1
|
Navarro-Abarca Ú, Ayala-Gonzales M, Jorge-Montalvo P, Visitación-Figueroa L. Sand washing of oil spill-affected beaches using concentrated β-glucans obtained from residual baker's yeast. Heliyon 2024; 10:e33285. [PMID: 39022014 PMCID: PMC11253044 DOI: 10.1016/j.heliyon.2024.e33285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Valorization of residual yeast of the bakery industry for use in the remediation of oil-contaminated soils as an emulsifier is a biocompatible and effective process that will reduce environmental pollution. The aim of this study was to use concentrated β-glucan obtained from residual baker's yeast, Saccharomyces cerevisiae, as an emulsifier to remove total petroleum hydrocarbons (TPH) from the contaminated sands of two beaches affected by the oil spill that occurred in January 2022 north of Lima, Peru. The extraction and concentration of β-glucan from sand were performed at a pilot scale using autolysis with 3 % sodium chloride, temperature elevation, treatment with organic solvents and water, hydrolysis via proteases, and vacuum filtration. The chemical composition and functional properties of concentrated β-glucan were evaluated to determine its quality and efficacy. In addition, the values of TPH removal efficiency obtained using concentrated β-glucan, water, and the commercial emulsifier Tween-80 were compared. The mass recovery of concentrated β-glucan was 5.59 %, with a β-glucan content of 38.60 %. The efficiency of ex-situ removal of TPH from hydrocarbon-impacted sands containing 78323 mg/kg of TPH reached 50 % and 70 % when the concentrated β-glucan concentrations used were 70.3 % and 80.3 %, respectively. These efficiency values are higher than those obtained when water was used for TPH removal but lower than those obtained when Tween-80 was used for TPH removal.
Collapse
Affiliation(s)
- Úrsula Navarro-Abarca
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Mara Ayala-Gonzales
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Paola Jorge-Montalvo
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| | - Lizardo Visitación-Figueroa
- Center for Research in Chemistry, Toxicology and Environmental Biotechnology, Department of Chemistry, Faculty of Science, Universidad Nacional Agraria La Molina, 15024, Lima, Peru
| |
Collapse
|
2
|
Abosharaf HA, Gebreel DT, Allam S, El-Atrash A, Tousson E. Ehrlich ascites carcinoma provokes renal toxicity and DNA injury in mice: Therapeutic impact of chitosan and maitake nanoparticles. Basic Clin Pharmacol Toxicol 2024; 134:472-484. [PMID: 38368905 DOI: 10.1111/bcpt.13988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In this study, the impact of chitosan (CS) and maitake (GF) nanoparticles towards the renal toxicity induced by Ehrlich ascites carcinoma (EAC) in vivo model was conducted. Besides benchmark negative control group, EAC model was constructed by intraperitoneal injection (i.p.) of 2.5 × 106 cells. Alongside positive control, two groups of EAC-bearing mice received 100 mg/kg of CS and GF nanoparticles/body weight daily for 14 days. The kidney function was conducted by measuring urea, creatinine, ions, (anti)/oxidative parameters and DNA damage. Also, measuring immunoreactivity of P53, proliferating cell nuclear antigen (PCNA), and B-cell lymphoma 2 (Bcl-2) and apoptosis protein. The outcomes illustrated notable kidney toxicity, which indicated by elevations in urea, creatinine, oxidative stress, DNA damage and induction of apoptosis. These events were supported by the drastic alteration in kidney structure through histological examination. Administration of CS and GF nanoparticles was able to enhance the antioxidant power, which further reduced oxidative damage, DNA injury, and apoptosis. These results indicated the protective and therapeutic role of biogenic chitosan and maitake nanoparticles against nephrotoxicity.
