1
|
Dewi NM, Meiliana A, Defi IR, Amalia R, Sartika CR, Wijaya A, Barliana MI. Targeted Therapy for Skeletal Muscle Fibrosis: Regulation of Myostatin, TGF-β, MMP, and TIMP to Maintain Extracellular Matrix Homeostasis. Biologics 2025; 19:213-229. [PMID: 40260056 PMCID: PMC12011048 DOI: 10.2147/btt.s508221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Muscle fibrosis, defined by the excessive deposition of extracellular matrix (ECM) components, is a key pathological process that hinders muscle regeneration following injury. Despite muscle's inherent regenerative potential, severe or chronic injuries often result in fibrosis, which compromises muscle function and impedes healing. This review explores a range of therapeutic strategies aimed at modulating the molecular pathways involved in muscle fibrosis, with a focus on the inhibition of myostatin and transforming growth factor-β (TGF-β), as well as the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Some therapy modalities, including physiotherapy and exercise therapy, which are commonly used, have demonstrated the ability to regulate extracellular matrix (ECM) components and promote muscle repair. In addition, the use of TGF-β inhibitors, herbal plants, and other biochemically relevant compounds, holds promise in controlling fibrosis by targeting key signaling pathways that drive ECM accumulation as well as having anti-fibrotic and anti-inflammatory properties. Regenerative medicine, including therapies using stem cell, secretome, and platelet-rich plasma (PRP), have also been used as single or adjuvant treatment for muscle fibrosis, and represents a novel and minimally invasive approach. Although these therapeutic strategies show considerable promise, translating preclinical findings to clinical practice remains challenging owing to variability in patient responses and the complexity of human muscle injuries. In conclusion, a multifaceted approach targeting ECM regulation, either as single treatment or combined treatment, offers a promising avenue for the treatment of muscle fibrosis.
Collapse
Affiliation(s)
- Nurrani Mustika Dewi
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- PT Prodia Widyahusada, Jakarta, Indonesia
| | - Anna Meiliana
- PT Prodia Widyahusada, Jakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Irma Ruslina Defi
- Department of Physical Medicine and Rehabilitation, Hasan Sadikin General Hospital/Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Andi Wijaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- PT Prodia StemCell Indonesia, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
2
|
Ergan M, Keskіn T, Candan İA, Erzurumlu Y, Aşci H, Çömlekçı S, Başkurt F. Investigation of the efficiency of pulsed electromagnetic field treatment and stretching exercise in experimental skeletal muscle injury model. BMC Musculoskelet Disord 2025; 26:289. [PMID: 40128672 PMCID: PMC11931823 DOI: 10.1186/s12891-025-08442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE Pulsed electromagnetic fields (PEMF) and stretching exercises are safe and noninvasive methods that could have a therapeutic effect on tissue healing. This study aimed to assess the effectiveness of these methods in treatment of muscle injury (INJ). METHOD Rats were divided into 5 groups (Control, INJ, INJ + Exercise, INJ + PEMF, INJ + Exercise + PEMF). At the end of the experiment, genetic, histopathological, and immunohistochemical evaluations were made in the muscle tissue. RESULTS Mononuclear cell infiltration, muscle degeneration, atrophy, and necrosis were found to be higher in the INJ group than in all groups (p < 0.001). On the 7th day, fibroblast growth factor (FGF) was found to be higher in the INJ group compared to both the control and the INJ + Exercise group (p < 0.05). On the 14th day, Vascular endothelial growth factor values were found to be higher in the injury group than the other groups except for the PEMF group (p < 0.05), and FGF values were higher in the injury group compared to all groups (p < 0.001). The expressions of transforming growth factor beta 1 (TGF-β1) and endothelial nitric oxide synthase (eNOS) on the 7th and 14th days showed a significant increase in the INJ group compared to the other groups (p < 0.001). CONCLUSION In this study, it has been shown that PEMF and stretching exercise is effective in the treatment of muscle injuries as they balance the inflammatory process in the muscle, have a positive effect on muscle development, accelerate healing, prevent fibrosis development by reducing TGF-β1 signaling, and inhibit inflammatory-induced eNOS activity.
