Treatment in Patients with Metastatic Colorectal Cancer and Apatinib’s Novel Anticancer Effect by Inhibiting Tumor-Derived Exosome Secretion. Cancers (Basel) 2022; 14:cancers14102492. [PMID: 35626097 PMCID: PMC9139438 DOI: 10.3390/cancers14102492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary We assessed the efficacy and safety of low-dose apatinib monotherapy as a third-line treatment in patients with metastatic colorectal cancer. The ORR and DCR were 4.0% (2/50) and 70% (35/50), and the median PFS and OS were 4.7 months and 10.1 months, which demonstrated comparable survival outcomes, significant improvements to the patient’s quality of life, and tolerable adverse reactions. We also disclosed a novel role of apatinib’s anticancer effect, i.e., inhibiting tumor-derived exosome release. Our results indicated that apatinib treatment inhibited exosome secretion through the regulation of MVB biogenesis, transport, and fusion by regulating LAMP2, RAB11, Snap23, and VAMP2. This novel regulatory mechanism provides a new perspective for the antitumor effect of apatinib in CRC treatment. Abstract Antiangiogenic therapy is an important treatment strategy for metastatic colorectal cancer (mCRC). We carried out a clinical study of low-dose apatinib (250 mg) monotherapy as a third-line treatment in patients with mCRC and assessed its efficacy and safety. It demonstrated that low-dose apatinib had comparable survival outcomes, significantly improved the patient quality of life, and caused tolerable adverse reactions. To further investigate the underlying mechanism of the effects of apatinib in CRC besides angiogenesis, we performed RNA-seq, and our results suggested that apatinib may have other potential antitumor mechanisms in CRC through multiple pathways, including exosomes secretion. In RKO and HCT116 cells, apatinib significantly reduced exosomes secretion by targeting multivesicular body (MVB) transport. Further studies have indicated that apatinib not only promoted the degradation of MVBs via the regulation of LAMP2 but also interfered with MVB transport by inhibiting Rab11 expression. Moreover, apatinib inhibited MVB membrane fusion by reducing SNAP23 and VAMP2 expression. In vivo, apatinib inhibited orthotopic murine colon cancer growth and metastasis and reduced the serum exosomes amount. This novel regulatory mechanism provides a new perspective for the antitumor effect of apatinib beyond angiogenesis inhibition.
Collapse
Affiliation(s)
- Lingying Zhao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Qiang Yu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Chunyi Gao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Jingzhou Xiang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Bowen Zheng
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Yujie Feng
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Runyang Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Yan-yan Zhan
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
| | - Li Xiao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Correspondence: (L.X.); (T.H.); Tel.: +86-592-2292012 (L.X.); +86-592-2188223 (T.H.)
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, Xiamen University School of Medicine, Xiamen 361102, China; (L.Z.); (Q.Y.); (C.G.); (J.X.); (B.Z.); (Y.F.); (R.L.); (W.Z.); (X.H.); (Y.-y.Z.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- Correspondence: (L.X.); (T.H.); Tel.: +86-592-2292012 (L.X.); +86-592-2188223 (T.H.)
