1
|
Yan B, Luo L, Zhang Y, Men J, Guo Y, Wu S, Han J, Zhou B. Detrimental effects of glyphosate on muscle metabolism in grass carp (Ctenopharyngodon idellus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107122. [PMID: 39426364 DOI: 10.1016/j.aquatox.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Glyphosate, a commonly used herbicide, has been associated with environmental pollution and potential health risks to aquatic organisms. This study investigated the effects of glyphosate on the muscle metabolism of grass carp (Ctenopharyngodon idellus) following exposure to environmentally relevant concentrations. Over a 14-day exposure period to varying glyphosate levels, significant disruptions were observed in antioxidant capacity and muscle health. These disruptions were evidenced by reductions in total antioxidant capacity (T-AOC), increases in malondialdehyde (MDA) levels, and decreases in activities of glutathione peroxidase (GSH-PX) and catalase (CAT). Furthermore, exposure to glyphosate resulted in a reduction of vitamin E content and an elevation of hormonal levels, suggesting the potential for endocrine disruption. Metabolomics analysis identified 605 distinct metabolites, with notable alterations in amino acid, carbohydrate, and nucleotide metabolism pathways. Specifically, arginine and glutathione metabolisms were severely impacted, with decreases in key amino acids such as glycine and glutathione at higher glyphosate concentrations. Nucleotide metabolism, particularly purine synthesis, was also significantly affected, with reduced levels of deoxyguanosine and other purine-related compounds. The study further investigated the origins of these differential metabolites using the MetOrigin platform, suggesting a potential involvement of the intestinal microbiota in the metabolic response to glyphosate. These findings highlight the multifaceted adverse effects of glyphosate on fish muscle, including oxidative stress and metabolic dysregulation, which may contribute to diminished muscle quality and health risks for aquatic organisms.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China; Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Lijun Luo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, PR China
| | - Yindan Zhang
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Jian Han
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| |
Collapse
|
2
|
Kong Z, Pan H, Wang Z, Abla A, Wei Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals (Basel) 2024; 14:3016. [PMID: 39457946 PMCID: PMC11505235 DOI: 10.3390/ani14203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia in the mammary gland epithelial cells of milk buffalo (BMECs) can affect milk yield and composition, and it can even cause metabolic diseases. Nitidine chloride (NC) is a natural alkaloid with antioxidant properties that can scavenge excessive reactive oxygen species (ROS). However, the effect of NC on the hypoxic injury of BMECs and its molecular mechanisms are still unknown. Here, an immunofluorescence assay, transmission electron microscopy (TEM), and flow cytometry, combined with untargeted metabolomics, were used to investigate the protective effect of NC on hypoxic stress injury in BMECs. It was found that NC can significantly reduce cell activity (p < 0.05) and inhibit cellular oxidative stress (p < 0.05) and cell apoptosis (p < 0.05). A significant decrease in mitophagy mediated by the PINK1-Parkin pathway was observed after NC pretreatment (p < 0.05). In addition, a metabolic pathway enrichment analysis demonstrated that the mechanisms of NC against hypoxic stress may be related to the downregulation of pathways involving aminoacyl tRNA biosynthesis; arginine and proline metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Thus, NC has a protective effect on hypoxic mitochondria, and it can regulate amino acid metabolism in response to hypoxic stress. The present study provides a reference for the application of nitidine chloride to regulate the mammary lactation function of milk buffalo.
Collapse
Affiliation(s)
- Zhiwei Kong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Haichang Pan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Zi Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Alida Abla
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Yingming Wei
- Institute for Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Lv Q, Li D, Zhao L, Yu P, Tao Y, Zhu Q, Wang Y, Wang M, Fu G, Shang M, Zhang W. Proline metabolic reprogramming modulates cardiac remodeling induced by pressure overload in the heart. SCIENCE ADVANCES 2024; 10:eadl3549. [PMID: 38718121 PMCID: PMC11078183 DOI: 10.1126/sciadv.adl3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Metabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duanbin Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yecheng Tao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiongjun Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Shang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Hardy MLM, Lakhiani D, Morris MB, Day ML. Proline and Proline Analogues Improve Development of Mouse Preimplantation Embryos by Protecting Them against Oxidative Stress. Cells 2023; 12:2640. [PMID: 37998375 PMCID: PMC10670569 DOI: 10.3390/cells12222640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2',7'-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development.