Collapse
Affiliation(s)
- Mesut Ergan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Süleyman Demirel University, Isparta, 32200, Turkey.
| | - Tahir Keskіn
- Faculty of Physical Therapy and Rehabilitation, Bingöl University, Bіngöl, 12000, Turkey
| | - İbrahim Aydın Candan
- Faculty of Medicine, Department of Histology and Embryology, Alanya Alaaddin Keykubat Unıversıty, Alanya, Turkey
| | - Yalçın Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Süleyman Demirel University, Isparta, Turkey
| | - Halil Aşci
- Faculty of Medicine, Department of Pharmacology, Süleyman Demirel University, Isparta, Turkey
| | - Selçuk Çömlekçı
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Ferdi Başkurt
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Süleyman Demirel University, Isparta, 32200, Turkey
| |
Collapse
|
3
|
Duong VT, Dang TT, Le VP, Le TH, Nguyen CT, Phan HL, Seo J, Lin CC, Back SH, Koo KI. Direct extrusion of multifascicle prevascularized human skeletal muscle for volumetric muscle loss surgery. Biomaterials 2025; 314:122840. [PMID: 39321685 DOI: 10.1016/j.biomaterials.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Skeletal muscle is composed of multiple fascicles, which are parallel bundles of muscle fibers surrounded by connective tissues that contain blood vessels and nerves. Here, we fabricated multifascicle human skeletal muscle scaffolds that mimic the natural structure of human skeletal muscle bundles using a seven-barrel nozzle. For the core material to form the fascicle structure, human skeletal myoblasts were encapsulated in Matrigel with calcium chloride. Meanwhile, the shell that plays a role as the connective tissue, human fibroblasts and human umbilical vein endothelial cells within a mixture of porcine muscle decellularized extracellular matrix and sodium alginate at a 95:5 ratio was used. We assessed four types of extruded scaffolds monolithic-monoculture (Mo-M), monolithic-coculture (Mo-C), multifascicle-monoculture (Mu-M), and multifascicle-coculture (Mu-C) to determine the structural effect of muscle mimicking scaffold. The Mu-C scaffold outperformed other scaffolds in cell proliferation, differentiation, vascularization, mechanical properties, and functionality. In an in vivo mouse model of volumetric muscle loss, the Mu-C scaffold effectively regenerated the tibialis anterior muscle defect, demonstrating its potential for volumetric muscle transplantation. Our nozzle will be further used to produce other volumetric functional tissues, such as tendons and peripheral nerves.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Thi Huong Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Chanh Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Jongmo Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Seoul National University Hospital Biomedical Research Institute, Seoul, 03080, Republic of Korea.
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
4
|
Patel PR, Tamas IP, Van Der Bas M, Kegg A, Hilliard BA, Lambi AG, Popoff SN, Barbe MF. Repetitive Overuse Injury Causes Entheseal Damage and Palmar Muscle Fibrosis in Older Rats. Int J Mol Sci 2024; 25:13546. [PMID: 39769311 PMCID: PMC11679654 DOI: 10.3390/ijms252413546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls. HRLF animals showed a reduced grip strength versus controls. ELISAs carried out in the HRLF rats, versus controls, showed elevated levels of IL1-α in tendons, IL1-α and TNF-α in distal bones/entheses, and TNF-α, MIP1-α/CCL3, and CINC-2/CXCL-3 in serum, as well as IL-6 in forelimb muscles and tendons, and IL-10 in serum. HRLF rats had elevated collagen deposition in the forepaw intrinsic muscles (i.e., fibrosis), entheseal microdamage, and articular cartilage degradation versus the control rats. CD68/ED1+ osteoclasts and single-nucleated cells were elevated in distal forelimb metaphyses of the HRLF animals, versus controls. Declines in grip strength correlated with muscle fibrosis, entheseal microdamage, articular cartilage damage, distal bone/enthesis IL1-α, and serum IL-6. These data demonstrate inflammatory and persistent degradative changes in the forearm/forepaw tissues of mature female animals exposed to prolonged repetitive tasks, changes with clinical relevance to work-related overuse injuries in mature human females.
