1
|
Zhang K, Luan G, Zhang J, Wang S, Jiang M, Bai G. Ligustilide covalently binds to Cys254 of the creatine kinase, M-type protein, ameliorating acute myocardial ischemia by enhancing the creatine phosphate level. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156532. [PMID: 40007343 DOI: 10.1016/j.phymed.2025.156532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Myocardial ischemia (MI) threatens the health of middle-aged and older adults by reducing cardiac oxygen supply and function. Current therapies, including vasodilation, thrombolysis, and interventions, focus on relieving symptoms and improving blood flow but do not adequately address underlying energy metabolism issues. Ligustilide exerts a protective effect on the cardiovascular system and holds the potential for ameliorating MI; however, there is currently no systematic elucidation of ligustilide's target and action mechanism for MI. PURPOSE This study aimed to comprehensively assess ligustilide's potential targets for improving acute MI and elucidate its underlying mechanism. METHODS The therapeutic effects of ligustilide were evaluated at doses of 30, 15, and 7.5 mg/kg over 7 days in a murine model of acute MI induced by isoproterenol hydrochloride. The putative target protein was identified through target fishing, in-gel imaging, and thermal shift assay (TSA), followed by tissue and cell localization studies via a ligustilide probe. The interaction sites between ligustilide and the target protein were elucidated using protein profiling, molecular docking, and TSA at the protein level. Subsequently, knockdown and reconstruction tests were employed at the cellular level to identify the functionally active sites where ligustilide binds to the target protein. Finally, molecular docking and molecular dynamics simulations were conducted to elucidate the underlying mechanism by which ligustilide enhances creatine kinase, M-type (CKMM) protein activity. RESULTS The covalent bonding of ligustilide in cardiac tissue enhances the therapeutic effect on acute MI in mice. For the first time, we found ligustilide specifically targets Cys254 of the CKMM protein following epoxidation. This irreversible binding effectively reduces the proximity between creatine and ATP, promoting creatine phosphorylation and ultimately increasing the creatine phosphate (CP) level by 9.50 % to 19.31 %. The accumulation of CP alleviates MI by enhancing energy metabolism, mitigating oxidative stress, and suppressing inflammatory responses. CONCLUSIONS Our study unveiled ligustilide as a CKMM activator, which effectively enhances the content of CP and mitigates acute MI. The findings significantly contribute to advancing our understanding of ligustilide's function for myocardial protection while proposing a novel activation mechanism of CKMM to improve MI. And the insight into the covalent regulation of the active pocket on CKMM may lead to an alternative therapeutic strategy against acute MI.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Shilong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
2
|
Ge Y, Ma E, Guo X, Wang Q, Zhu W, Ren D, Wo D. Baicalin Prevents Chronic β-AR Agonist-Induced Heart Failure via Preventing Oxidative Stress and Overactivation of the NADPH Oxidase NOX2. J Cell Mol Med 2025; 29:e70388. [PMID: 39988987 PMCID: PMC11847971 DOI: 10.1111/jcmm.70388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Heart failure (HF) remains the leading cause of mortality worldwide. Although various drugs are currently used in the treatment of HF, including angiotensin receptor blockers, angiotensin-converting enzyme inhibitors and beta blockers, none of these drugs can reverse the physiological remodelling of the heart associated with HF. Therefore, discovering novel drugs that can limit the extent of HF or prevent the structural dysfunction of the heart during HF progression is urgently needed. Baicalin is a natural flavonoid widely used in Traditional Chinese Medicine for its anti-inflammatory and anti-oxidative effects; however, the role of baicalin in chronic HF, in particular its underlying mechanisms of action, remains largely unelucidated. Murine models of beta-adrenergic receptor agonist (β-AR)-induced HF were induced via chronic induction with isoproterenol (ISO) for 4 weeks. Furthermore, we examined the effects and mechanisms of baicalin in protecting against ISO-induced cardiac impairment and HF. Daily administrations of baicalin robustly protected against chronic ISO-induced pathophysiological changes of the heart, including cardiac hypertrophy, reduced ejection fraction, fibrosis and remodelling. Baicalin also strongly inhibited the production of reactive oxygen and nitrogen species in the heart by preventing overactivation of the NADPH oxidase NOX2. Hence, the cardioprotective effects of baicalin in preventing chronic β-AR-induced HF were due to preventing the overactivation of NOX2 and generation of excessive oxidative stress. Our findings provide new mechanistic insight and suggest the therapeutic potential of baicalin as a novel drug in the treatment of chronic HF.
