1
|
Xu H, Mao X, Mo D, Lv M. 6PPD impairs growth performance by inducing intestinal oxidative stress and ferroptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 293:110161. [PMID: 39988222 DOI: 10.1016/j.cbpc.2025.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a tire-derived pollutant, has gained increasing attention due to its potential toxicity to aquatic organisms. Although previous studies have revealed that 6PPD impacts early developmental stages of larval fish, its effects on adult fish, particularly on key organs, remain unclear. In this study, we observed that adult zebrafish exposed to 6PPD exhibited reduced growth performance and increased fecal output. Histological examination with hematoxylin and eosin (H&E) staining revealed damage to the intestinal villi and a reduction in goblet cell numbers, indicating that 6PPD impairs growth performance by disrupting the digestive system. Comparative transcriptomic analysis revealed that 6PPD caused significant changes in the expression of 727 genes in the intestine, of which 280 genes were up-regulated and 447 genes were down-regulated. These genes were primarily associated with nutrient digestion and absorption, energy metabolism, immune response, and redox regulation. Mechanistically, 6PPD induced oxidative stress and triggered ferroptosis in the intestine, leading to structural damage of the intestinal villi. Treatment with the antioxidant N-acetylcysteine (NAC) alleviated 6PPD-induced oxidative stress and ferroptosis, thereby improving intestinal villi structure and promoting fish growth. This study provides insights into the mechanisms by which 6PPD impairs growth in adult zebrafish and highlights NAC as a potential therapeutic strategy to mitigate its toxicity.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Dashuang Mo
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
2
|
Wang X, Xie Y, Du H, Chang C, Tian C, Yin Y, Li X, Pan Y. Dipeptidyl peptidase 3 induces myocardial ischemia-reperfusion injury by mediating mitophagy and the intrinsic apoptotic pathway. Eur J Pharmacol 2025; 997:177592. [PMID: 40189079 DOI: 10.1016/j.ejphar.2025.177592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that is regarded as a "myocardial inhibitor". However, the role of DPP3 in myocardial ischemia-reperfusion injury (MIRI) remain to be investigated. The present study aimed to investigate the potential role of DPP3 in MIRI and elucidate the underlying mechanisms. METHODS The AC16 cardiomyocyte cell line was used to investigate the interactions between DPP3 and its protein interactors, and assess its effects on the apoptosis of cardiomyocytes following oxygen glucose deprivation/reperfusion (OGD/R) treatment in vitro. An animal model of ischemia/reperfusion (I/R) injury was established using C57BL/6J mice for in vivo analyses. The role of DPP3 and the underlying mechanisms were investigated both in vitro and in vivo following DPP3 knockdown and overexpression. RESULTS DPP3 interacted with Parkinson's disease protein 7 (Park7), and DPP3 overexpression altered the expression levels of proteins related to the intrinsic apoptotic pathway and autophagy. This significantly downregulated the mitochondrial expression of cytochrome C, thereby exacerbating mitochondrial injury and increasing the rate of apoptosis following reperfusion. DPP3 knockdown reversed these effects; however, the simultaneous knockdown of DPP3 and Park7 did not confer the beneficial effects observed with DPP3 knockdown alone. DPP3 knockdown alleviated the extent of myocardial injury and improved cardiac function in the mouse model of I/R injury. CONCLUSIONS The study demonstrated that DPP3 mediates mitophagy and apoptosis in MIRI through its interaction with Park7. These findings have important implications, suggesting that targeting DPP3 and its associated signaling pathways may serve as a potential therapeutic strategy, and that the downregulation of DPP3 can potentially alleviate MIRI.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaofeng Xie
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongjiao Du
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cheng Chang
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunyang Tian
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuyao Yin
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaodong Li
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yilong Pan
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Atalay Ekiner S, Gęgotek A, Domingues P, Domingues MR, Skrzydlewska E. Comparison of Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Lipid Extracts Effects on UVA-Induced Changes in Human Skin Fibroblasts Proteome. Mar Drugs 2024; 22:509. [PMID: 39590789 PMCID: PMC11595653 DOI: 10.3390/md22110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Lipid extracts from the microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis have great potential to prevent ultraviolet A (UVA)-induced metabolic disorders. Therefore, the aim of this study has been to analyze their cytoprotective effect, focused on maintaining intracellular redox balance and inflammation in UVA-irradiated skin fibroblasts, at the proteome level. The above lipid extracts reversed the suppression of the antioxidant response caused by UVA radiation, which was more visible in the case of C. amblystomatis. Modulations of interactions between heme oxygenase-1 and matrix metalloproteinase 1/Parkinson's disease protein 7/transcript1-α/β, as well as thioredoxin and migration inhibitory factor/Parkinson's disease protein 7/calnexin/ATPase p97, created key molecular signaling underlying their cytoprotective actions. Moreover, they reduced pro-inflammatory processes in the control group but they also showed the potential to regulate the cellular inflammatory response by changing inflammasome signaling associated with the changes in the caspase-1 interaction area, including heat shock proteins HSP90, HSPA8, and vimentin. Therefore, lipid extracts from N. oceanica and C. amblystomatis protect skin fibroblast metabolism from UVA-induced damage by restoring the redox balance and regulating inflammatory signaling pathways. Thus, those extracts have proven to have great potential to be used in cosmetic or cosmeceutical products to protect the skin against the effects of solar radiation. However, the possibility of their use requires the evaluation of their effects at the skin level in in vivo and clinical studies.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (P.D.); (M.R.D.)