Collapse
Affiliation(s)
- Parth R. Patel
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Istvan P. Tamas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Megan Van Der Bas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Abby Kegg
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Alex G. Lambi
- Plastic Surgery Section, New Mexico Veterans Administration Health Care System, Albuquerque, NM 87108, USA;
- Department of Surgery, The University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
5
|
Wang K, Wang X, Wang Y. Factors, mechanisms and improvement methods of muscle strength loss. Front Cell Dev Biol 2024; 12:1509519. [PMID: 39698495 PMCID: PMC11653071 DOI: 10.3389/fcell.2024.1509519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Muscle strength is a crucial aspect of muscle function, essential for maintaining normal physical activity and quality of life. The global aging population coupled with the increasing prevalence of muscle disorders and strength loss, poses a remarkable public health challenge. Understanding the mechanisms behind muscle strength decline is vital for improving public health outcomes. This review discusses recent research advancements on muscle strength loss from various perspectives, including factors contributing to muscle strength decline, the signaling pathways involved in the deterioration of muscle function, and the methods for assessing muscle strength. The final section explores the influence of exercise stimulation and nutrition on muscle strength.
Collapse
Affiliation(s)
- Kaiyong Wang
- Department of Physical Education, Guangdong University of Finance and Economics, Guangzhou, Guangdong, China
| | - Xuyu Wang
- Master program under the Graduate School of Education, Graduate University of Mongolia, Ulaanbaatar, Mongolia
| | - Yanqiu Wang
- School of Physical Education, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Rohrer L, Kato S, Browne SA, Striedinger-Melo K, Healy K, Pomerantz JH. Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss. Tissue Eng Part A 2024; 30:704-711. [PMID: 38534963 DOI: 10.1089/ten.tea.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Current treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML. For this, we used a novel model of masseter VML in the rat. Following the creation of a 5 mm × 5 mm injury to the superficial masseter and administration of AcHyA to the wound, masseters were explanted between 2 and 16 weeks postoperatively and were analyzed for evidence of muscle regeneration including fibrosis, defect size, and fiber cross-sectional area (FCSA). At 8 and 16 weeks, masseters treated with AcHyA showed significantly less fibrosis than nonrepaired controls and a smaller decrease in defect size. The mean FCSA among fibers near the defect was significantly greater among hydrogel-repaired than control masseters at 8 weeks, 12 weeks, and 16 weeks. These results show that the hydrogel mitigates the fibrotic healing response and wound contracture. Our findings also suggest that hydrogel-based treatments have potential use as a treatment for the regeneration of craniofacial VML and demonstrate a system for evaluating subsequent iterations of materials in VML injuries. Impact Statement Craniofacial volumetric muscle loss (VML) is a debilitating condition for which current treatment options are unable to restore normal appearance, or function. Tissue engineering approaches, such as hydrogel implants, may be an effective strategy to fill the volumetric defects and promote de novo muscle regeneration. In this study, we describe a novel rodent model for the study of craniofacial VML and a hyaluronic acid-based hydrogel that can be used as a treatment for the regeneration of craniofacial VML.
Collapse
Affiliation(s)
- Lucas Rohrer
- School of Medicine, University of California San Francisco, San Francisco, California, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Shinji Kato
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Shane A Browne
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Katharine Striedinger-Melo
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Kevin Healy
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Kiseleva EB, Sovetsky AA, Ryabkov MG, Gubarkova EV, Plekhanov AA, Bederina EL, Potapov AL, Bogomolova AY, Zaitsev VY, Gladkova ND. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400086. [PMID: 38923316 DOI: 10.1002/jbio.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.
