1
|
Singh P, Chaudhary M, Kazmi JS, Kuschner CE, Volpe BT, Chaudhuri TD, Becker LB. Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury. Biomed Pharmacother 2025; 184:117898. [PMID: 39923406 DOI: 10.1016/j.biopha.2025.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Vagus Nerve Stimulation (VNS), a neuromodulation technique of applying controlled electrical impulses to the vagus nerve, has now emerged as a potential therapeutic approach for ischemia-reperfusion insults. It provides a pivotal link in improving functional outcomes for the central nervous system and multiple target organs affected by ischemia-reperfusion injury (I/RI). Reduced blood flow during ischemia and subsequent resumption of blood supply during reperfusion to the tissue compromises cellular health because of the combination of mitochondrial dysfunction, oxidative stress, cytokine release, inflammation, apoptosis, intracellular calcium overload, and endoplasmic reticulum stress, which ultimately leads to cell death and irreversible tissue damage. Furthermore, inflammation and apoptosis also play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that VNS in I/RI may act in an anti-inflammatory capacity, reducing oxidative stress and apoptosis, while also improving endothelial and mitochondrial function leading to reduced infarct sizes and cytoprotection in skeletal muscle, gastrointestinal tract, liver, kidney, lung, heart, and brain tissue. In this review, we attempt to shed light on the mechanistic links between tissue-specific damage following I/RI and the therapeutic approach of VNS in attenuating damage, considering both direct and remote I/RI scenarios. Thus, we want to advance the understanding of VNS that could further warrant its clinical implementation, especially as a treatment for I/RI.
Collapse
Affiliation(s)
- Parmeshar Singh
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Manju Chaudhary
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacob S Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Timir D Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA; Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
2
|
Lu Y, Zuo Z. Pyrrolidine Dithiocarbamate Ameliorates Sepsis-Associated Encephalopathy by Inhibiting Autophagy and Inflammation in the Brain. Neurochem Res 2025; 50:106. [PMID: 40011296 PMCID: PMC11865106 DOI: 10.1007/s11064-025-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is common and has poor clinical outcome. Sepsis increases autophagy in the brain. This study was designed to determine the role of autophagy on SAE including the brain structures related to learning and memory and the effects of pyrrolidine dithiocarbamate (PDTC), an anti-inflammatory agent, on autophagy and SAE. Six- to eight-week old CD-1 male mice were subjected to cecal ligation and puncture (CLP). Some mice received intracerebroventricular injection of the autophagy suppressor 3-methyladenine (3-MA) or intraperitoneal injection of PDTC immediately at the completion of the CLP. ELISA was used to measure interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor α. Autophagy-related protein expression in the cerebral cortex and hippocampus was analyzed by Western blotting. The cognitive functions of mice were analyzed by Barnes maze and fear conditioning tests. CLP increased microtubuleassociated protein light chain 3 II (LC3II) and Beclin 1 and decreased p62 in the brain. CLP also increased proinflammatory cytokines and impaired learning and memory. These effects were inhibited by 3-MA and PDTC. Spine proliferation and maturation were impaired by CLP, which was attenuated by PDTC and 3MA. Abundant autophagic vacuoles were observed by transmission electron microscopy in CLP group. LC3II immunostaining was co-localized with that of ionized calcium-binding adapter molecule 1 and microtubule-associated protein-2. The co-staining was attenuated by 3-MA and PDTC. Our results suggest that sepsis increases autophagy in the microglia and neurons. Inhibiting autophagy improves SAE and brain structures related to learning and memory in mice. Autophagy and inflammation in the brain may regulate each other during sepsis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
| |
Collapse
|
3
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Wu Y, Zhang Z, Li Q, Yuan X, Ren J, Chen Y, Zhu H. Clinical study on the efficacy of postural control combined with electroacupuncture in treating dysphagia after stroke. Front Neurol 2024; 15:1296758. [PMID: 38689882 PMCID: PMC11060152 DOI: 10.3389/fneur.2024.1296758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Objective To evaluate the clinical effectiveness of combining postural control with electroacupuncture in the treatment of dysphagia following stroke, with the goal of establishing a solid clinical foundation for this therapeutic approach and investigating potential mechanisms to stimulate additional research and progress in post-stroke dysphagia management. Methods 138 patients who met the diagnostic and inclusion criteria were enrolled and divided into control group and observation group. Both groups received conventional rehabilitation training. Additionally, the control group received swallowing training and diet optimize, while the observation group received swallowing training, diet optimize, posture control as well as electroacupuncture therapy. After four weeks, swallowing function was assessed and compared between the two groups using the Standardized Swallowing Assessment (SSA) score and water swallowing test (WST). Results Patients who underwent postural control therapy in combination with electroacupuncture demonstrated significantly higher treatment efficacy compared to the control group. Notably, The SSA score and WST score in both groups decreased significantly, and the observation group showed more improvements in aspiration compared to the control group. Conclusion The integration of posture control, electroacupuncture, and conventional rehabilitation training can effectively lower the degree of post-stroke swallowing disorders, restore swallowing function, and significantly reduce the occurrence of complications such as aspiration, fever, and nutritional disorders. Moreover, this approach significantly improves the quality of life of patients and is more effective than conventional rehabilitation training in treating post-stroke swallowing disorders. Clinical trial registration https://www.chictr.org.cn/, Identifier ChiCTR2300075870.
