1
|
Baskaran D, Ding B, Chu S, McElhinney P, Allwood‐Spiers S, Williams SN, Muir K, Fullerton NE, Andrew Porter D, Gunamony S. Simultaneous whole-brain and cervical spine imaging at 7 T using a neurovascular head and neck coil with 8-channel transceiver array and 56-channel receiver array. Magn Reson Med 2025; 94:386-400. [PMID: 39887456 PMCID: PMC12021322 DOI: 10.1002/mrm.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE To develop a 7T neurovascular head and neck (NVHN) coil with an extended longitudinal coverage of the brain and cervical spine, with eight transceiver (TxRx) channels and 56 receive (Rx) channels for dynamic parallel-transmit (pTx) applications. METHODS A dual-row transceiver array with six elements in the upper row and two elements in the lower row was designed using combined electromagnetic and circuit optimization and constructed. A 56Rx array covering the brain and cervical spine was designed and combined with the transceiver array. The performance of the 8TxRx56Rx NVHN coil such asB 1 + $$ {\mathrm{B}}_1^{+} $$ , signal-to-noise ratio, and g-factor were validated in phantom and in vivo studies and compared with an in-house 8Tx64Rx head coil. High-resolution in vivo images were acquired with the NVHN and head coil. RESULTS The averageB 1 + $$ {\mathrm{B}}_1^{+} $$ in phantom while exciting the upper six channels and all eight channels are 43.45 nT/V and 45.80 nT/V, respectively, demonstrating that the availableB 1 + $$ {\mathrm{B}}_1^{+} $$ field is seamlessly distributed in the brain and/or cervical spine, depending on the chosen excitation. The 8TxRx56Rx NVHN coil increases the SNR in the cervical spine and central brain by a factor of 2.18 and 1.16, respectively, compared with the 8Tx64Rx head coil. Furthermore, it demonstrates similar 1/g-factor performance for acceleration factors up to 5 × 5 compared with the head coil and provides diagnostic-quality images of the brain and spinal cord in a single acquisition. CONCLUSION The extended longitudinal coverage of the NVHN coil promises to improve the clinical application of the current generation of pTx 7T MRI systems with 8Tx channels.
Collapse
Affiliation(s)
- Divya Baskaran
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUK
| | | | - Son Chu
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUK
- MR CoilTech LimitedGlasgowUK
| | | | | | | | - Keith Muir
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUK
| | - Natasha Eileen Fullerton
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUK
- Department of Neuroradiology, Institute of NeuroscienceNHS Greater Glasgow and ClydeGlasgowUK
| | | | - Shajan Gunamony
- Imaging Centre of ExcellenceUniversity of GlasgowGlasgowUK
- MR CoilTech LimitedGlasgowUK
| |
Collapse
|
2
|
Kraff O, May MW. Multi-center QA of ultrahigh-field systems. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01232-8. [PMID: 40126781 DOI: 10.1007/s10334-025-01232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
Over the past two decades, ultra-high field (UHF) magnetic resonance imaging (MRI) has evolved from pure investigational devices to now systems with CE and FDA clearance for clinical use. UHF MRI offers enhanced diagnostic value, especially in brain and musculoskeletal imaging, aiding in the differential diagnosis of conditions like multiple sclerosis and epilepsy. However, to fully harness the potential of UHF, multi-center studies and quality assurance (QA) protocols are critical for ensuring reproducibility across different systems and sites. This becomes even more vital as the UHF community comprises three generations of magnet design, and many UHF sites are currently upgrading to the latest system architecture. Hence, this review presents multi-center QA measurements that have been performed at UHF, in particular from larger consortia through their "travelling heads" studies. Despite the technical variability between different vendors and system generations, these studies have shown a high level of reproducibility in structural and quantitative imaging. Furthermore, the review highlights the ongoing challenges in QA, such as transmitter performance drift and the need for a standard reliable multi-tissue phantom for RF coil calibration, which are crucial for advancing UHF MRI in both clinical and research applications.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany.