Collapse
Affiliation(s)
- Elena B Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maksim G Ryabkov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anton A Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya L Bederina
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseniy L Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Y Bogomolova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir Y Zaitsev
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Vidal L, Vila I, Venegas V, Sacristán A, Contreras-Muñoz P, Lopez-Garzon M, Giné C, Rodas G, Marotta M. A Novel Minimally Invasive Surgically Induced Skeletal Muscle Injury Model in Sheep. Int J Mol Sci 2024; 25:5612. [PMID: 38891800 PMCID: PMC11171619 DOI: 10.3390/ijms25115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Sports-related muscle injuries account for 10-55% of all injuries, which is a growing concern, especially given the aging world population. To evaluate the process of skeletal muscle injury and compare it with muscle lesions observed in humans, we developed a novel in vivo model in sheep. In this model, muscle injury was induced by an ultrasound-guided transverse biopsy at the myotendinous junction of the medial gastrocnemius muscle. Twelve male sheep were examined at 3, 7, 14, and 28 days post-injury. Histological, immunofluorescence, and MRI analyses indicate that our sheep model could resemble key human clinicopathological features. Statistically significant differences (p < 0.05) were observed in collagen I, dMHC, α-SMA, and CD68 immunohistochemical detection when comparing injured and healthy muscles. The injured gastrocnemius muscle exhibited elevated levels of type I collagen, infiltration of CD68(+) macrophages, angiogenesis, and the emergence of newly regenerated dMHC(+) myofibers, which persisted for up to 4 weeks post-injury. Similarly, the progression of muscle injury in the sheep model was assessed using advanced clinical 3 T MRI and compared with MRI scans from human patients. The data indicate that the sheep muscle injury model presents features similar to those observed in human skeletal muscle injuries. This makes it a valuable large animal model for studying muscle injuries and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Laura Vidal
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ingrid Vila
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Vanesa Venegas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Anabel Sacristán
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Paola Contreras-Muñoz
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Lopez-Garzon
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Carles Giné
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Gil Rodas
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
- Sports Medicine Unit, Hospital Clínic and Sant Joan de Déu, 08950 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mario Marotta
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| |
Collapse
|
9
|
Qi B, Li Y, Peng Z, Luo Z, Zhang X, Chen J, Li G, Sun Y. Macrophage-Myofibroblast Transition as a Potential Origin for Skeletal Muscle Fibrosis After Injury via Complement System Activation. J Inflamm Res 2024; 17:1083-1094. [PMID: 38384372 PMCID: PMC10880461 DOI: 10.2147/jir.s450599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Acute skeletal muscle injury is common in sports. The injured muscle cannot fully recover due to fibrosis resulting from myofibroblasts. Understanding the origin of fibroblasts is, therefore, important for the development of anti-fibrotic therapies. Accumulating evidence shows that a mechanism called macrophage-myofibroblast transition (MMT) can lead to tissue or organ fibrosis, yet it is still unclear whether MMT exists in skeletal muscle and the exact mechanisms. METHODS Single-cell transcriptome of mice skeletal muscle after acute injury was analyzed with a specific attention on the process of MMT. Cell-cell interaction network, pseudotime trajectory analysis, Gene Ontology (GO), and Kyoto Genome Encyclopedia (KEGG) were conducted. A series of experiments in vivo and in vitro were launched for verification. RESULTS Single cell transcriptomic analysis indicated that, following acute injury, there were much interactions between macrophages and myofibroblasts. A detailed analysis on macrophages indicated that, CD68+α-SMA+ cells, which represented the status of MMT, mainly appeared at five days post-injury. KEGG/GO analysis underlined the involvement of complement system, within which C3ar1, C1qa, C1qb, and C1qc were up-regulated. Trajectory analysis also confirmed a potential shift from macrophages to myofibroblasts. These findings were verified by histological study in mice skeletal muscle, that there were much MMT cells at five days, declined gradually, and vanished 14 days after trauma, when there was remarkable fibrosis formation within the injured muscle. Moreover, C3a stimulation could directly induce MMT in BMDMs. CONCLUSION Fibrosis following acute injury is disastrous to skeletal muscle, but the origin of myofibroblasts remains unclear. We proved that, following acute injury, macrophage-myofibroblast transition happened in skeletal muscle, which may contribute to fibrosis formation. This phenomenon mainly occurred at five days post-injury. The complement system can activate MMT. More evidence is needed to directly support the pro-fibrotic role of MMT in skeletal muscle fibrosis after acute injury.