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (P.D.); (M.R.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.E.); (A.G.)
| |
Collapse
|
4
|
Yousef M, Ozdemir F, Jaber A, Allmer J, Bakir-Gungor B. PriPath: identifying dysregulated pathways from differential gene expression via grouping, scoring, and modeling with an embedded feature selection approach. BMC Bioinformatics 2023; 24:60. [PMID: 36823571 PMCID: PMC9947447 DOI: 10.1186/s12859-023-05187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Cell homeostasis relies on the concerted actions of genes, and dysregulated genes can lead to diseases. In living organisms, genes or their products do not act alone but within networks. Subsets of these networks can be viewed as modules that provide specific functionality to an organism. The Kyoto encyclopedia of genes and genomes (KEGG) systematically analyzes gene functions, proteins, and molecules and combines them into pathways. Measurements of gene expression (e.g., RNA-seq data) can be mapped to KEGG pathways to determine which modules are affected or dysregulated in the disease. However, genes acting in multiple pathways and other inherent issues complicate such analyses. Many current approaches may only employ gene expression data and need to pay more attention to some of the existing knowledge stored in KEGG pathways for detecting dysregulated pathways. New methods that consider more precompiled information are required for a more holistic association between gene expression and diseases. RESULTS PriPath is a novel approach that transfers the generic process of grouping and scoring, followed by modeling to analyze gene expression with KEGG pathways. In PriPath, KEGG pathways are utilized as the grouping function as part of a machine learning algorithm for selecting the most significant KEGG pathways. A machine learning model is trained to differentiate between diseases and controls using those groups. We have tested PriPath on 13 gene expression datasets of various cancers and other diseases. Our proposed approach successfully assigned biologically and clinically relevant KEGG terms to the samples based on the differentially expressed genes. We have comparatively evaluated the performance of PriPath against other tools, which are similar in their merit. For each dataset, we manually confirmed the top results of PriPath in the literature and found that most predictions can be supported by previous experimental research. CONCLUSIONS PriPath can thus aid in determining dysregulated pathways, which applies to medical diagnostics. In the future, we aim to advance this approach so that it can perform patient stratification based on gene expression and identify druggable targets. Thereby, we cover two aspects of precision medicine.
Collapse
Affiliation(s)
- Malik Yousef
- Department of Information Systems, Zefat Academic College, 13206, Zefat, Israel. .,Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel.
| | - Fatma Ozdemir
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey ,grid.5570.70000 0004 0490 981XUniversity Institute of Digital Communication Systems, Ruhr-University, Bochum, Germany
| | - Amhar Jaber
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Jens Allmer
- grid.454318.f0000 0004 0431 5034Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, Mülheim an der Ruhr, Germany
| | - Burcu Bakir-Gungor
- grid.440414.10000 0004 0558 2628Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
5
|
Pap D, Veres-Székely A, Szebeni B, Vannay Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022; 23:6626. [PMID: 35743072 PMCID: PMC9223539 DOI: 10.3390/ijms23126626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly known that Parkinson's (PD) and Alzheimer's (AD) diseases occur more frequently in patients with inflammatory gastrointestinal diseases including inflammatory bowel (IBD) or celiac disease, indicating a pathological link between them. Although epidemiological observations suggest the existence of the gut-brain axis (GBA) involving systemic inflammatory and neural pathways, little is known about the exact molecular mechanisms. Parkinson's disease 7 (PARK7/DJ-1) is a multifunctional protein whose protective role has been widely demonstrated in neurodegenerative diseases, including PD, AD, or ischemic stroke. Recent studies also revealed the importance of PARK7/DJ-1 in the maintenance of the gut microbiome and also in the regulation of intestinal inflammation. All these findings suggest that PARK7/DJ-1 may be a link and also a potential therapeutic target in gut and brain diseases. In this review, therefore, we discuss our current knowledge about PARK7/DJ-1 in the context of GBA diseases.