| |
Collapse
|
16
|
Ke W, Zhang L, Zhao X, Lu Z. p53 m 6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis. Apoptosis 2022; 27:426-440. [PMID: 35503144 DOI: 10.1007/s10495-022-01728-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 11/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is insidious and prone to metastasis and recurrence. Currently, no effective treatment is available for HCC. Furthermore, HCC does not respond to various radio- and chemotherapies, and the molecular mechanism of treatment resistance is unclear. Here, we found that p53 n6-methyladenosine (m6A) played a decisive role in regulating HCC sensitivity to chemotherapy via the p53 activator RG7112 and the vascular endothelial growth factor receptor inhibitor apatinib. Our results reveal that p53 activation plays a crucial role in chemotherapy-induced apoptosis and reducing cell viability. Moreover, decreasing m6A methyltransferase (e.g., methyltransferase-like 3, METTL3) expression through chemotherapeutic drug combinations reduced p53 mRNA m6A modification. p53 mRNA m6A modification blockage induced by S-adenosyl homocysteine or siRNA-mediated METTL3 inhibition enhanced HCC sensitivity to chemotherapy. Importantly, we observed that downregulation of METTL3 and upregulation of p53 expression by oral administration of chemotherapy drugs triggered apoptosis and xenograft tumor growth inhibition in nude mice. Based on these findings, we hypothesize that a METTL3-m6A-p53 axis could be a potential target in HCC therapy.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
17
|
Mi W, Wang C, Luo G, Li J, Zhang Y, Jiang M, Zhang C, Liu N, Jiang X, Yang G, Zhang L, Zhang G, Zhang Y, Fu Y. Targeting ERK induced cell death and p53/ROS-dependent protective autophagy in colorectal cancer. Cell Death Discov 2021; 7:375. [PMID: 34864826 PMCID: PMC8643355 DOI: 10.1038/s41420-021-00677-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, many studies have shown that autophagy plays a vital role in the resistance of tumor chemotherapy. However, the interaction between autophagy and cell death has not yet been clarified. In this study, a new specific ERK inhibitor CC90003 was found to suppress colorectal cancer growth by inducing cell death both in vitro and in vivo. Studies have confirmed that higher concentrations of ROS leads to autophagy or cell death. In this research, the role of CC90003-induced ROS was verified. But after inhibiting ROS by two kinds of ROS inhibitors NAC and SFN, the autophagy induced by CC90003 decreased, while cell death strengthened. In parallel, protective autophagy was also induced, while in a p53-dependent manner. After silencing p53 or using the p53 inhibitor PFTα, the autophagy induced by CC90003 was weakened and the rate of cell death increases. Therefore, we confirmed that CC90003 could induce autophagy by activating ROS/p53. Furthermore, in the xenograft mouse model, the effect was obtained remarkably in the combinational treatment group of CC90003 plus CQ, comparing with that of the single treatment groups. In a word, our results demonstrated that targeting ERK leads to cell death and p53/ROS-dependent protective autophagy simultaneously in colorectal cancer, which offers new potential targets for clinical therapy.
Collapse
Affiliation(s)
- Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- College of Biology, Hunan University, 410082, Changsha, China
- School of Biomedical Sciences, Hunan University, 410082, Changsha, China
| | - Chuyue Wang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Guang Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- College of Biology, Hunan University, 410082, Changsha, China
| | - Meimei Jiang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Chuchu Zhang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Nannan Liu
- College of Biology, Hunan University, 410082, Changsha, China
| | - Xinxiu Jiang
- College of Biology, Hunan University, 410082, Changsha, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Ge Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yingjie Zhang
- College of Biology, Hunan University, 410082, Changsha, China.
- School of Biomedical Sciences, Hunan University, 410082, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450052, Zhengzhou, China.
| |
Collapse
|
18
|
A Comparison of Chemotherapy Used with and without Apatinib for Patients with Ovarian Carcinoma Who Progressed after Standard Regimens: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2292907. [PMID: 34777533 PMCID: PMC8580656 DOI: 10.1155/2021/2292907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This meta-analysis was conducted to compare the therapeutic efficacy and clinical safety of the combination therapy of apatinib plus chemotherapy with that of chemotherapy alone in patients with refractory or recurrent ovarian carcinoma (OC). METHODS Relevant randomized controlled trials (RCT) or case-control studies (CCS) were identified by searching Chinese and English databases up to October 31, 2020. The risk of methodological bias tool and Newcastle-Ottawa scale (NOS) were used to assess trial quality. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the therapeutic effects and adverse drug reactions. Subgroup analyses of study type, study sample size, dosage of apatinib, and chemotherapy regimen between treatment group and control group were performed. Publication bias was assessed by funnel plot symmetry, Begg-Mazumdar test, and Egger test. The robustness of our results was presented by removing the trial one by one. RESULTS Fifteen eligible studies covering 1,020 patients were included in this review and meta-analysis. Among these studies, 8 were RCTs, and 7 were CCSs. Compared with chemotherapy alone, apatinib plus chemotherapy significantly increased objective response rate (OR = 3.55; 95% CI 2.31 to 5.47), disease control rate (OR = 3.04; 95% CI 2.12 to 4.36), and overall survival (OR = 5.03; 95% CI 3.16 to 6.90). CONCLUSIONS The combination treatment of apatinib plus chemotherapy provides better clinical benefits for OC patients when compared to chemotherapy alone and should be recommended for suitable patients with OC after the failure of standard regimens. However, further investigation into future large-scale prospective randomized research is still needed.
