1
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Zhang P, Fu G, Xu W, Gong K, Zhao Z, Sun K, Zhang C, Han R, Shao G. Up-regulation of miR-126 via DNA methylation in hypoxia-preconditioned endothelial cells may contribute to hypoxic tolerance of neuronal cells. Mol Biol Rep 2024; 51:808. [PMID: 39002003 DOI: 10.1007/s11033-024-09774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Gang Fu
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Wenqing Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, Department of Neurosurgery, University of California San Francisco, San Francisco, USA
| | - Zhujun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China
| | - Kai Sun
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
| | - Ruijuan Han
- Department of Cardiology, the Third People's Hospital of Longgang District, Shenzhen, PR China.
| | - Guo Shao
- Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, PR China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PR China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third, People's Hospital of Longgang District, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
3
|
Biernat K, Kuciel N, Mazurek J, Hap K. Is It Possible to Train the Endothelium?-A Narrative Literature Review. Life (Basel) 2024; 14:616. [PMID: 38792637 PMCID: PMC11121998 DOI: 10.3390/life14050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review provides an overview of current knowledge regarding the adaptive effects of physical training on the endothelium. The endothelium plays a crucial role in maintaining the health of vessel walls and regulating vascular tone, structure, and homeostasis. Regular exercise, known for its promotion of cardiovascular health, can enhance endothelial function through various mechanisms. The specific health benefits derived from exercise are contingent upon the type and intensity of physical training. The review examines current clinical evidence supporting exercise's protective effects on the vascular endothelium and identifies potential therapeutic targets for endothelial dysfunction. There is an urgent need to develop preventive strategies and gain a deeper understanding of the distinct impacts of exercise on the endothelium.
Collapse
Affiliation(s)
| | - Natalia Kuciel
- University Rehabilitation Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.B.); (J.M.); (K.H.)
| | | | | |
Collapse
|
4
|
He Y, Jiang Y, Wu F, Zhang X, Liang S, Ye Z. Platelet Microparticle-Derived MiR-320b Inhibits Hypertension with Atherosclerosis Development by Targeting ETFA. Int Heart J 2024; 65:329-338. [PMID: 38556340 DOI: 10.1536/ihj.23-365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hypertension and atherosclerosis often occur simultaneously. This study aimed to explore the role and mechanism of platelet microparticle (PMP) -derived microRNA-320b (miR-320b) in patients with hypertension accompanied by atherosclerosis.We collected samples from 13 controls without hypertension and atherosclerosis and 20 patients who had hypertension accompanied by atherosclerosis. In vitro, platelets were activated by Thrombin receptor-activating peptide to produce PMPs. HUVECs were induced by CoCl2 to mimic a hypoxic environment in vitro. RT-qPCR was employed to detect the expression levels of CD61, miR-320b, and ETFA. The protein expression level of ETFA was evaluated via Western blotting. Furthermore, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and wound healing assays were employed to assess the proliferation and migration of HUVECs. Enzyme-linked immunosorbent assay was used to measure the oxidative stress and inflammation-related factor expression.The expression of miR-320b was reduced in both platelets and PMPs but increased in plasma. MiR-320b promoted CoCl2-induced HUVEC viability, proliferation, and migration. The levels of the oxidative stress factors SOD and GSH as well as the inflammatory factor IL-10 were elevated in the CoCl2 + miR-320b mimics group compared with both the CoCl2 + mimics NC and CoCl2 groups. Conversely, the levels of the oxidative stress factors MDA and ROS as well as the inflammatory factors IL-6, TNF-α, and IL-1β were decreased. These results were regulated by miR-320b targeting ETFA.PMP-derived miR-320b inhibits the development of hypertension accompanied by atherosclerosis by targeting ETFA.
