1
|
A Carabrane-Type Sesquiterpenolide Carabrone from Carpesium cernuum Inhibits SW1990 Pancreatic Cancer Cells by Inducing Ferroptosis. Molecules 2022; 27:molecules27185841. [PMID: 36144577 PMCID: PMC9503519 DOI: 10.3390/molecules27185841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has an extremely poor prognosis, and the clinical drugs for the treatment of pancreatic cancer are usually multi-drug combinations. Therefore, it is necessary to search for and find specific new bioactive agents against pancreatic cancer. Carabrone is a carabrane-type sesquiterpenolide extracted from Carpesium cernuum L., and this natural compound has been reported to be a potential anti-tumor agent. However, there are few reports on the function of carabrone related to anti-tumor activity in pancreatic cancer. Herein, cell experiments indicated that carabrone had anti-proliferation inhibition and anti-migration and anti-invasion activity against SW1990 cells. Furthermore, the tandem mass spectrometry and network pharmacology analysis showed that this activity may be related to the ferroptosis and Hippo signaling pathway. Taken together, our results demonstrated that carabrone exhibited prominent anti-pancreatic cancer activity and could be a promising agent against pancreatic cancer.
Collapse
|
2
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Jeong HG. Puerarin attenuates hepatic steatosis via G‐protein‐coupled estrogen receptor‐mediated calcium and
SIRT1
signaling pathways. Phytother Res 2022; 36:3601-3618. [DOI: 10.1002/ptr.7526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Gi Ho Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis Korea Basic Science Institute (KBSI) Cheongju Republic of Korea
| | | | - Hye Gwang Jeong
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
3
|
Chemical constituents of plants from the genus Carpesium. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Carpesium (Family – Compositae) is a genus with 24 species of mainly perennial herbs. Several species of this genus have served as folk medicine in China and Korea for their antipyretic, anti-inflammatory, analgesic, antifungal, antibacterial, and cytotoxic activity properties. Chemical constituents are mostly sesquiterpenes, diterpenes, glycosides, and several other types of compounds. This article summarizes the literature on the isolated and identified constituents from various Carpesium species and their various biological activities.
Collapse
|
4
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2531-2571. [PMID: 35369682 PMCID: PMC8956152 DOI: 10.1007/s10311-022-01425-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 05/09/2023]
Abstract
Because many engineered nanoparticles are toxic, there is a need for methods to fabricate safe nanoparticles such as plant-based nanoparticles. Indeed, plant extracts contain flavonoids, amino acids, proteins, polysaccharides, enzymes, polyphenols, steroids, and reducing sugars that facilitate the reduction, formation, and stabilization of nanoparticles. Moreover, synthesizing nanoparticles from plant extracts is fast, safe, and cost-effective because it does not consume much energy, and non-toxic derivatives are generated. These nanoparticles have diverse and unique properties of interest for applications in many fields. Here, we review the synthesis of metal/metal oxide nanoparticles with plant extracts. These nanoparticles display antibacterial, antifungal, anticancer, and antioxidant properties. Plant-based nanoparticles are also useful for medical diagnosis and drug delivery.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuong Thi Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
5
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
6
|
Park YJ, Cominguez DC, Kim HJ, Jin JS, Koh DJ, Kim SY, Lim YW, Park YB, An HJ. Therapeutic effects of Gambi-jung for the treatment of obesity. Biomed Pharmacother 2021; 141:111838. [PMID: 34182414 DOI: 10.1016/j.biopha.2021.111838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Obesity is known as metabolic syndrome and it affects many tissues including adipose tissue, liver, and central nervous system (CVS). Gambi-jung (GBJ) is a modified prescription of Taeumjowi-tang (TJT), which has been used to treat obesity in Korea. GBJ is composed of 90% Ephedra sinica Stapf (ES). Therefore, the present study was designed to assess the antiobesity effects of GBJ and to compare the effects of GBJ and ES on obesity. GBJ administration remarkably reduced the body weight, Body mass index (BMI), and body fat percentage compared to the ES administration in human subjects. GBJ-treated mice had lower white adipose tissue (WAT) amounts than ES-treated mice. GBJ and ES administration enhanced adenosine monophosphate-activated protein kinase (AMPK) expression in 3T3-L1 adipocytes, epididymal WAT and liver of HFD-induced obese mice. Moreover, GBJ and ES reduced food intake by suppressing the mRNA levels of orexigenic peptides, agouti-related protein (AgRP) and neuropeptide-Y (NPY), as well as AMPK in the brain of HFD-induced obese mice. Furthermore, GBJ-treated mice had dramatically lower expression of macrophage marker F4/80 in epididymal WAT than those of ES-treated mice. Based on these results, we suggest the use of GBJ as a natural drug to control weight gain.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Divina C Cominguez
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, Republic of Korea.