| | - Markus W May
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Hubmann MJ, Nurzed B, Hansen SL, Kowal R, Schön N, Wenz D, Saha N, Lutz M, Fiedler TM, Orzada S, Winter L, Keil B, Maune H, Speck O, Niendorf T. Reproducibility of Electromagnetic Field Simulations of Local Radiofrequency Transmit Elements Tailored for 7 T MRI. SENSORS (BASEL, SWITZERLAND) 2025; 25:1867. [PMID: 40293001 PMCID: PMC11945818 DOI: 10.3390/s25061867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
The literature reports on radiofrequency (RF) transmit (Tx) elements tailored for ultrahigh-field (UHF) magnetic resonance imaging (MRI) showed confounded reproducibility due to variations in simulation tools, modeling assumptions, and meshing techniques. This study proposes a standardized methodology to improve reproducibility and consistency across research sites (testers) and simulation tools (testing conditions). The methodology includes detailed simulation workflow and performance metrics for RF Tx elements. The impact of the used mesh setting is assessed. Following the methodology, a reproducibility study was conducted using CST Microwave Studio Suite, HFSS, and Sim4Life. The methodology and simulations were ultimately validated through 7 T MRI phantom experiments. The reproducibility study showed consistent performance with less than 6% standard deviation for B1+ fields and 12% for peak SAR averaged over 10 g tissue (pSAR10g). The SAR efficiency metric (|B1+|/√pSAR10g) was particularly robust (<5%). The simulated and experimental |B1+| maps showed good qualitative agreement. This study demonstrates the feasibility of a standardized methodology for achieving reproducible RF Tx element electromagnetic field simulations. By following the FAIR principles including making the framework publicly available, we promote transparency and collaboration within the MRI community, supporting the advancement of technological innovation and improving patient safety in UHF-MRI.
Collapse
Affiliation(s)
- Max Joris Hubmann
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, 39106 Magdeburg, Germany; (M.J.H.); (R.K.); (H.M.); (O.S.)
| | - Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany; (B.N.); (N.S.)
- Chair of Medical Engineering, Faculty V, Technische Universität Berlin, 10587 Berlin, Germany
- Faculty II, Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Sam-Luca Hansen
- Institute of Medical Physics and Radiation Protection, TH-Mittelhessen University of Applied Sciences, 35390 Gießen, Germany; (S.-L.H.); (B.K.)
| | - Robert Kowal
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, 39106 Magdeburg, Germany; (M.J.H.); (R.K.); (H.M.); (O.S.)
- Research Campus STIMULATE, 39106 Magdeburg, Germany
| | - Natalie Schön
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Braunschweig and Berlin, Germany; (N.S.); (M.L.); (L.W.)
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland;
- Animal Imaging and Technology, EPFL Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | - Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany; (B.N.); (N.S.)
- Experimental and Clinical Research Center (ECRC), Charité—Universitätsmedizin Berlin, A Joint Cooperation Between the Charité Medical Faculty and The Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Max Lutz
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Braunschweig and Berlin, Germany; (N.S.); (M.L.); (L.W.)
| | - Thomas M. Fiedler
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.M.F.); (S.O.)
| | - Stephan Orzada
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.M.F.); (S.O.)
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Braunschweig and Berlin, Germany; (N.S.); (M.L.); (L.W.)
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, TH-Mittelhessen University of Applied Sciences, 35390 Gießen, Germany; (S.-L.H.); (B.K.)
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, 35390 Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, 35043 Marburg, Germany
| | - Holger Maune
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, 39106 Magdeburg, Germany; (M.J.H.); (R.K.); (H.M.); (O.S.)
| | - Oliver Speck
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, 39106 Magdeburg, Germany; (M.J.H.); (R.K.); (H.M.); (O.S.)
- Research Campus STIMULATE, 39106 Magdeburg, Germany
- Faculty of Natural Sciences, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany; (B.N.); (N.S.)