Collapse
Affiliation(s)
- Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yuqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Bijwadia SR, Raymond‐Pope CJ, Basten AM, Lentz MT, Lillquist TJ, Call JA, Greising SM. Exploring skeletal muscle tolerance and whole-body metabolic effects of FDA-approved drugs in a volumetric muscle loss model. Physiol Rep 2023; 11:e15756. [PMID: 37332022 PMCID: PMC10277213 DOI: 10.14814/phy2.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Volumetric muscle loss (VML) is associated with persistent functional impairment due to a lack of de novo muscle regeneration. As mechanisms driving the lack of regeneration continue to be established, adjunctive pharmaceuticals to address the pathophysiology of the remaining muscle may offer partial remediation. Studies were designed to evaluate the tolerance and efficacy of two FDA-approved pharmaceutical modalities to address the pathophysiology of the remaining muscle tissue after VML injury: (1) nintedanib (an anti-fibrotic) and (2) combined formoterol and leucine (myogenic promoters). Tolerance was first established by testing low- and high-dosage effects on uninjured skeletal muscle mass and myofiber cross-sectional area in adult male C57BL/6J mice. Next, tolerated doses of the two pharmaceutical modalities were tested in VML-injured adult male C57BL/6J mice after an 8-week treatment period for their ability to modulate muscle strength and whole-body metabolism. The most salient findings indicate that formoterol plus leucine mitigated the loss in muscle mass, myofiber number, whole-body lipid oxidation, and muscle strength, and resulted in a higher whole-body metabolic rate (p ≤ 0.016); nintedanib did not exacerbate or correct aspects of the muscle pathophysiology after VML. This supports ongoing optimization efforts, including scale-up evaluations of formoterol treatment in large animal models of VML.
Collapse
Affiliation(s)
| | | | - Alec M. Basten
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mason T. Lentz
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| | | |
Collapse
|
11
|
Che S, Wang C, Varga C, Barbut S, Susta L. Prevalence of breast muscle myopathies (spaghetti meat, woody breast, white striping) and associated risk factors in broiler chickens from Ontario Canada. PLoS One 2022; 17:e0267019. [PMID: 35427383 PMCID: PMC9012353 DOI: 10.1371/journal.pone.0267019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Spaghetti meat (SM), woody breast (WB), and white striping (WS) are myopathies that affect the pectoral muscle of fast-growing broiler chickens. The prevalence and possible risk factors of these myopathies have been reported in other countries, but not yet in Canada. Thus, the objective of this study was to assess the prevalence and risk factors associated with these myopathies in a representative population of Canadian broilers. From May 2019 to March 2020, 250 random breast fillets from each of 37 flocks (total, 9,250) were obtained from two processing plants and assessed for the presence and severity of myopathies. Demographic data (e.g., sex and average live weight), environmental conditions during the grow-out period (e.g., temperature), and husbandry parameters (e.g., vaccination) were collected for each flock. Associations between these factors and the myopathies were tested using logistic regression analyses. The prevalence of SM, severe WB, and mild or moderate WS was 36.3% (95% CI: 35.3-37.3), 11.8% (95% CI: 11.2-12.5), and 96.0% (95% CI: 95.6-96.4), respectively. Most (85.1%) of the fillets showed multiple myopathies. Regression analyses showed that the odds of SM increased with live weight (OR = 1.30, 95% CI 1.01-1.69) and higher environmental temperature during the grow-out period (OR = 1.75, 95% CI 1.31-2.34). The odds of WB increased with live weight (OR = 1.23, 95% CI 1.03-1.47) and when flocks were not vaccinated against coccidia (OR = 1.86, 95% CI 1.51-2.29). This study documents for the first time a high prevalence of myopathies in Ontario broilers, and suggests that these lesions may have a significant economic impact on the Canadian poultry industry. Our results indicate that environmental conditions and husbandry are associated with the development of breast myopathies, in agreement with the current literature. Future studies are needed to determine how risk factors can promote the occurrence of these conditions, in order to implement possible mitigating strategies.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Chaoyue Wang
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Csaba Varga