Collapse
|
5
|
Xue Z, Wu D, Zhang J, Pan Y, Kan R, Gao J, Zhou B. Protective effect and mechanism of procyanidin B2 against hypoxic injury of cardiomyocytes. Heliyon 2023; 9:e21309. [PMID: 37885736 PMCID: PMC10598540 DOI: 10.1016/j.heliyon.2023.e21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cardiomyocyte ischemia and hypoxia are important causes of oxidative stress damage and cardiomyocyte apoptosis in coronary heart disease (CHD). Epidemiological investigation has shown that eating more plant-based foods, such as vegetables and fruits, may significantly decrease the risk of CHD. As natural antioxidants, botanicals have fewer toxic side effects than chemical drugs and have great potential for development. Procyanidin B2 (PB2) is composed of flavan-3-ol and epicatechin and has been reported to have antioxidant and anti-inflammatory effects. However, whether PB2 exerts protective effects on hypoxic cardiomyocytes has remained unclear. This study aimed to explore the protective effect of PB2 against cardiomyocyte hypoxia and to provide new treatment strategies and ideas for myocardial ischemia and hypoxia in CHD. Methods and results A hypoxic cardiomyocyte model was constructed, and a CCK-8 assay proved that PB2 had a protective effect on cardiomyocytes in a hypoxic environment. DCFH fluorescence staining, DHE staining, and BODIPY lipid oxidation assessment revealed that PB2 reduced the oxidative stress levels of cardiomyocytes under hypoxic conditions. TUNEL staining, Annexin V/PI fluorescence flow cytometry, and Western blot analysis of the expression of the apoptosis marker protein cleaved caspase-3 confirmed that PB2 reduced cardiomyocyte apoptosis under hypoxic conditions. JC-1 staining indicated that PB2 reduced the mitochondrial membrane potential of cardiomyocytes under hypoxia. In addition, transcriptomic analysis proved that the expression of 158 genes in cardiomyocytes was significantly changed after PB2 was added during hypoxia, of which 53 genes were upregulated and 105 genes were downregulated. GO enrichment analysis demonstrated that the activity of cytokines, extracellular matrix proteins and other molecules was changed significantly in the biological process category. KEGG enrichment analysis showed that the IL-17 signaling pathway and JAK-STAT signaling pathway underwent significant changes. We also performed metabolomic analysis and found that the levels of 51 metabolites were significantly changed after the addition of PB2 to cardiomyocytes during hypoxia. Among them, 39 metabolites exhibited increased levels, while 12 metabolites exhibited decreased levels. KEGG enrichment analysis showed that cysteine and methionine metabolism, arginine and proline metabolism and other metabolic pathways underwent remarkable changes. Conclusion This study proves that PB2 can reduce the oxidative stress and apoptosis of cardiomyocytes during hypoxia to play a protective role. Transcriptomic and metabolomic analyses preliminarily revealed signaling pathways and metabolic pathways that are related to its protective mechanism. These findings lay a foundation for further research on the role of PB2 in the treatment of CHD and provide new ideas and new perspectives for research on PB2 in the treatment of other diseases.