- Experimental and Clinical Research Center (ECRC), Charité—Universitätsmedizin Berlin, A Joint Cooperation Between the Charité Medical Faculty and The Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
4
|
Waks M, Lagore RL, Auerbach E, Grant A, Sadeghi‐Tarakameh A, DelaBarre L, Jungst S, Tavaf N, Lattanzi R, Giannakopoulos I, Moeller S, Wu X, Yacoub E, Vizioli L, Schmidt S, Metzger GJ, Eryaman Y, Adriany G, Uğurbil K. RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T. Magn Reson Med 2025; 93:873-888. [PMID: 39415477 PMCID: PMC11604834 DOI: 10.1002/mrm.30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Toward pushing the boundaries of ultrahigh fields for human brain imaging, we wish to evaluate experimentally achievable SNR relative to ultimate intrinsic SNR (uiSNR) at 10.5T, develop design strategies toward approaching the latter, quantify magnetic field-dependent SNR gains, and demonstrate the feasibility of whole-brain, high-resolution human brain imaging at this uniquely high field strength. METHODS A dual row 16-channel self-decoupled transmit (Tx) and receive (Rx) array was developed for 10.5T using custom Tx/Rx switches. A 64-channel receive-only array was built to fit into the 16-channel Tx/Rx array. Electromagnetic modeling and experiments were used to define safe operational power limits. Experimental SNR was evaluated relative to uiSNR at 10.5T and 7T. RESULTS The 64-channel Rx array alone captured approximately 50% of the central uiSNR at 10.5T, while an identical array developed for 7T captured about 76% of uiSNR at 7T. The 16-channel Tx/80-channel Rx configuration brought the fraction of uiSNR captured at 10.5T to levels comparable to the 64-channel Rx array at 7T. SNR data displayed an approximateB 0 2 $$ {\mathrm{B}}_0^2 $$ dependence over a large central region when evaluated in the context of uiSNR. Whole-brain, high-resolutionT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted and T1-weighted anatomical and gradient-recalled-echo BOLD-EPI functional MRI images were obtained at 10.5T for the first time with such an advanced array. CONCLUSION We demonstrated the ability to approach the uiSNR at 10.5T over the human brain, achieving large SNR gains over 7T, currently the most commonly used ultrahigh-field platform. Whole-brain, high-resolution anatomical and EPI-based functional MRI data were obtained at 10.5T, illustrating the promise of greater than 10T fields in studying the human brain.
Collapse
Affiliation(s)
- Matt Waks
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Russell L. Lagore
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Edward Auerbach
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Andrea Grant
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | | | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Nader Tavaf
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ilias Giannakopoulos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Simon Schmidt
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Zhang B, Radder J, Giannakopoulos I, Grant A, Lagore R, Waks M, Tavaf N, van de Moortele PF, Adriany G, Sadeghi-Tarakameh A, Eryaman Y, Lattanzi R, Ugurbil K. Performance of receive head arrays versus ultimate intrinsic SNR at 7 T and 10.5 T. Magn Reson Med 2024; 92:1219-1231. [PMID: 38649922 PMCID: PMC11209800 DOI: 10.1002/mrm.30108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.
Collapse
Affiliation(s)
- Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Ilias Giannakopoulos
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Nader Tavaf
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | | | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Kim J, Sun C, Moon CH, Hetherington H, Pan J. Evaluation of the performance of a 7-T 8 × 2 transceiver array. NMR IN BIOMEDICINE 2024; 37:e5146. [PMID: 38533593 DOI: 10.1002/nbm.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The decoupled 8 × 2 transceiver array has been shown to achieve a mean B1 + of 11.7 uT with a coefficient of variation of ~11% over the intracranial brain volume for 7-T MR imaging. However, this array may be thought to give lower signal-to-noise ratio (SNR) and higher g-factors for parallel imaging compared with a radio frequency (RF) receive-only coil due to the latter's higher coil count and use of coil overlap to reduce the mutual impedance. Nonetheless, because the transceiver's highly decoupled design (pertinent for transmission) should also be constructive for reception, we measured the noise correlation, g-factors, and SNR for the decoupled transceiver in comparison with a commercial reference coil. We found that although the transceiver has half the number of receive elements in comparison with the reference coil (16 vs. 32), comparable g-factors and SNR over the head were obtained. From five subjects, the transceiver versus reference coil SNR was 65 ± 10 versus 67 ± 15. The mean noise correlation for all coil pairs was 10% ± 5% and 12% ± 9% (transceiver and reference coil, respectively). As changes in load impedance may alter the S parameters, we also examined the performance of the transceiver with tuned and matched (TM) versus untuned and unmatched (UTM) conditions on five subjects. We found that the noise correlation and SNR are robust to load variation; a noise correlation of 10% ± 5% and 10% ± 6% was determined with TM versus UTM conditions (SNRUTM/SNRTM = 0.97 ± 0.08). Finally, we demonstrate the performance of the array in human brain using T2-weighted turbo spin echo imaging, finding excellent SNR performance in both caudal and rostral brain regions.