Collapse
Affiliation(s)
- Yixuan Ge
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - En Ma
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - Xiaowei Guo
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - Qing Wang
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - Weidong Zhu
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - Dan‐ni Ren
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| | - Da Wo
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFujian University of Traditional Chinese Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricFuzhouFujianChina
| |
Collapse
|
3
|
Matsagar SV, Singh RK. Protective Effects of NRF2 Activator Sulforaphane in Polyinosinic:Polycytidylic Acid-Induced In Vitro and In Vivo Model. J Biochem Mol Toxicol 2024; 38:e70086. [PMID: 39635763 DOI: 10.1002/jbt.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
NRF2 is a nuclear transcription factor involved in the cellular protection against oxidative stress and inflammatory signaling. Sulforaphane is a known NRF2 activator used for its strong antioxidant and anti-inflammatory activity through regulation of Keap-1-HO-1 pathway. However, there is a limited exploration about the role of NRF2 activator, sulforaphane in regulation of poly(I:C)-induced oxidative stress, inflammation and injury in lung. Therefore, we aimed to evaluate the therapeutic effect of sulforaphane in poly(I:C)-induced responses using in vitro as well as in vivo model. We evaluated oxidative stress and inflammatory cytokines in poly(I:C)-induced RAW264.7 cells. We also employed in vivo animal study to evaluate tissue oxidative-antioxidative balance along with expression of NRF2, Keap-1, histopathological assessment by hematoxylin-eosin staining and picrosirius red staining to explore the protective mechanisms of sulforaphane in poly(I:C)-induced mouse model. Our results indicated that sulforaphane increased the expression of NRF2 and its downstream proteins. In addition, sulforaphane alleviated poly(I:C)-induced activation of the oxidative and pro-inflammatory pathways, histopathological changes, depleted expression of GSH and superoxide dismutase in lung tissue. This study suggested that sulforaphane may be one of the useful therapeutic alternatives for poly(I:C) induced lung injury and inflammation.
Collapse
Affiliation(s)
- Shailesh Vilas Matsagar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Abdelrahaman D, Habotta OA, Taher ES, El-Ashry ES, Ibrahim I, Abdeen A, Ibrahim AM, Ibrahim RM, Anwer H, Mihaela O, Olga R, Alwutayed KM, Al-Serwi RH, El-Sherbiny M, Sorour SM, El-Kashef DH. Suppression of NLRP3 inflammasome orchestrates the protective efficacy of tiron against isoprenaline-induced myocardial injury. Front Pharmacol 2024; 15:1379908. [PMID: 39211776 PMCID: PMC11358555 DOI: 10.3389/fphar.2024.1379908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The major contribution of myocardial damage to global mortalities raises debate regarding the exploration of new therapeutic strategies for its treatment. Therefore, our study investigated the counteracting effect of tiron against isoprenaline (ISO)-mediated cardiac infarction in mice. Tiron was administered to mice for 7 days prior to two consecutive injections of ISO on days 8 and 9 of the treatment protocol. Tiron significantly reduced the levels of CK-MB, LDH, and AST in serum samples of ISO-challenged mice. A considerable increase in the cardiac antioxidant response was observed in tiron-treated mice, as indicated by depletion of MDA and enhancement of antioxidant activities. Furthermore, tiron induced a marked decrease in NLRP3, ASC, and caspase-1 levels accompanied by weak immune reactions of IL-1β, NF-κB, TLR4, and iNOS in the infarct cardiac tissues. Histopathological screening validated these variations observed in the cardiac specimens. Thus, tiron clearly mitigated the oxidative and inflammatory stress by repressing the NLRP3 inflammasome and the TLR4/NF-κB/iNOS signaling cascade.