Collapse
Affiliation(s)
- Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyu Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongsheng Kan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Zuo B, Zhu S, Wang G, Li Z. Transcriptome analysis reveals ADAMTS15 is a potential inflammation-related gene in remote ischemic postconditioning. Front Cardiovasc Med 2023; 10:1089151. [PMID: 37234367 PMCID: PMC10206167 DOI: 10.3389/fcvm.2023.1089151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background Remote ischemic postconditioning (RIPostC) induced by brief episodes of the limb ischemia is a potential therapeutic strategy for myocardial ischemia/reperfusion injury, achieved by reducing cardiomyocyte death, inflammation and so on. The actual mechanisms underlying cardioprotection conferred by RIPostC remain unclear. Exploring gene expression profiles in myocardium at transcriptional level is helpful to deepen the understanding on the cardioprotective mechanisms of RIPostC. This study aims to investigate the effect of RIPostC on gene expressions in rat myocardium using transcriptome sequencing. Methods Rat myocardium samples from the RIPostC group, the control group (myocardial ischemia/reperfusion group) and the sham group were performed transcriptome analysis using RNA sequencing. The levels of cardiac IL-1β, IL-6, IL-10 and TNFα were analyzed by Elisa. The expression levels of candidate genes were verified by qRT-PCR technique. Infarct size was measured by Evans blue and TTC staining. Apoptosis was assessed by TUNEL assays and caspase-3 levels were detected using western blotting. Results RIPostC can markedly decrease infarct size and reduce the levels of cardiac IL-1β, IL-6 and increase the level of cardiac IL-10. This transcriptome analysis showed that 2 genes were up-regulated (Prodh1 and ADAMTS15) and 5 genes (Caspase-6, Claudin-5, Sccpdh, Robo4 and AABR07011951.1) were down-regulated in the RIPostC group. Go annotation analysis showed that Go terms mainly included cellular process, metabolic process, cell part, organelle, catalytic activity and binding. The KEGG annotation analysis of DEGs found only one pathway, amino acid metabolism, was up-regulated. The relative mRNA expression levels of ADAMTS15, Caspase-6, Claudin-5 and Prodh1 were verified by qRT-PCR, which were consistent with the RNA-seq results. In addition, the relative expression of ADAMTS15 was negatively correlated with the level of cardiac IL-1β (r = -0.748, P = 0.005) and positively correlated with the level of cardiac IL-10 (r = 0.698, P = 0.012). A negative correlation statistical trend was found between the relative expression of ADAMTS15 and the level of cardiac IL-6 (r = -0.545, P = 0.067). Conclusions ADAMTS15 may be a potential inflammation-related gene in regulation of cardioprotection conferred by remote ischemic postconditioning and a possible therapeutic target for myocardial ischemia reperfusion injury in the future.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Sha Zhu
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zhengpeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Xue Z, Pan Y, Kong X, Zhang J, Wu D, Zhou B. Metabolomic and transcriptomic studies of improvements in myocardial infarction due to Pycr1 deletion. J Cell Mol Med 2023; 27:89-100. [PMID: 36495058 PMCID: PMC9806289 DOI: 10.1111/jcmm.17637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) remains a major challenge to cardiovascular health worldwide, with poor healing leaving a direct impact on patients' quality of life and survival. Metabolic abnormalities after MI are receiving increasing attention. Our previous studies showed that enhancing proline catabolism ameliorates hypoxic damage to myocardial cells; therefore, we sought to determine whether reducing the synthesis of endogenous proline also affects MI. We analysed GEO datasets associated with MI and western blot of mouse heart tissue in an MI model to demonstrate pyrroline-5-carboxylate reductase 1 (Pycr1) expression level after MI. We constructed Pycr1 KO mice by CRISPR/Cas9 technology to explore the effect of Pycr1 gene KO after MI using transcriptomic and metabolomic techniques. In this study, we found reduced mRNA and protein expression levels of Pycr1 in the hearts of mice after MI. We observed that Pycr1 gene KO has a protective effect against MI, reducing the area of MI and improving heart function. Using transcriptomics approaches, we found 215 upregulated genes and 247 downregulated genes after KO of the Pycr1 gene, indicating that unsaturated fatty acid metabolism was affected at the transcriptional level. Metabolomics results revealed elevated content for 141 metabolites and decreased content for 90 metabolites, among which the levels of fatty acids, glycerol phospholipids, bile acids, and other metabolites increased significantly. The changes in these metabolites may be related to the protective effect of Pycr1 KO on the heart after MI. Pycr1 gene KO has a protective effect against MI and our research will lay a solid foundation for the development of future Pycr1-related drug targets.
Collapse
Affiliation(s)
- Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xugang Kong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyu Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Rong W, Li J, Pan D, Zhou Q, Zhang Y, Lu Q, Wang L, Wang A, Zhu Y, Zhu Q. Cardioprotective Mechanism of Leonurine against Myocardial Ischemia through a Liver–Cardiac Crosstalk Metabolomics Study. Biomolecules 2022; 12:biom12101512. [PMID: 36291721 PMCID: PMC9599793 DOI: 10.3390/biom12101512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Leonurine has been shown to have excellent anti-myocardial ischemia effects. Our previous studies suggested that cardiac protection by leonurine during myocardial ischemia appeared to be inextricably linked to its regulation of the liver. At present, however, there are few mechanistic studies of leonurine and its regulation of hepatic metabolism against ischemic injury. In this study, a metabolomics approach was developed to give a global view of the metabolic profiles of the heart and liver during myocardial ischemia. Principal component analysis and orthogonal partial least squares discrimination analysis were applied to filter differential metabolites, and a debiased sparse partial correlation analysis was used to analyze the correlation of the differential metabolites between heart and liver. As a result, a total of thirty-one differential metabolites were identified, six in the myocardial tissue and twenty-five in the hepatic tissue, involving multiple metabolic pathways including glycine, serine and threonine, purine, fatty acid, and amino acid metabolic pathways. Correlation analysis revealed a net of these differential metabolites, suggesting an interaction between hepatic and myocardial metabolism. These results suggest that leonurine may reduce myocardial injury during myocardial ischemia by regulating the metabolism of glycine, serine and threonine, purine, fatty acids, and amino acids in the liver and heart.