Collapse
Affiliation(s)
- Junghwan Kim
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Changyu Sun
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hoby Hetherington
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Resonance Research Inc., Billerica, Massachusetts, USA
| | - Jullie Pan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Rahimi F, Nurzed B, Eigentler TW, Berangi M, Oberacker E, Kuehne A, Ghadjar P, Millward JM, Schuhmann R, Niendorf T. Helmet Radio Frequency Phased Array Applicators Enhance Thermal Magnetic Resonance of Brain Tumors. Bioengineering (Basel) 2024; 11:733. [PMID: 39061815 PMCID: PMC11273942 DOI: 10.3390/bioengineering11070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) integrates Magnetic Resonance Imaging (MRI) diagnostics and targeted radio-frequency (RF) heating in a single theranostic device. The requirements for MRI (magnetic field) and targeted RF heating (electric field) govern the design of ThermalMR applicators. We hypothesize that helmet RF applicators (HPA) improve the efficacy of ThermalMR of brain tumors versus an annular phased RF array (APA). An HPA was designed using eight broadband self-grounded bow-tie (SGBT) antennae plus two SGBTs placed on top of the head. An APA of 10 equally spaced SGBTs was used as a reference. Electromagnetic field (EMF) simulations were performed for a test object (phantom) and a human head model. For a clinical scenario, the head model was modified with a tumor volume obtained from a patient with glioblastoma multiforme. To assess performance, we introduced multi-target evaluation (MTE) to ensure whole-brain slice accessibility. We implemented time multiplexed vector field shaping to optimize RF excitation. Our EMF and temperature simulations demonstrate that the HPA improves performance criteria critical to MRI and enhances targeted RF and temperature focusing versus the APA. Our findings are a foundation for the experimental implementation and application of a HPA en route to ThermalMR of brain tumors.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Bilguun Nurzed
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
- Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Thomas W. Eigentler
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
| | - Mostafa Berangi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
| | | | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jason M. Millward
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Rolf Schuhmann
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
8
|
Waks M, Lagore RL, Auerbach E, Grant A, Sadeghi-Tarakameh A, DelaBarre L, Jungst S, Tavaf N, Lattanzi R, Giannakopoulos I, Moeller S, Wu X, Yacoub E, Vizioli L, Schmidt S, Metzger GJ, Eryaman Y, Adriany G, Uğurbil K. RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595628. [PMID: 38826245 PMCID: PMC11142186 DOI: 10.1101/2024.05.23.595628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Purpose To develop multichannel transmit and receive arrays towards capturing the ultimate-intrinsic-SNR (uiSNR) at 10.5 Tesla (T) and to demonstrate the feasibility and potential of whole-brain, high-resolution human brain imaging at this high field strength. Methods A dual row 16-channel self-decoupled transmit (Tx) array was converted to a 16Tx/Rx transceiver using custom transmit/receive switches. A 64-channel receive-only (64Rx) array was built to fit into the 16Tx/Rx array. Electromagnetic modeling and experiments were employed to define safe operation limits of the resulting 16Tx/80Rx array and obtain FDA approval for human use. Results The 64Rx array alone captured approximately 50% of the central uiSNR at 10.5T while the identical 7T 64Rx array captured ∼76% of uiSNR at this lower field strength. The 16Tx/80Rx configuration brought the fraction of uiSNR captured at 10.5T to levels comparable to the performance of the 64Rx array at 7T. SNR data obtained at the two field strengths with these arrays displayed dependent increases over a large central region. Whole-brain high resolution T 2 * and T 1 weighted anatomical and gradient-recalled echo EPI BOLD fMRI images were obtained at 10.5T for the first time with such an advanced array, illustrating the promise of >10T fields in studying the human brain. Conclusion We demonstrated the ability to approach the uiSNR at 10.5T over the human brain with a novel, high channel count array, achieving large SNR gains over 7T, currently the most commonly employed ultrahigh field platform, and demonstrate high resolution and high contrast anatomical and functional imaging at 10.5T.