Collapse
Affiliation(s)
- Yanli Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Gezhouba Central Hospital of Sinopharm, Yichang, China
| | | | - Qing Li
- Macheng Hospital of Traditional Chinese Medicine, Macheng, China
| | - Xiu Yuan
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiange Ren
- Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Yulin Chen
- Caidian District People’s Hospital of Wuhan, Wuhan, China
| | - He Zhu
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
5
|
Shi Z, Xu T, Hu C, Zan R, Zhang Y, Jia G, Jin L. A bibliometric analysis of research foci and trends in cerebral ischemia-reperfusion injury involving autophagy during 2008 to 2022. Medicine (Baltimore) 2023; 102:e35961. [PMID: 38013307 PMCID: PMC10681624 DOI: 10.1097/md.0000000000035961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process that typically occurs during the treatment of ischemia, with limited therapeutic options. Autophagy plays a vital role during the reperfusion phase and is a potential therapeutic target for preventing and treating cerebral ischemia-reperfusion injury. METHODS We conducted a comprehensive search of the Web of Science Core Collection for publications related to cerebral ischemia-reperfusion injury with autophagy, published between January 1, 2008, and January 1, 2023. We analyzed the selected publications using VOSviewer, CiteSpace, and other bibliometric tools. RESULTS Our search yielded 877 relevant publications. The field of autophagy in cerebral ischemia-reperfusion injury has grown rapidly since 2016. China has been the leading contributor to publications, followed by the USA and Iran. Chen Zhong and Qin Zhenghong have been influential in this field but have yet to reach all groups. In addition, there has been a shortage of collaboration among authors from different institutions. Our literature and keyword analysis identified Neurovascular protection (#11 Neuroprotective, #13 Neurovascular units, etc) and Inflammation (NLRP3 inflammasome) as popular research directions. Furthermore, the terms "Blood-Brain Barrier," "Mitophagy," and "Endoplasmic reticulum stress" have been frequently used and may be hot research topics in the future. CONCLUSIONS The role of autophagy in cerebral ischemia-reperfusion injury remains unclear, and the specific mechanisms of drugs used to treat ischemia-reperfusion injury still need to be explored. This work outlines the changing trends in investigating cerebral ischemia-reperfusion injury involving autophagy and suggests future lines of inquiry.