Collapse
Affiliation(s)
- Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Doaa T Gebreel
- Medical Equipment Department, Faculty of Allied Medical Sciences, Pharos University, Alexandria, Egypt
| | - Sahar Allam
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afaf El-Atrash
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Gafforov Y, Rašeta M, Rapior S, Yarasheva M, Wang X, Zhou L, Wan-Mohtar WAAQI, Zafar M, Lim YW, Wang M, Abdullaev B, Bussmann RW, Zengin G, Chen J. Macrofungi as Medicinal Resources in Uzbekistan: Biodiversity, Ethnomycology, and Ethnomedicinal Practices. J Fungi (Basel) 2023; 9:922. [PMID: 37755030 PMCID: PMC10532728 DOI: 10.3390/jof9090922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Interest in edible and medicinal macrofungi is millennial in terms of their uses in health and food products in Central Asia, while interest in inedible and medicinal macrofungi has grown in popularity in recent years. Edible and inedible medicinal basidiomycetes were collected during field surveys from different regions of Uzbekistan. The morphological characters and similarity assessment of rDNA-Internal Transcribed Spacer sequence data were used to measure diversity and habitat associations. A number of 17 species of medicinal macrofungi of ethnomycological and medicinal interest was found associated with 23 species of trees and shrubs belonging to 11 families and 14 genera. Polyporaceae and Hymenochaetaceae were represented by the highest number of species followed by Ganodermataceae, Fomitopsidaceae, Auriculariaceae, Cerrenaceae, Grifolaceae, Phanerochaetaceae, Laetiporaceae, Schizophyllaceae, and Stereaceae. The highest number of medicinal basidiomycete species was reported in the following host genera: Acer, Betula, Celtis, Crataegus, Juglans, Juniperus, Lonicera, Malus, Morus, Platanus, Populus, Prunus, Quercus, and Salix. An updated list of edible and inedible medicinal mushrooms identified in Uzbekistan, their morphological characteristics, and phylogenetic placement are given for the first time. Information is provided on their uses in traditional and modern medicine. Their bioactive compounds and extracts can be applied as medicines, as well as food and cosmetic ingredients.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- New Uzbekistan University, Tashkent 100007, Uzbekistan
- Central Asian University, Tashkent 111221, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent 100125, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sylvie Rapior
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Manzura Yarasheva
- Tashkent International University of Education, Tashkent 100207, Uzbekistan
| | - Xuewei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mengcen Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | | | - Rainer W. Bussmann
- Department of Ethnobotany, State Museum of Natural History, 76133 Karlsruhe, Germany;
- Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Botanical Street 1, 0105 Tbilisi, Georgia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selçuk University, Konya 42130, Turkey
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| |
Collapse
|
4
|
Patel DK, Patil TV, Ganguly K, Dutta SD, Lim KT. Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators. Carbohydr Polym 2023; 315:120963. [PMID: 37230632 DOI: 10.1016/j.carbpol.2023.120963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Transparent hydrogels have found increasing applications in wearable electronics, printable devices, and tissue engineering. Integrating desired properties, such as conductivity, mechanical strength, biocompatibility, and sensitivity, in one hydrogel remains challenging. To address these challenges, multifunctional hydrogels of methacrylate chitosan, spherical nanocellulose, and β-glucan with distinct physicochemical characteristics were combined to develop multifunctional composite hydrogels. The nanocellulose facilitated the self-assembly of the hydrogel. The hydrogels exhibited good printability and adhesiveness. Compared with the pure methacrylated chitosan hydrogel, the composite hydrogels exhibited improved viscoelasticity, shape memory, and conductivity. The biocompatibility of the composite hydrogels was monitored using human bone marrow-derived stem cells. Their motion-sensing potential was analyzed on different parts of the human body. The composite hydrogels also possessed temperature-responsiveness and moisture-sensing abilities. These results suggest that the developed composite hydrogels demonstrate excellent potential to fabricate 3D-printable devices for sensing and moist electric generator applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Dutta SD, Patel DK, Ganguly K, Lim KT. Effects of GABA/β-glucan supplements on melatonin and serotonin content extracted from natural resources. PLoS One 2021; 16:e0247890. [PMID: 33667254 PMCID: PMC7935273 DOI: 10.1371/journal.pone.0247890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to monitor the secretion of serotonin and melatonin in the blood serum of rats in the presence of rice bran (RB), and Sarcodon aspratus (S) extracts for sleep promotion. BACKGROUND Sleep is a natural physiological phenomenon, and sleep disorders may cause severe mental hazards leading to excessive daytime sleepiness (EDS). The γ-aminobutyric acid (GABA) and β-glucan are the essential active ingredients of RB and mushroom, respectively, exhibited stress-reduction and nerve stabilizing potential through regulation of melatonin and serotonin hormones. METHODS Cytotoxicity of the extracts (RBS) was evaluated through WST-1 assay. The melatonin and serotonin concentrations in the blood serum were measured through ELISA kits. The Ig ELISA kit measured the immunoglobulin's (IgG, IgM, and IgA) concentrations. RESULTS Improved cell viability was observed in RBS treated groups than control, indicating their biocompatibility. The melatonin and serotonin levels were high in RBS (5:5 and 7:3) treated groups compared to the control. Enhanced expression of immunoglobulin (Ig) A and G level was observed in RBS treated rats. The serotonergic genes (5-HTT, 5-HT 1B, and MAO-A) expression levels were upregulated in RBS treated groups vis-à-vis the control. CONCLUSION Based on these results, we anticipated that RBS supplements could promote the sleep phenomenon by elevating the serotonin/melatonin level in the blood through the serotonergic system. Therefore, RBS supplements can be utilized as functional food material for sleep promotion.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|