Collapse
|
9
|
Solomakha GA, Bosch D, Glang F, Scheffler K, Avdievich NI. Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra-high field MRI at 9.4T. Magn Reson Med 2024; 91:1268-1280. [PMID: 38009927 DOI: 10.1002/mrm.29941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.
Collapse
Affiliation(s)
- G A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - D Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - F Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
10
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
11
|
Woo MK, DelaBarre L, Waks M, Lagore R, Kim J, Jungst S, Eryaman Y, Ugurbil K, Adriany G. A 32-Channel Sleeve Antenna Receiver Array for Human Head MRI Applications at 10.5 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2643-2652. [PMID: 37030782 DOI: 10.1109/tmi.2023.3261922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Collapse
|
12
|
Harrevelt SD, Roos THM, Klomp DWJ, Steensma BR, Raaijmakers AJE. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. MAGMA (NEW YORK, N.Y.) 2023; 36:245-255. [PMID: 37000320 PMCID: PMC10140109 DOI: 10.1007/s10334-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. METHODS Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. RESULTS For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. DISCUSSION AND CONCLUSION For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.
Collapse
Affiliation(s)
- Seb D Harrevelt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Thomas H M Roos
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Lu M, Zhang X, Chai S, Yan X. Improving Specific Absorption Rate Efficiency and Coil Robustness of Self-Decoupled Transmit/Receive Coils by Elevating Feed and Mode Conductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1800. [PMID: 36850397 PMCID: PMC9960379 DOI: 10.3390/s23041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.
Collapse
Affiliation(s)
- Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyang Zhang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
15
|
Hernandez D, Nam T, Jeong Y, Kim D, Kim KN. Study on the Effect of Non-Symmetrical Current Distribution Controlled by Capacitor Placement in Radio-Frequency Coils for 7T MRI. BIOSENSORS 2022; 12:867. [PMID: 36291004 PMCID: PMC9599509 DOI: 10.3390/bios12100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present a study on the effects of varying the position of a single tuning capacitor in a circular loop coil as a mechanism to control and produce non-symmetric current distribution, such that could be used for magnetic resonance imaging (MRI) operating at ultra-high frequency (UHF). This study aims to demonstrate that the position of the tuning capacitor of a circular loop could improve the coupling between adjacent coils, used to optimize transmission field uniformity or intensity, improve signal-to-noise ratio (SNR) or specific absorption rate (SAR). A typical loop coil used in MRI consists of symmetrically distributed capacitors along the coil; this design is able to produce uniform current distributions inside the coil. However, in UHF conditions, the magnetic flux density (|B1+|) field produced by this setup may exhibit field distortion, requiring a method of controlling the field distribution and improving the field intensity of the circular loop coil. The control mechanism investigated in this study is based on the position of the tuning capacitor in the circular coil, the capacitor position was varied from 15° to 345°, in steps of 15°. We performed electromagnetic (EM) simulations, fabricated the coils, and performed MRI experiments at 7T, with each of the coils with capacitor position from 15° to 345° to determine the effects on field intensity, coupling between adjacent coils, SAR, and applications for field uniformity optimization. For the case of free space, a coil with capacitor position at 15° showed higher field intensity compared to the reference coil; while an improved decoupling was achieved when a coil had the capacitor placed at 180° and the other coil at 90°; in a similar matter, we discuss the results for SAR, field uniformity and an application with an array coil for the spinal cord.
Collapse
Affiliation(s)
- Daniel Hernandez
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea
| | - Taewoo Nam
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Yonghwa Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Donghyuk Kim
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea
| | - Kyoung-Nam Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
16
|
Zheng M, Gao Y, Quan Z, Zhang X. The design and evaluation of single-channel loopole coils at 7T MRI. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8fdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Improving the local uniformity of
B
1
+
field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate’s brain organization. Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkey in vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5%
B
1
+
uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7T in vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils’ current density distribution and
B
1
+
uniformity, observing that it can be approximated as a sinusoidal curve. Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.