Collapse
Affiliation(s)
- Zhuolu Shi
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Tao Xu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Chao Hu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Rui Zan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yumei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaozhi Jia
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
6
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
7
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Gao Y, Wang C, Jiang D, An G, Jin F, Zhang J, Han G, Cui C, Jiang P. New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Front Cell Dev Biol 2022; 10:994037. [PMID: 36187470 PMCID: PMC9524158 DOI: 10.3389/fcell.2022.994037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a dynamic process that maintains the normal homeostasis of cells by digesting and degrading aging proteins and damaged organelles. The effect of autophagy on neural tissue is still a matter of debate. Some authors suggest that autophagy has a protective effect on nerve cells, whereas others suggest that autophagy also induces the death of nerve cells and aggravates nerve injury. In mammals, oxidative stress, autophagy and endoplasmic reticulum stress (ERS) constitute important defense mechanisms to help cells adapt to and survive the stress conditions caused by physiological and pathological stimuli. Under many pathophysiological conditions, oxidative stress, autophagy and ERS are integrated and amplified in cells to promote the progress of diseases. Over the past few decades, oxidative stress, autophagy and ERS and their interactions have been a hot topic in biomedical research. In this review, we summarize recent advances in understanding the interactions between oxidative stress, autophagy and ERS in neuronal cell death and survival.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| | - Pei Jiang
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| |
Collapse
|
9
|
Wei W, Pan Y, Yang X, Chen Z, Heng Y, Yang B, Pu M, Zuo J, Lai Z, Tang Y, Xin W. The Emerging Role of the Interaction of Extracellular Vesicle and Autophagy-Novel Insights into Neurological Disorders. J Inflamm Res 2022; 15:3395-3407. [PMID: 35706531 PMCID: PMC9191200 DOI: 10.2147/jir.s362865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs), including exosomes, apoptotic bodies and microvesicles. EVs carry proteins, lipids and nucleic acids specific to cells and cell states. Autophagy is an intracellular degradation process, which, along with EVs, can significantly affect the development and progression of neurological diseases and, therefore, has been the hotspot. Generally, EVs and autophagy are closely associated. EVs and autophagy can interact with each other. On the one hand, the level of autophagy in target cells is closely related to the secretion and transport of EVs. In another, the application of EVs provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy is an excellent target. EVs can release their cargos into target cells, which, in turn, regulate the autophagic level of target cells through autophagy-related proteins directly and the non-coding RNA, signal transducer and activator of transcription 3 (STAT3), phosphodiesterase enzyme (PDE) 1-B, etc. signaling pathways indirectly, thus regulating the development of related neurological disorders.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zhonglun Chen
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yue Heng
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Bufan Yang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Mingjun Pu
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Jiacai Zuo
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
10
|
Li P, Luo X, Luo Z, He GL, Shen TT, Yu XT, Wang ZZ, Tan YL, Liu XQ, Yang XS. Increased miR-155 in Microglial Exosomes Following Heat Stress Accelerates Neuronal Autophagy via Their Transfer Into Neurons. Front Cell Neurosci 2022; 16:865568. [PMID: 35634460 PMCID: PMC9132214 DOI: 10.3389/fncel.2022.865568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background Heat stroke is the outcome of excessive heat stress, which results in core temperatures exceeding 40°C accompanied by a series of complications. The brain is particularly vulnerable to damage from heat stress. In our previous studies, both activated microglia and increased neuronal autophagy were found in the cortices of mice with heat stroke. However, whether activated microglia can accelerate neuronal autophagy under heat stress conditions is still unknown. In this study, we aimed to investigate the underlying mechanism that caused neuronal autophagy upregulation in heat stroke from the perspective of exosome-mediated intercellular communication. Methods In this study, BV2 and N2a cells were used instead of microglia and neurons, respectively. Exosomes were extracted from BV2 culture supernatants by ultracentrifugation and then characterized via transmission electron microscopy, nanoparticle tracking analysis and Western blotting. N2a cells pretreated with/without miR-155 inhibitor were cocultured with microglial exosomes that were treated with/without heat stress or miR-155 overexpression and subsequently subjected to heat stress treatment. Autophagy in N2a cells was assessed by detecting autophagosomes and autophagy-related proteins through transmission electron microscopy, immunofluorescence, and Western blotting. The expression of miR-155 in BV2 and BV2 exosomes and N2a cells was measured using real-time reverse transcription polymerase chain reaction. Target binding analysis was verified via a dual-luciferase reporter assay. Results N2a autophagy moderately increased in response to heat stress and accelerated by BV2 cells through transferring exosomes to neurons. Furthermore, we found that neuronal autophagy was positively correlated with the content of miR-155 in microglial exosomes. Inhibition of miR-155 partly abolished autophagy in N2a cells, which was increased by coculture with miR-155-upregulated exosomes. Mechanistic analysis confirmed that Rheb is a functional target of miR-155 and that microglial exosomal miR-155 accelerated heat stress-induced neuronal autophagy mainly by regulating the Rheb-mTOR signaling pathway. Conclusion Increased miR-155 in microglial exosomes after heat stroke can induce neuronal autophagy via their transfer into neurons. miR-155 exerted these effects by targeting Rheb, thus inhibiting the activity of mTOR signaling. Therefore, miR-155 could be a promising target for interventions of neuronal autophagy after heat stroke.