Collapse
|
19
|
Ginsenoside Rh2 Inhibits Glycolysis through the STAT3/c-MYC Axis in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9715154. [PMID: 34608390 PMCID: PMC8487371 DOI: 10.1155/2021/9715154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rh2 (Rh2) is one of the pharmacologically active components of ginseng with an antitumor effect. However, its effect on non-small-cell lung cancer (NSCLC), especially on aerobic glycolysis, which plays a crucial role in the proliferation and progression of tumor cells, has not been characterized. Here, we demonstrated that Rh2 inhibited the proliferation and metastasis of NSCLC cells by promoting apoptosis and suppressing epithelial-mesenchymal transition, respectively. Notably, Rh2 exerted a glycolysis inhibition effect through regulating GLUT1, PKM2, and LDHA, which are key enzymes of the glycolysis process. Furthermore, the metabolic shift function of Rh2 was dependent on the STAT3/c-Myc axis in NSCLC. This novel regulatory role of Rh2 provides a new perspective for NSCLC treatment and highlights the potentiality of Rh2 to be used as a tumor energy blocker. The combination of Rh2 with an STAT3 or c-Myc inhibitor revealed a promising therapeutic approach for patients with NSCLC.
Collapse
|
20
|
Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2 high esophageal squamous cell carcinoma. Cell Signal 2021; 86:110105. [PMID: 34358647 PMCID: PMC8403639 DOI: 10.1016/j.cellsig.2021.110105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease and one of the most aggressive cancers of the gastrointestinal tract. As a master transcription factor regulating the stress response, NRF2 is often mutated and becomes hyperactive, and thus causes chemo-radioresistance and poor survival in human ESCC. There is a great need to develop NRF2 inhibitors for targeted therapy of NRF2high ESCC. In this review, we mainly focus on three aspects, NRF2 inhibitors and their mechanisms of action, screening novel drug targets, and evaluation of NRF2 activity in the esophagus. A research strategy has been proposed to develop NRF2 inhibitors using human ESCC cells and mouse models.
Collapse
Affiliation(s)
- Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Emily Simpson
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jianying Li
- Euclados Bioinformatics Solutions, Cary, NC 27519, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
22
|
Huang Z, Su Q, Li W, Ren H, Huang H, Wang A. Suppressed mitochondrial respiration via NOX5-mediated redox imbalance contributes to the antitumor activity of anlotinib in oral squamous cell carcinoma. J Genet Genomics 2021; 48:582-594. [PMID: 34373220 DOI: 10.1016/j.jgg.2021.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
Anlotinib, a novel multitarget tyrosine kinase inhibitor, has shown promising results in the management of various carcinomas. This study aimed to investigate the antitumor activity of anlotinib in oral squamous cell carcinoma (OSCC) and the underlying molecular mechanism. A retrospective clinical study revealed that anlotinib improved the median progression-free survival (mPFS) and median overall survival (mOS) of patients with recurrent and metastatic (R/M) OSCC, respectively. Functional studies revealed that anlotinib markedly inhibited in vitro proliferation of OSCC cells and impeded in vivo tumor growth of OSCC patient-derived xenograft models. Mechanistically, RNA-sequencing identified that oxidative stress, oxidative phosphorylation and AKT/mTOR signaling were involved in anlotinib-treated OSCC cells. Anlotinib upregulated NADPH oxidase 5 (NOX5) expression, elevated reactive oxygen species (ROS) production, impaired mitochondrial respiration, and promoted apoptosis. Moreover, anlotinb also inhibited phospho-Akt (p-AKT) expression and elevated p-eIF2α expression in OSCC cells. NOX5 knockdown attenuated these inhibitory effects and cytotoxicity in anlotinib-treated OSCC cells. Collectively, we demonstrated that anlotinib monotherapy demonstrated favorable anticancer activity and manageable toxicities in patients with R/M OSCC. The antitumor activity of anlotinib in OSCC may be mainly involved in the suppression of mitochondrial respiration via NOX5-mediated redox imbalance and the AKT/eIF2α pathway.