Collapse
Affiliation(s)
- Doaa Abdelrahaman
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Eman S. El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Iman Ibrahim
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Reham M. Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hala Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ostan Mihaela
- Department of Biology, Faculty of Agriculture, University of Life Sciences"King Michael I" from Timisoara, Timisoara, Romania
| | - Rada Olga
- Department of Biology, Faculty of Agriculture, University of Life Sciences"King Michael I" from Timisoara, Timisoara, Romania
| | - Khairiah M. Alwutayed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rasha H. Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Anajirih N, Abdeen A, Taher ES, Abdelkader A, Abd-Ellatieff HA, Gewaily MS, Ahmed NE, Al-Serwi RH, Sorour SM, Abdelkareem HM, Ebrahim E, El-Sherbiny M, Imbrea F, Imbrea I, Ramadan MM, Habotta OA. Alchemilla vulgaris modulates isoproterenol-induced cardiotoxicity: interplay of oxidative stress, inflammation, autophagy, and apoptosis. Front Pharmacol 2024; 15:1394557. [PMID: 39170697 PMCID: PMC11335554 DOI: 10.3389/fphar.2024.1394557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Isoproterenol (ISO) is regarded as an adrenergic non-selective β agonist. It regulates myocardial contractility and may cause damage to cardiac tissues. Alchemilla vulgaris (AV) is an herbal plant that has garnered considerable attention due to its anti-inflammatory and antioxidant bioactive components. The present investigation assessed the cardioprotective potential of AV towards ISO-induced myocardial damage. Methods: Four groups of mice were utilized: control that received saline, an ISO group (85 mg/kg, S.C.), ISO + AV100, and ISO + AV200 groups (mice received 100 or 200 mg/kg AV orally along with ISO). Results and discussion: ISO induced notable cardiac damage demonstrated by clear histopathological disruption and alterations in biochemical parameters. Intriguingly, AV treatment mitigates ISO provoked oxidative stress elucidated by a substantial enhancement in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) content, as well as a considerable reduction in malondialdehyde (MDA) concentrations. In addition, notable downregulation of inflammatory biomarkers (IL-1β, TNF-α, and RAGE) and the NF-κB/p65 pathway was observed in ISO-exposed animals following AV treatment. Furthermore, the pro-apoptotic marker Bax was downregulated together with autophagy markers Beclin1 and LC3 with in ISO-exposed animals when treated with AV. Pre-treatment with AV significantly alleviated ISO-induced cardiac damage in a dose related manner, possibly due to their antioxidant and anti-inflammatory properties. Interestingly, when AV was given at higher doses, a remarkable restoration of ISO-induced cardiac injury was revealed.
Collapse
Affiliation(s)
- Nuha Anajirih
- Department of Medical Emergency Services, College of Health Sciences in Al-Qunfudah, UmmAl-Qura University, Mecca, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hoda A. Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nashwa E. Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rasha H. Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Heba M. Abdelkareem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
- Department of Medical Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Mutah University, Mutah, Jordan
| | - Elturabi Ebrahim
- Medical‐Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Florin Imbrea
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences “King Mihai I” From Timisoara, Timisoara, Romania
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” From Timisoara, Timisoara, Romania
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Hareeri RH, Alam AM, Bagher AM, Alamoudi AJ, Aldurdunji MM, Shaik RA, Eid BG, Ashour OM. Protective Effects of 2-Methoxyestradiol on Acute Isoproterenol-Induced Cardiac Injury in Rats. Saudi Pharm J 2023; 31:101787. [PMID: 37766820 PMCID: PMC10520946 DOI: 10.1016/j.jsps.2023.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.
Collapse
Affiliation(s)
- Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M. Alam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:464-473. [PMID: 37620223 DOI: 10.1016/j.joim.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/01/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action. METHODS Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence. RESULTS Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity. CONCLUSION SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.
Collapse
Affiliation(s)
- Yan-Qiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
8
|
Yan L, Zhou G, Shahzad K, Zhang H, Yu X, Wang Y, Yang N, Wang M, Zhang X. Research progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. FRONTIERS IN PLANT SCIENCE 2023; 14:1138700. [PMID: 37063225 PMCID: PMC10090291 DOI: 10.3389/fpls.2023.1138700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Broccoli is a nutritious vegetable. It is high in protein, minerals, and vitamins. Also, it possesses antioxidant activities and is beneficial to the human body. Due to its active effect, broccoli is widely accepted by people in daily life. However, in terms of current utilization, only its florets are consumed as vegetables, while more than half of its stalks and leaves are not utilized. The stalks and leaves contain not only nutrients but also bioactive substances with physiologically regulating properties. Therefore research into the action and mechanism of its bioactive substances as well as its development and utilization technology will make contributions to the further promotion of its resource development and utilization. As a theoretical foundation for the resource utilization of broccoli stalks and leaves, this report will review the distribution and consumption of broccoli germplasm resources, the mechanism of action of bioactive substances, and innovative methods for their exploitation.