Collapse
Affiliation(s)
- Ping Li
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Gen-Lin He
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Ting Yu
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ze-Ze Wang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Yu-Long Tan
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xiao-Qian Liu
- Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
- *Correspondence: Xue-Sen Yang,
| |
Collapse
|
11
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
12
|
Kaur MM, Sharma DS. Mitochondrial repair as potential pharmacological target in cerebral ischemia. Mitochondrion 2022; 63:23-31. [PMID: 34999014 DOI: 10.1016/j.mito.2022.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia and its consequences like transient ischemic attack, aneurysm and stroke are the common and devastating conditions which remain the leading cause of mortality after coronary heart disease in developed countries and are the greatest cause of disability, leaving 50% of survivors permanently disabled. Despite recognition of risk factors and mechanisms involved in the pathology of the disease, treatment of ischemic disorders is limited to thrombolytic drugs like recombinant tissue plasminogen activator (rt-PA) and clinical rendition of the neuroprotective agents have not been so successful. Recent studies evidenced the role of mitochondrial dysfunction in neuronal damage that occurred after cerebral ischemia. This review article will focus on the various fundamental mechanisms responsible for neuronal damage because of mitochondrial dysfunction including cell signaling pathways, autophagy, apoptosis/necrosis, generation of reactive oxygen species, calcium overload, the opening of membrane permeability transition pore (mPTP), mitochondrial dynamics and biogenesis. Recent studies have concerned the significant role of mitochondrial biogenesis in mitochondrial repair and transfer of healthy mitochondria from astrocytes to the damaged neurons, providing neuroprotection and neural recovery following ischemia. Novel and influential studies have evidenced the significant role of mitochondria transfer and mitochondrial transplantation in reviving cell energy and in replacement of impaired or dysfunctional mitochondria with healthy mitochondria after ischemic episode. This review article will focus on recent advances in mitochondrial interventions and exogenous therapeutic modalities like mitochondria transfer technique, employment of stem cells, mitochondrial transplantation, miRNA inhibition and mitochondrial-targeted Sirtuin1 activator for designing novel and promising treatment for cerebral ischemia induced pathological states.
Collapse
Affiliation(s)
- Ms Mandeep Kaur
- Research Scholar, Department of Pharmacology, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| | - Dr Saurabh Sharma
- Principal and Head, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
13
|
Normobaric Oxygen (NBO) Therapy Reduces Cerebral Ischemia/Reperfusion Injury through Inhibition of Early Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7041290. [PMID: 34306153 PMCID: PMC8263229 DOI: 10.1155/2021/7041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Normobaric oxygen (NBO) therapy has great clinical potential in the treatment of ischemic stroke, but its underlying mechanism is unknown. Our study aimed to investigate the role of autophagy during the application of NBO on cerebral ischemia/reperfusion injury. Methods Male Sprague Dawley rats received 2 hours of middle cerebral artery occlusion (MCAO), followed by 2, 6, or 24 hours of reperfusion. At the beginning of reperfusion, rats were randomly given NBO (95% O2) or room air (21% O2) for 2 hours. In some animals, 3-methyladenine (3-MA, autophagy inhibitor) was administered 10 minutes before reperfusion. The severity of the ischemic injury was determined by infarct volume, neurological deficit, and apoptotic cell death. Western blotting was used to determine the protein expression of autophagy and apoptosis, while mRNA expression of apoptotic molecules was detected by real-time PCR. Results NBO treatment after ischemia/reperfusion significantly decreased infarct volume and neurobehavioral defects. The increased expression of the autophagy markers, including microtubule-associated protein 1A light chain 3 (LC3) and Beclin 1, after ischemia/reperfusion was reversed by NBO, while promoting Sequestosome 1 (p62/SQSTM1) expression. In addition, NBO reduced cerebral apoptosis in association with alleviated BAX expression and increased BCL-2 expression. 3-MA reduced autophagy and apoptotic death but did not further improve NBO-attenuated ischemic damage. Conclusion NBO induced remarkable neuroprotection from ischemic injury, which was correlated with blocked autophagy activity.
Collapse
|
14
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|