- Department of Pathobiology, University of Illinois at Urbana Champaign, Champaign, IL, United States of America
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Steplewski A, Fertala J, Tomlinson RE, Wang ML, Donahue A, Arnold WV, Rivlin M, Beredjiklian PK, Abboud JA, Namdari S, Fertala A. Mechanisms of reducing joint stiffness by blocking collagen fibrillogenesis in a rabbit model of posttraumatic arthrofibrosis. PLoS One 2021; 16:e0257147. [PMID: 34492074 PMCID: PMC8423260 DOI: 10.1371/journal.pone.0257147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic fibrotic scarring is a significant medical problem that alters the proper functioning of injured tissues. Current methods to reduce posttraumatic fibrosis rely on anti-inflammatory and anti-proliferative agents with broad intracellular targets. As a result, their use is not fully effective and may cause unwanted side effects. Our group previously demonstrated that extracellular collagen fibrillogenesis is a valid and specific target to reduce collagen-rich scar buildup. Our previous studies showed that a rationally designed antibody that binds the C-terminal telopeptide of the α2(I) chain involved in the aggregation of collagen molecules limits fibril assembly in vitro and reduces scar formation in vivo. Here, we have utilized a clinically relevant arthrofibrosis model to study the broad mechanisms of the anti-scarring activity of this antibody. Moreover, we analyzed the effects of targeting collagen fibril formation on the quality of healed joint tissues, including the posterior capsule, patellar tendon, and subchondral bone. Our results show that blocking collagen fibrillogenesis not only reduces collagen content in the scar, but also accelerates the remodeling of healing tissues and changes the collagen fibrils’ cross-linking. In total, this study demonstrated that targeting collagen fibrillogenesis to limit arthrofibrosis affects neither the quality of healing of the joint tissues nor disturbs vital tissues and organs.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Allison Donahue
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - William V. Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Pedro K. Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Surena Namdari
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States of America
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kastenschmidt JM, Coulis G, Farahat PK, Pham P, Rios R, Cristal TT, Mannaa AH, Ayer RE, Yahia R, Deshpande AA, Hughes BS, Savage AK, Giesige CR, Harper SQ, Locksley RM, Mozaffar T, Villalta SA. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep 2021; 35:108997. [PMID: 33852849 PMCID: PMC8127948 DOI: 10.1016/j.celrep.2021.108997] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy. Immune cells that comprise type II innate immunity coalesce to regulate tissue repair and fibrosis. Kastenschmidt et al. report that ILC2s reside in skeletal muscle, are activated in muscular dystrophy, and promote muscle eosinophilia. Stromal progenitors expressed IL-33, which expanded ILC2s and promoted a transcriptional program associated with muscle fibrosis.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Philip K Farahat
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Therese T Cristal
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Ali H Mannaa
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rachel E Ayer
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Archis A Deshpande
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Brandon S Hughes
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Adam K Savage
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA; Departments of Medicine and Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Carlee R Giesige
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Scott Q Harper
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tahseen Mozaffar
- Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Orthopaedic Surgery, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021; 700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner. Despite significant progresses in our understanding of MeCP2 over the last few decades, there is still a considerable knowledge gap to translate the in vitro and in vivo experimental findings into therapeutic interventions. In this review, we provide a synopsis of the role of MeCP2 in the pathophysiology of non-neurological disorders, MeCP2-based research directions and therapeutic strategies for non-neurological disorders are also discussed.
Collapse
|