Collapse
Grants
- TKP2020-NKA-09 Ministry for Innovation and Technology, Hungary
- TKP2020-NKA-13 Ministry for Innovation and Technology, Hungary
- K125470 National Research, Development and Innovation Office (NKFI), Hungary
- STIA-KFI-2020 Semmelweis Science and Innovation Fund, Hungary
- 20382-3/2018 FEKUTSTRAT National Research, Development and Innovation Office, Hungary
- STIA-KFI-2021 (1492-15/IKP/2022) Semmelweis Science and Innovation Fund, Hungary
- K124549 National Research, Development and Innovation Office (NKFI), Hungary
Collapse
Affiliation(s)
- Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
6
|
Veres-Székely A, Pap D, Szebeni B, Őrfi L, Szász C, Pajtók C, Lévai E, Szabó AJ, Vannay Á. Transient Agarose Spot (TAS) Assay: A New Method to Investigate Cell Migration. Int J Mol Sci 2022; 23:ijms23042119. [PMID: 35216230 PMCID: PMC8880674 DOI: 10.3390/ijms23042119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Fibroblasts play a central role in diseases associated with excessive deposition of extracellular matrix (ECM), including idiopathic pulmonary fibrosis. Investigation of different properties of fibroblasts, such as migration, proliferation, and collagen-rich ECM production is unavoidable both in basic research and in the development of antifibrotic drugs. In the present study we developed a cost-effective, 96-well plate-based method to examine the migration of fibroblasts, as an alternative approach to the gold standard scratch assay, which has numerous limitations. This article presents a detailed description of our transient agarose spot (TAS) assay, with instructions for its routine application. Advantages of combined use of different functional assays for fibroblast activation in drug development are also discussed by examining the effect of nintedanib—an FDA approved drug against IPF—on lung fibroblasts.
Collapse
Affiliation(s)
- Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
- Correspondence:
| | - Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary;
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary
| | - Csenge Szász
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Csenge Pajtók
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Eszter Lévai
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Attila J. Szabó
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
7
|
Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W 1118 flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The risk of graphene oxide (GO) exposure to various species has been greatly amplified in recent years due to its booming production and applications in various fields. However, a deep understanding of the GO biosafety lags its wide applications. Herein, we used W1118 flies as a model organism to study GO toxicity at relatively low concentrations. We found that GO exposure led to remarkable weight loss, delayed development, retarded motion, and shortened lifespan of these flies. On the other hand, the GO influence on their sex ratio and the total number of pupae and adults were insignificant. The toxicological effect of GO was shown to be related to its serious compromise of the nutrient absorption in flies due to the severe damages in midguts. These damages were then attributed to the excessive accumulation of reactive oxygen species (ROS), which triggers the oxidative stress. These findings reveal the underlying mechanisms of GO biotoxicities in fruit flies, which might provide a useful reference to assess the risks of these newly invented nanomaterials likely never encountered by various species before.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; Institute of Quantitative Biology and College of Life Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
8
|
McCabe CJ, Aryal UK, Casey T, Boerman J. Impact of Exposure to Chronic Light-Dark Phase Shifting Circadian Rhythm Disruption on Muscle Proteome in Periparturient Dairy Cows. Proteomes 2021; 9:35. [PMID: 34449733 PMCID: PMC8396217 DOI: 10.3390/proteomes9030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Muscle tissue serves as a key nutrient reservoir that dairy cows utilize to meet energy and amino acid requirements for fetal growth and milk production. Circadian clocks act as homeostatic regulators so that organisms can anticipate regular environmental changes. The objective of this study was to use liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine how chronic circadian disruption in late gestation affected the muscle tissue proteome. At five weeks before expected calving (BEC), multiparous Holstein cows were assigned to either a control (CON, n = 8) or a 6 h forward phase shift (PS, n = 8) of the light-dark cycle every 3 days. At calving, all animals were exposed to CON light-dark cycles. Muscle biopsies were collected from longissimus dorsi muscles at 21 days BEC and at 21 days postpartum (PP). At p < 0.1, 116 and 121 proteins were differentially abundant between PS and CON at 21 days BEC and 21 days PP, respectively. These proteins regulate beta oxidation and glycolysis. Between pregnancy and lactation, 134 and 145 proteins were differentially abundant in CON and PS cows, respectively (p < 0.1). At both timepoints, PS cows exhibited an oxidative stress signature. Thus, dairy cattle management strategies that minimize circadian disruptions may ensure optimal health and production performance.
Collapse
Affiliation(s)
- Conor John McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| |
Collapse
|
9
|
Lippai R, Veres-Székely A, Sziksz E, Iwakura Y, Pap D, Rokonay R, Szebeni B, Lotz G, Béres NJ, Cseh Á, Szabó AJ, Vannay Á. Immunomodulatory role of Parkinson's disease 7 in inflammatory bowel disease. Sci Rep 2021; 11:14582. [PMID: 34272410 PMCID: PMC8285373 DOI: 10.1038/s41598-021-93671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Recently the role of Parkinson's disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)-compound increasing PARK7 activity-treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn's disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.
Collapse
Affiliation(s)
- Rita Lippai
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Erna Sziksz
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences and Center for Animal Disease Models, Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Domonkos Pap
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Réka Rokonay
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Beáta Szebeni
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nóra J Béres
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Áron Cseh
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary.
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary.
| |
Collapse
|