Collapse
Affiliation(s)
- Weiwei Rong
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Jiejia Li
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Dingyi Pan
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Qinbei Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yexuan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qianxing Lu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
| | - Yizhun Zhu
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Correspondence: (Y.Z.); (Q.Z.)
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, China
- Correspondence: (Y.Z.); (Q.Z.)
| |
Collapse
|
9
|
Ruocco C, Ragni M, Tedesco L, Segala A, Servili M, Riccardi G, Carruba MO, Valerio A, Nisoli E, Visioli F. Molecular and metabolic effects of extra-virgin olive oil on the cardiovascular gene signature in rodents. Nutr Metab Cardiovasc Dis 2022; 32:1571-1582. [PMID: 35461749 DOI: 10.1016/j.numecd.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Overweight and obesity are major risk factors for degenerative diseases, including cardiometabolic disorders and cancer. Research on fat and fatty acids' type is attracting less attention than that on carbohydrates. High adherence to a Mediterranean diet is associated with a better prognosis. One characteristic of the Mediterranean diet is extra-virgin olive oil (EVOO) as the foremost source of dietary fat. EVOO is different from other vegetable oils because it contains peculiar "minor" components, mainly phenolic in nature. Even though olive oil is highly caloric, unrestricted use of olive oil in the PREDIMED trial did not result in weight gain. We sought to study the effects of EVOO in an appropriate mouse model of increased body weight. Furthermore, we explored the biochemical and metabolomic responses to EVOO consumption. METHODS AND RESULTS C57BL/6N male mice were weight-matched and fed ad libitum with the following diets, for 16 weeks: 1) saturated fatty acid diet (SFA) or 2) extra-virgin olive oil diet (EVOO), a custom-prepared diet, isocaloric compared to SFA, in which 82% of fat was replaced by high (poly)phenol EVOO. We evaluated glucose homeostasis, serum biochemistry and plasma metabolomics, in addition to cardiac and hepatic gene profile, and mitochondrial respiration rate. CONCLUSION Replacing saturated fatty acids (e.g. lard) with EVOO translates into moderate yet beneficial cardiometabolic and hepatic effects. Future research will further clarify the mechanisms of action of EVOO (poly)phenols and their role in a balanced diet.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, Brescia University, 25123 Brescia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, 25123 Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padua, Padua, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
10
|
Hu R. Grifola frondosa may play an anti-obesity role by affecting intestinal microbiota to increase the production of short-chain fatty acids. Front Endocrinol (Lausanne) 2022; 13:1105073. [PMID: 36733799 PMCID: PMC9886863 DOI: 10.3389/fendo.2022.1105073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Grifola frondosa (G. frondosa) is a fungus with good economic exploitation prospects of food and medicine homologation. This study aims to investigate the effects of G. frondosa powder suspension (GFPS) on the intestinal contents microbiota and the indexes related to oxidative stress and energy metabolism in mice, to provide new ideas for developing G. frondosa weight loss products. METHODS Twenty Kunming mice were randomly divided into control (CC), low-dose GFPS (CL), medium-dose GFPS (CM), and high-dose GFPS (CH) groups. The mice in CL, CM, and CH groups were intragastrically administered with 1.425 g/(kg·d), 2.85 g/(kg·d), and 5.735 g/(kg·d) GFPS, respectively. The mice in CC group were given the same dose of sterile water. After 8 weeks, liver and muscle related oxidative stress and energy metabolism indicators were detected, and the intestinal content microbiota of the mice was detected by 16S rRNA high-throughput sequencing. RESULTS After eight weeks of GFPS intervention, all mice lost weight. Compared with the CC group, lactate dehydrogenase (LDH) and malondialdehyde (MDA) contents in CL, CM, and CH groups were increased, while Succinate dehydrogenase (SDH) and Superoxide Dismutase (SOD) contents in the liver were decreased. The change trends of LDH and SDH in muscle were consistent with those in the liver. Among the above indexes, the change in CH is the most significant. The Chao1, ACE, Shannon, and Simpson index in CL, CM, and CH groups were increased. In the taxonomic composition, after the intervention with GFPS, the short-chain fatty acid (SCFA)-producing bacteria such as unclassified Muribaculaceae, Alloprevotella, and unclassified Lachnospiraceae increased. In linear discriminant analysis effect size (LEfSe) analysis, the characteristic bacteria in CC, CL, CM, and CH groups showed significant differences. In addition, some characteristic bacteria significantly correlated with related energy metabolism indicators. CONCLUSION The preventive effect of G. frondosa on obesity is related to changing the structure of intestinal content microbiota and promoting the growth of SCFAs. While excessive intake of G. frondosa may not be conducive to the antioxidant capacity and energy metabolism.