Collapse
Affiliation(s)
- Yongcong He
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Yangyang Jiang
- Department of Oncology, Guangdong Second Provincial General Hospital
| | - Fan Wu
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Xiaoxue Zhang
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Shaolan Liang
- Department of Cardiology, Guangdong Second Provincial General Hospital
| | - Zebing Ye
- Department of Cardiology, Guangdong Second Provincial General Hospital
| |
Collapse
|
5
|
Shen H, Yang J, Chen X, Gao Y, He B. Role of hypoxia-inducible factor in postoperative delirium of aged patients: A review. Medicine (Baltimore) 2023; 102:e35441. [PMID: 37773821 PMCID: PMC10545271 DOI: 10.1097/md.0000000000035441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding targets to prevent or treat postoperative delirium in elderly patients.
Collapse
Affiliation(s)
- Hu Shen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyin Yang
- Department of ICU, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol 2023; 60:2062-2069. [PMID: 36596965 DOI: 10.1007/s12035-022-03197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhao B, Zhu L, Ye M, Lou X, Mou Q, Hu Y, Zhang H, Zhao Y. Oxidative stress and epigenetics in ocular vascular aging: an updated review. Mol Med 2023; 29:28. [PMID: 36849907 PMCID: PMC9972630 DOI: 10.1186/s10020-023-00624-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Vascular aging is an inevitable process with advancing age, which plays a crucial role in the pathogenesis of cardiovascular and microvascular diseases. Diabetic retinopathy (DR) and age-related macular degeneration (AMD), characterized by microvascular dysfunction, are the common causes of irreversible blindness worldwide, however there is still a lack of effective therapeutic strategies for rescuing the visual function. In order to develop novel treatments, it is essential to illuminate the pathological mechanisms underlying the vascular aging during DR and AMD progression. In this review, we have summarized the recent discoveries of the effects of oxidative stress and epigenetics on microvascular degeneration, which could provide potential therapeutic targets for DR and AMD.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Wu Y, Liu M, Zhou H, He X, Shi W, Yuan Q, Zuo Y, Li B, Hu Q, Xie Y. COX-2/PGE 2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs. Cytokine 2023; 161:156058. [PMID: 36209650 DOI: 10.1016/j.cyto.2022.156058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
Understanding the crosstalk between endothelial cells (ECs) and bone-marrow mesenchymal stem cells (BMSCs) in response to hypoxic environments and deciphering of the underlying mechanisms are of great relevance for better application of BMSCs in tissue engineering. Here, we demonstrated that hypoxia promoted BMSCs proliferation, colony formation, osteogenic markers expression, mineralization, and extracellular signal-regulated protein kinase (ERK) phosphorylation, and that PD98059 (ERK inhibitor) blocked hypoxia-induced osteogenic differentiation. Hypoxia enhanced ECs migration, cyclooxygenase 2 (COX-2) and integrin αvβ3 expression, and prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) secretion. NS398 (selective COX-2 inhibitor) and LM609 (integrin αvβ3 specific inhibitor) impaired the ECs response to hypoxia, and exogenous PGE2 partially reversed the effects of NS398. BMSCs: ECs co-culture under hypoxia upregulated BMSCs osteogenesis and ERK phosphorylation, as well as ECs migration, integrin αvβ3 expression, and PGE2 and VEGF secretion. NS398 (pretreated ECs) lessened PGE2, VEGF concentrations of the co-culture system. NS398-treated ECs and AH6809 (combined EP1/2 antagonist)/L-798106 (selective EP3 antagonist)/L-161982 (selective EP4 antagonist)/SU5416 [VEGF receptor (VEGFR) inhibitor]-treated BMSCs impaired the co-cultured ECs-induced enhancement of BMSCs osteogenic differentiation. In conclusion, hypoxia enhances BMSCs proliferation and ERK-mediated osteogenic differentiation, and augments the COX-2-dependent PGE2 and VEGF release, integrin αvβ3 expression, and migration of ECs. COX-2/PGE2/VEGF signaling is involved in intercellular BMSCs: ECs communication under hypoxia.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wei Shi
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
9
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|