Collapse
Affiliation(s)
- Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Gang Zhou
- Huaiyin Institute of Agricultural Sciences in Xuhuai Region, Huaian, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Haoran Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| | - Xin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, China
| |
Collapse
|
9
|
Ma J, Qian H, Zou H. Suppression of lncRNA OIP5-AS1 Attenuates Apoptosis and Inflammation, and Promotes Proliferation by Mediating miR-25-3p Expression in Lipopolysaccharide-Induced Myocardial Injury. Anal Cell Pathol (Amst) 2023; 2023:3154223. [PMID: 36994450 PMCID: PMC10042636 DOI: 10.1155/2023/3154223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Long non-coding RNAs (LncRNAs) OIP5-AS1 and miR-25-3p play important roles in myocardial injury, whereas their roles in lipopolysaccharide (LPS)-induced myocardial injury remain unknown. The purpose of our study was to investigate the functional mechanisms of OIP5-AS1 and miR-25-3p in LPS-induced myocardial injury. Methods Rats and H9C2 cells were treated with LPS to establish the model of myocardial injury in vivo and in vitro, respectively. The expression levels of OIP5-AS1 and miR-25-3p were determined by quantitative reverse transcriptase-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to measure the serum levels of IL-6 and TNF-α. The relationship between OIP5-AS1 and miR-25-3p/NOX4 was determined by luciferase reporter assay and/or RNA immunoprecipitation assay. The apoptosis rate was detected by flow cytometry, and cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Western blot was performed to detect the protein levels of Bax, Bcl-2, caspase3, c-caspase3, NOX4, and p-NF-κB p65/NF-κB p65. Results OIP5-AS1 was up-regulated, and miR-25-3p was down-regulated in myocardial tissues of LPS-induced rats and LPS-treated H9C2 cells. Knockdown of OIP5-AS1 relieved the myocardial injury in LPS-induced rats. Knockdown of OIP5-AS1 also inhibited the inflammation and apoptosis of myocardial cells in vivo, which was subsequently confirmed by in vitro experiments. In addition, OIP5-AS1 targeted miR-25-3p. MiR-25-3p mimics reversed the effects of OIP5-AS1 overexpression on promoting cell apoptosis and inflammation and on inhibiting cell viability. Besides, miR-25-3p mimics blocked the NOX4/NF-κB signalling pathway in LPS-induced H9C2 cells. Conclusion Silencing of lncRNA OIP5-AS1 alleviated LPS-induced myocardial injury by regulating miR-25-3p.
Collapse
Affiliation(s)
- Jiaju Ma
- Intensive Care Unit, Suzhou Ninth People's Hospital, No. 2666, Ludang Road, Taihu New Town, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Hebu Qian
- Intensive Care Unit, Suzhou Ninth People's Hospital, No. 2666, Ludang Road, Taihu New Town, Wujiang District, Suzhou, Jiangsu 215200, China
| | - Han Zou
- Intensive Care Unit, Suzhou Ninth People's Hospital, No. 2666, Ludang Road, Taihu New Town, Wujiang District, Suzhou, Jiangsu 215200, China
| |
Collapse
|
10
|
Abedalqader NN, Rababa'h AM, Ababneh M. The protective effect of rivaroxaban with or without aspirin on inflammation, oxidative stress, and platelet reactivity in isoproterenol-induced cardiac injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:337-351. [PMID: 36334131 DOI: 10.1007/s00210-022-02319-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Coronary artery diseases are principal sources of mortality and disability in global human population. Progressively, rivaroxaban is being evaluated for the prevention of atherosclerotic thrombi, particularly with anti-platelet agents. Hence, the current report aimed to investigate the cardioprotective effect of rivaroxaban on isoproterenol (ISO)-induced cardiac injury model in rats and the possible synergistic effect when combined with aspirin. Male Wistar rats were randomly assigned into five different groups. Cardiac injury was induced by subcutaneous injection of ISO (85 mg/kg) for 2 consecutive days. Rat tail bleeding time was performed prior to sacrifice. Cardiac enzymes, platelet activity, inflammatory, and oxidative stress biomarkers levels were measured using enzyme-linked immunoassay (ELISA). Pre-administration of rivaroxaban alone and on combination with aspirin prevented ISO-induced increase in cardiac thiobarbituric acid reactive substances (TBARS), interleukin 6 (IL-6), and thromboxane B2 (TXB2) levels. Moreover, a significant prolongation of bleeding time was demonstrated among aspirin, rivaroxaban, and aspirin plus rivaroxaban treated groups. On the other hand, the combination treatment of aspirin plus rivaroxaban showed no marked difference in these biomarkers and bleeding time relative to either drug administered separately. However, a prominent decrease of cardiac 6-keto prostaglandin F1α (6-Keto-PGF1α) level was displayed in the combination treatment when compared with ISO and rivaroxaban-treated groups, whereas no significant improvement was seen in cardiac glycoprotein V (GPV) levels except in aspirin-treated group. The study results demonstrated that rivaroxaban decreases cardiac oxidative stress, inflammation, and platelets reactivity. However, the addition of rivaroxaban to aspirin did not seem to show synergistic antioxidant, anti-inflammatory, or antiplatelet effect.