Collapse
Affiliation(s)
- Zhexun Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
23
|
Babaei Z, Panjehpour M, Parsian H, Aghaei M. SAR131675 Receptor Tyrosine Kinase Inhibitor Induces Apoptosis through Bcl-2/Bax/Cyto c Mitochondrial Pathway in Human Umbilical Vein Endothelial Cells. Anticancer Agents Med Chem 2021; 22:943-950. [PMID: 34238175 DOI: 10.2174/1871520621666210708102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) can be used to inhibit cancer cell proliferation by targeting the vascular endothelial growth factor receptor (VEGFR) family. SAR131675 is a highly selective receptor tyrosine kinase inhibitor to VEGFR3 that reveals the inhibitory effect on proliferation in human lymphatic endothelial cells. However, the molecular mechanisms underlying this process are generally unclear. OBJECTIVE This study was performed to investigate the possible involvement of the Bcl-2/Bax/Cyto c apoptosis pathway in human umbilical vein endothelial cells (HUVECs). In addition, the role of reactive oxygen species (ROS) and mitochondrial membrane potential was evaluated. METHODS The effect of SAR131675 on HUVEC cell viability was evaluated by MTT assay. The activity of SAR131675 in inducing apoptosis was carried out through the detection of Annexin V-FITC/PI signal by flow cytometry. To determine the mechanisms underlying SAR131675 induced apoptosis, the mitochondrial membrane potential, ROS generation, the activity of caspase-3, and expression of apoptosis-related proteins such as Bcl-2, Bax, and cytochrome c were evaluated in HUVECs. RESULTS SAR131675 significantly inhibited cell viability and induced apoptosis in HUVECs in a dose-dependent manner. Moreover, SAR131675 induced mitochondrial dysfunction, ROS generation, Bcl-2 down-regulation, Bax up-regulation, cytochrome c release, and caspase-3 activation, which displays features of the mitochondria-dependent apoptosis signaling pathway. CONCLUSION Our present data demonstrated that SAR131675-induced cytotoxicity in HUVECs is associated with the mitochondria apoptotic pathway. These results suggest that further studies are required to fully elucidate the role of TKIs in these cellular processes.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021; 73:1150-1171. [PMID: 34312303 PMCID: PMC8318518 DOI: 10.1124/pharmrev.120.000122] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Sravan Jonnalagadda
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Paul C Trippier
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Tea Lanišnik Rižner
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| |
Collapse
|
25
|
Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: a novel oncogene in multiple gynecological cancers. Int J Biol Sci 2021; 17:2252-2261. [PMID: 34239353 PMCID: PMC8241721 DOI: 10.7150/ijbs.61073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase 1 (HO-1), also known as heat shock protein 32 (HSP32), is a stress-inducible enzyme. In the past, it was believed to participate in maintaining cell homeostasis, reducing oxidative stress damage and exerting anti-apoptotic effects. When exposed to noxious stimulation, the expression of HO-1 in the body will increase, antagonizing these oxidative stresses and protecting our bodies. Recently, many studies showed that HO-1 was also highly-expressed in multiple gynecological cancers (such as ovarian cancer, cervical cancer and endometrial cancer), suggesting that it should be closely related to cell proliferation, metastasis, immune regulation and angiogenesis as an oncogene. This review summarizes the different effects of HO-1 under normal and diseased conditions with a brief discussion of its implications on the diagnosis and treatment of gynecological cancers, aiming to provide a new clue for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No.2 People's Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, 213003, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
26
|
Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, Zhao W, Yu B, Zhao W, Zhang J, Hou G. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11:1246-1260. [PMID: 34094831 PMCID: PMC8148075 DOI: 10.1016/j.apsb.2020.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane (SFN), a natural anti-tumor compound from cruciferous vegetables, has been reported to induce protective autophagy to cancer cells, which might impair the anti-tumor efficiency of SFN. However, the accurate function and mechanism of SFN inducing autophagy in cancers are still obscure, especially in esophageal squamous cell carcinoma (ESCC), one of malignancies with high incidence in North China. Here, we mainly explored the potential function of autophagy upon SFN treatment in ESCC and molecular mechanism. We demonstrated that SFN could inhibit cell proliferation and induce apoptosis by activating caspase pathway. Moreover, we found activation of NRF2 pathway by SFN was responsible for the induction of autophagy and also a disadvantage element to the anti-tumor effects of SFN on ESCC, indicating that SFN might induce protective autophagy in ESCC. We, therefore, investigated effects of autophagy inhibition on sensitivity of ESCC cells to SFN and found that chloroquine (CQ) could neutralize the activation of SFN on NRF2 and enhance the activation of SFN on caspase pathway, thus improved the anti-tumor efficiency of SFN on ESCC in vitro and in vivo. Our study provides a preclinical rationale for development of SFN and its analogs to the future treatment of ESCC.
Collapse
|