Collapse
|
17
|
Hardy BM, Banik R, Yan X, Anderson AW. Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7T. Magn Reson Imaging 2022; 92:187-196. [PMID: 35842192 DOI: 10.1016/j.mri.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This study shows how inter-subject variation over a dataset of 72 head models results in specific absorption rate (SAR) and B1+ field homogeneity differences using common shim scenarios. METHODS MR-CT datasets were used to segment 71 head models into 10 tissue compartments. These head models were affixed to the shoulders and neck of the virtual family Duke model and placed within an 8 channel transmit surface-loop array to simulate the electromagnetic fields of a 7T imaging experiment. Radio frequency (RF) shimming using the Gerchberg-Saxton algorithm and Circularly Polarized shim weights over the entire brain and select slices of each model was simulated. Various SAR metrics and B1+ maps were calculated to demonstrate the contribution of head variation to transmit inhomogeneity and SAR variability. RESULTS With varying head geometries the loading for each transmit loop changes as evidenced by changes in S-parameters. The varying shim conditions and head geometries are shown to affect excitation uniformity, spatial distributions of local SAR, and SAR averaging over different pulse sequences. The Gerchberg-Saxton RF shimming algorithm outperforms circularly polarized shimming for all head models. Peak local SAR within the coil most often occurs nearest the coil on the periphery of the body. Shim conditions vary the spatial distribution of SAR. CONCLUSION The work gives further support to the need for fast and more subject specific SAR calculations to maintain safety. Local SAR10g is shown to vary spatially given shim conditions, subject geometry and composition, and position within the coil.
Collapse
Affiliation(s)
- Benjamin M Hardy
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Science Center, Nashville, TN 37232, USA.
| | - Rana Banik
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Glang F, Nikulin AV, Bause J, Heule R, Steffen T, Avdievich N, Scheffler K. Accelerated MRI at 9.4 T with electronically modulated time-varying receive sensitivities. Magn Reson Med 2022; 88:742-756. [PMID: 35452153 DOI: 10.1002/mrm.29245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate how electronically modulated time-varying receive sensitivities can improve parallel imaging reconstruction at ultra-high field. METHODS Receive sensitivity modulation was achieved by introducing PIN diodes in the receive loops, which allow rapid switching of capacitances in both arms of each loop coil and by that alter B1 - profiles, resulting in two distinct receive sensitivity configurations. A prototype 8-channel reconfigurable receive coil for human head imaging at 9.4T was built, and MR measurements were performed in both phantom and human subject. A modified SENSE reconstruction for time-varying sensitivities was formulated, and g-factor calculations were performed to investigate how modulation of receive sensitivity profiles during image encoding can improve parallel imaging reconstruction. The optimized modulation pattern was realized experimentally, and reconstructions with the time-varying sensitivities were compared with conventional static SENSE reconstructions. RESULTS The g-factor calculations showed that fast modulation of receive sensitivities in the order of the ADC dwell time during k-space acquisition can improve parallel imaging performance, as this effectively makes spatial information of both configurations simultaneously available for image encoding. This was confirmed by in vivo measurements, for which lower reconstruction errors (SSIM = 0.81 for acceleration R = 4) and g-factors (max g = 2.4; R = 4) were observed for the case of rapidly switched sensitivities compared to conventional reconstruction with static sensitivities (SSIM = 0.74 and max g = 3.2; R = 4). As the method relies on the short RF wavelength at ultra-high field, it does not yield significant benefits at 3T and below. CONCLUSIONS Time-varying receive sensitivities can be achieved by inserting PIN diodes in the receive loop coils, which allow modulation of B1 - patterns. This offers an additional degree of freedom for image encoding, with the potential for improved parallel imaging performance at ultra-high field.