Collapse
Affiliation(s)
- Nour N Abedalqader
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Mera Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
11
|
Ibrahim Fouad G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc Toxicol 2023; 23:46-60. [PMID: 36650404 PMCID: PMC9859885 DOI: 10.1007/s12012-022-09776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1β (IL-1β) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
12
|
Dana AH, Alejandro SP. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci 2022; 299:120554. [PMID: 35452639 DOI: 10.1016/j.lfs.2022.120554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/09/2023]
Abstract
Nowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models. Particularly, ER stress is buffered by the unfolded protein response (UPR) activation, which is the first instance in orchestrating the recovery of ER function. Interestingly, different studies highlight a close interrelationship between ER stress and oxidative stress, two events driven by the accumulation of reactive oxygen species (ROS). This response inevitably perpetuates itself and acts as a vicious cycle that triggers the development of different pathologies, such as cardiovascular diseases, neurodegenerative diseases, and others. Accordingly, it is vital to target ER stress and oxidative stress to increase the effectiveness of clinical therapies used to treat these diseases. Therefore, our study is focused on the role of SFN in preserving cellular homeostasis balance by regulating the ER stress response through the Nrf2-modulated antioxidant pathway.
Collapse
Affiliation(s)
- Arana-Hidalgo Dana
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
13
|
Wu YT, Xie LP, Hua Y, Xu HL, Chen GH, Han X, Tan ZB, Fan HJ, Chen HM, Li J, Liu B, Zhou YC. Tanshinone I Inhibits Oxidative Stress-Induced Cardiomyocyte Injury by Modulating Nrf2 Signaling. Front Pharmacol 2021; 12:644116. [PMID: 34084132 PMCID: PMC8167655 DOI: 10.3389/fphar.2021.644116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease, a disease caused by many pathogenic factors, is one of the most common causes of death worldwide, and oxidative stress plays a major role in its pathophysiology. Tanshinone I (Tan I), a natural compound with cardiovascular protective effects, is one of the main active compounds extracted from Salvia miltiorrhiza. Here, we investigated whether Tan I could attenuate oxidative stress and oxidative stress–induced cardiomyocyte apoptosis through Nrf2/MAPK signaling in vivo and in vitro. We found that Tan I treatment protected cardiomyocytes against oxidative stress and oxidative stress–induced apoptosis, based on the detection of relevant oxidation indexes such as reactive oxygen species, superoxide dismutase, malondialdehyde, and apoptosis, including cell viability and apoptosis-related protein expression. We further examined the mechanisms underlying these effects, determining that Tan I activated nuclear factor erythroid 2 (NFE2)–related factor 2 (Nrf2) transcription into the nucleus and dose-dependently promoted the expression of Nrf2, while inhibiting MAPK signaling activation, including P38 MAPK, SAPK/JNK, and ERK1/2. Nrf2 inhibitors in H9C2 cells and Nrf2 knockout mice demonstrated aggravated oxidative stress and oxidative stress–induced cardiomyocyte injury; Tan I treatment suppressed these effects in H9C2 cells; however, its protective effect was inhibited in Nrf2 knockout mice. Additionally, the analysis of surface plasmon resonance demonstrated that Tan I could directly target Nrf2 and act as a potential Nrf2 agonist. Collectively, these data strongly indicated that Tan I might inhibit oxidative stress and oxidative stress–induced cardiomyocyte injury through modulation of Nrf2 signaling, thus supporting the potential therapeutic application of Tan I for oxidative stress–induced CVDs.
Collapse
Affiliation(s)
- Yu-Ting Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Ling-Peng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Hong-Lin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Zhang-Bin Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Jie Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,TCM Health Construction Department of Yangjiang People's Hospital, Yangjiang, China
| | - Hong-Mei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Medicine, Nanfang Hospital (Zengcheng Branch), Southern Medical University, Guangzhou, China
| |
Collapse
|