Collapse
|
11
|
Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed In Vivo and In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111374. [PMID: 34769890 PMCID: PMC8583213 DOI: 10.3390/ijerph182111374] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Oocytes and preimplantation embryos require careful regulation of the redox environment for optimal development both in vivo and in vitro. Reactive oxygen species (ROS) are generated throughout development as a result of cellular metabolism and enzyme reactions. ROS production can result in (i) oxidative eustress, where ROS are helpful signalling molecules with beneficial physiological functions and where the redox state of the cell is maintained within homeostatic range by a closely coupled system of antioxidants and antioxidant enzymes, or (ii) oxidative distress, where excess ROS are deleterious and impair normal cellular function. in vitro culture of embryos exacerbates ROS production due to a range of issues including culture-medium composition and laboratory culture conditions. This increase in ROS can be detrimental not only to assisted reproductive success rates but can also result in epigenetic and genetic changes in the embryo, resulting in transgenerational effects. This review examines the effects of oxidative stress in the oocyte and preimplantation embryo in both the in vivo and in vitro environment, identifies mechanisms responsible for oxidative stress in the oocyte/embryo in culture and approaches to reduce these problems, and briefly examines the potential impacts on future generations.
Collapse
|
12
|
Protective Effect of Optic Atrophy 1 on Cardiomyocyte Oxidative Stress: Roles of Mitophagy, Mitochondrial Fission, and MAPK/ERK Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3726885. [PMID: 34211623 PMCID: PMC8205577 DOI: 10.1155/2021/3726885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is associated with oxidative stress and mitochondrial damage. However, the regulatory mechanisms underlying cardiomyocyte oxidative stress during myocardial infarction are not fully understood. In the present study, we explored the cardioprotective action of optic atrophy 1- (Opa1-) mediated mitochondrial autophagy (mitophagy) in oxidative stress-challenged cardiomyocytes, with a focus on mitochondrial homeostasis and the MAPK/ERK pathway. Our results demonstrated that overexpression of Opa1 in cultured rat H9C2 cardiomyocytes, a procedure that stimulates mitophagy, attenuates oxidative stress and increases cellular antioxidant capacity. Activation of Opa1-mediated mitophagy suppressed cardiomyocyte apoptosis by downregulating Bax, caspase-9, and caspase-12 and upregulating Bcl-2 and c-IAP. Using mitochondrial tracker staining and a reactive oxygen species indicator, our assays showed that Opa1-mediated mitophagy attenuated mitochondrial fission and reduced ROS production in cardiomyocytes. In addition, we found that inhibition of the MAPK/ERK pathway abolished the antioxidant action of Opa1-mediated mitophagy in these cells. Taken together, our data demonstrate that Opa1-mediated mitophagy protects cardiomyocytes against oxidative stress damage through inhibition of mitochondrial fission and activation of MAPK/ERK signaling. These findings reveal a critical role for Opa1 in the modulation of cardiomyocyte redox balance and suggest a potential target for the treatment of myocardial infarction.
Collapse
|
13
|
Hong Q, Geng S, Ji J, Ye Y, Xu D, Zhang Y, Sun X. Separation and identification of antioxidant chemical components in Diaphragma juglandis Fructus and functional evaluation in Caenorhabditis elegans. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
14
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|