Collapse
Affiliation(s)
- Felix Glang
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anton V Nikulin
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jonas Bause
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rahel Heule
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Theodor Steffen
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolai Avdievich
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Okada T, Handa S, Ding B, Urayama SI, Fujimoto K, Shima A, Yoshii D, Ayaki T, Sawamoto N, Takahashi R, Onoe H, Isa T, Petropoulos L. Insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system. Magn Reson Med 2021; 87:1613-1620. [PMID: 34719801 PMCID: PMC9297907 DOI: 10.1002/mrm.29062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To demonstrate the capability of insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system. METHODS Insertable inductively coupled volume coils with diameters of 26 and 64 mm (D26 and D64 coils) targeted for monkey and mouse brain specimen sizes were designed and fabricated. These coils were placed inside the imaging volume of a transmit/receive knee coil without wired connections to the main system. Signal-to-noise ratio (SNR) evaluations were conducted with and without the insertable coils, and the g-factor maps of parallel imaging (PI) were also calculated for the D64 coil. Brain specimens were imaged using 3D T 2 ∗ -weighted images with spatial resolution of isotropic 50 and 160 μm using D26 and D64 coils, respectively. RESULTS Relative average (SD) SNRs compared with knee coil alone were 12.54 (0.30) and 2.37 (0.05) at the center for the D26 and D64 coils, respectively. The mean g-factors of PI with the D64 coil for the factor of 2 were less than 1.1 in the left-right and anterior-posterior directions, and around 1.5 in the superior-inferior direction or when the PI factor of 3 was used. Acceleration in two directions showed lower g-factors but suffered from intrinsic low SNR. Representative T 2 ∗ -weighted images of the specimen showed structural details. CONCLUSION Inductively coupled small diameter coils insertable to the knee coil demonstrated high SNR and modest PI capability. The concept was successfully used to visualize fine structures of the brain specimen. The insertable coils are easy to handle and enable MR microscopy in a human whole-body 7T MRI system.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Handa
- Quality Electrodynamics, Mayfield Village, Ohio, USA
| | - Bill Ding
- Quality Electrodynamics, Mayfield Village, Ohio, USA
| | - Shin-Ichi Urayama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Yoshii
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
21
|
A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. SENSORS 2021; 21:s21217250. [PMID: 34770558 PMCID: PMC8587099 DOI: 10.3390/s21217250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.
Collapse
|
22
|
Avdievich NI, Solomakha G, Ruhm L, Nikulin AV, Magill AW, Scheffler K. Folded-end dipole transceiver array for human whole-brain imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4541. [PMID: 33978270 DOI: 10.1002/nbm.4541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The advancement of clinical applications of ultrahigh field (UHF) MRI depends heavily on advances in technology, including the development of new radiofrequency (RF) coil designs. Currently, the number of commercially available 7 T head RF coils is rather limited, implying a need to develop novel RF head coil designs that offer superior transmit and receive performance. RF coils to be used for clinical applications must be robust and reliable. In particular, for transmit arrays, if a transmit channel fails the local specific absorption rate may increase, significantly increasing local tissue heating. Recently, dipole antennas have been proposed and used to design UHF head transmit and receive arrays. The dipole provides a unique simplicity while offering comparable transmit efficiency and signal-to-noise ratio with the conventional loop design. Recently, we developed a novel array design in our laboratory using a folded-end dipole antenna. In this work, we developed, constructed and evaluated an eight-element transceiver bent folded-end dipole array for human head imaging at 7 T. Driven in the quadrature circularly polarized mode, the array demonstrated more than 20% higher transmit efficiency and significantly better whole-brain coverage than that provided by a widely used commercial array. In addition, we evaluated passive dipole antennas for decoupling the proposed array. We demonstrated that in contrast to the common unfolded dipole array, the passive dipoles moved away from the sample not only minimize coupling between the adjacent folded-end active dipoles but also produce practically no destructive interference with the quadrature mode of the array.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Arthur W Magill
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
24
|
Nohava L, Czerny R, Roat S, Obermann M, Kuehne A, Frass-Kriegl R, Felblinger J, Ginefri JC, Laistler E. Flexible Multi-Turn Multi-Gap Coaxial RF Coils: Design Concept and Implementation for Magnetic Resonance Imaging at 3 and 7 Tesla. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1267-1278. [PMID: 33439836 DOI: 10.1109/tmi.2021.3051390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.
Collapse
|