| | - Duck-Jae Koh
- Nubebe Korean Medical Clinic, Republic of Korea.
| | | | - Young-Woo Lim
- Nubebe Mibyeong Research Institute, Republic of Korea.
| | | | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
7
|
Huang YS, Mao JX, Zhang L, Guo HW, Yan C, Chen M. Antiprostate Cancer Activity of Ineupatolide Isolated from Carpesium cernuum L. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515961. [PMID: 33996996 PMCID: PMC8105106 DOI: 10.1155/2021/5515961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the antiprostate cancer effects and mechanism of ineupatolide (T-21), a natural product isolated from the Compositae plant Carpesium cernuum L., on PC-3 human prostate cancer cells. METHODS The effect of T-21 on the proliferation of PC-3 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration, and invasion experiments; the morphology of cell apoptosis was observed by Hoechst-propidium iodide staining; the effects of T-21 on PC-3 cell apoptosis and the cell cycle were evaluated by flow cytometry; and the effect of T-21 on the expression levels of phosphorylated protein kinase B (p-AKT), AKT, X-linked inhibitor of apoptosis protein (xlAP), procaspase-3, and poly (ADP-ribose) polymerase (PARP) in PC-3 cells was measured by western blotting. RESULTS T-21 significantly inhibited the proliferation of cells, and its half-maximal inhibitory concentrations at 12, 24, and 48 h were 38.46 ± 1.01, 24.63 ± 0.70, and 7.36 ± 0.58 μM, respectively. T-21 may promote cell apoptosis in a concentration-dependent manner and block the cell cycle in the G2 and S phases. In addition, T-21 significantly reduced the protein expression levels of p-AKT, AKT, xlAP, procaspase-3, and PARP. CONCLUSION T-21 exhibits antiproliferation effects on PC-3 cells by promoting apoptosis and arresting the cell cycle in the G2 and S phases. The possible mechanism underlying its potential therapeutic effects against prostate cancer is related to the AKT/xlAP pathway.
Collapse
Affiliation(s)
- Yuan-she Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Anshun College, Anshun Guizhou 561000, China
| | - Jing-xin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lai Zhang
- Anshun College, Anshun Guizhou 561000, China
| | - Hong-wei Guo
- An Shun City People's Hospital, Anshun 561000, China
| | - Chen Yan
- An Shun City People's Hospital, Anshun 561000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Wajs-Bonikowska A, Malarz J, Szoka Ł, Kwiatkowski P, Stojakowska A. Composition of Essential Oils from Roots and Aerial Parts of Carpesium cernuum and Their Antibacterial and Cytotoxic Activities. Molecules 2021; 26:molecules26071883. [PMID: 33810440 PMCID: PMC8038092 DOI: 10.3390/molecules26071883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Carpesium cernuum L., one of the two Carpesium species occurring in Europe, in the Far East and India, found use as a vegetable and a traditional medicinal remedy for several ailments. In the present study, compositions of essential oils distilled from roots and shoots of C. cernuum plants, cultivated in the open field, have been studied by GC-MS-FID supported by NMR spectroscopy. The analyses led to the identification of 120 compounds in total, of which 115 were found in aerial parts and 37 in roots of the plants. The major constituents found in the oil from shoots were: α-pinene (35%) and 2,5-dimethoxy-p-cymene (thymohydroquinone dimethyl ether, 12%), whereas 2,5-dimethoxy-p-cymene (55%), thymyl isobutyrate (9%) and thymol methyl ether (8%) predominated in the essential oil obtained from the roots. Antibacterial and cytotoxic activities of the essential oils distilled from C. cernuum were also tested. The essential oil from aerial parts of the plant demonstrated good inhibitory activity against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 (MIC: 15.6 μL/mL).
Collapse
Affiliation(s)
- Anna Wajs-Bonikowska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland;
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza Street 2D, 15-222 Białystok, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland;
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland;
- Correspondence: ; Tel.: +481-26-623-254
| |
Collapse
|