1
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
3
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
4
|
Sun W, Li X, Zhang L, Zhang Y, Shi Y, Tao H, Zhou J, Hao Y, Chen G, Gu C, Yang X. IL-17A exacerbates synovial inflammation in osteoarthritis via activation of endoplasmic reticulum stress. Int Immunopharmacol 2025; 145:113733. [PMID: 39662267 DOI: 10.1016/j.intimp.2024.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The primary clinical manifestations of osteoarthritis (OA) are joint pain and restricted movement capabilities. Synovial inflammation, serving as an initiator of OA progression, intensifies cartilage damage via the generation of various deleterious agents, including pro-inflammatory cytokines and nociceptive mediators. Despite extensive research on modulating synovial inflammation to retard OA progression, the underlying pathophysiological mechanisms of synovial inflammation in OA remain elusive. Interleukin-17A (IL-17A), a pro-inflammatory cytokine released by activated T lymphocytes, is a therapeutic target for numerous inflammatory and autoimmune pathologies. This study investigates the role and mechanism of IL-17A in OA synovial inflammation using both in vivo and in vitro models and examines the impact of the endoplasmic reticulum stress (ERS) inhibitor, 4-Phenylbutyric Acid (4-PBA). Our findings indicate that IL-17A may be implicated in synovial inflammation through ERS and suggest a potential therapeutic direction for mitigating synovial inflammation in OA.
Collapse
Affiliation(s)
- Wen Sun
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xueyan Li
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yuheng Zhang
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yi Shi
- Department of Anesthesiology, the First People's Hospital of Yancheng, 66, Renmin South Road, Yancheng, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Guangdong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Chengyong Gu
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Raza IGA, Snelling SJB, Mimpen JY. Defining the extracellular matrix in non-cartilage soft-tissues in osteoarthritis: a systematic review. Bone Joint Res 2024; 13:703-715. [PMID: 39622273 PMCID: PMC11611391 DOI: 10.1302/2046-3758.1312.bjr-2024-0020.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Aims Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease. Methods A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed. Results A total of 161 studies were included, which covered capsule, ligaments, meniscus, skeletal muscle, synovium, and tendon in both humans and animals, and fat pad and intervertebral disc in humans only. These studies covered a wide variety of ECM features, including individual ECM components (i.e. collagens, proteoglycans, and glycoproteins), ECM architecture (i.e. collagen fibre organization and diameter), and viscoelastic properties (i.e. elastic and compressive modulus). Some ECM changes, notably calcification and the loss of collagen fibre organization, have been extensively studied across osteoarthritic tissues. However, most ECM features were only studied by one or a few papers in each tissue. When comparisons were possible, the results from animal experiments largely concurred with those from human studies, although some findings were contradictory. Conclusion Changes in ECM composition and architecture occur throughout non-cartilage soft tissues in the osteoarthritic joint, but most of these remain poorly defined due to the low number of studies and lack of healthy comparator groups.
Collapse
Affiliation(s)
| | - Sarah J. B. Snelling
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jolet Y. Mimpen
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zhou J, Li X, Han Z, Qian Y, Bai L, Han Q, Gao M, Xue Y, Geng D, Yang X, Hao Y. Acetyl-11-keto-β-boswellic acid restrains the progression of synovitis in osteoarthritis via the Nrf2/HO-1 pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1644-1658. [PMID: 38982914 PMCID: PMC11659770 DOI: 10.3724/abbs.2024102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/01/2024] [Indexed: 07/11/2024] Open
Abstract
Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-β-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.
Collapse
Affiliation(s)
- Jing Zhou
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Xueyan Li
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
- Department of Anesthesiathe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Yinhua Qian
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Lang Bai
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Qibin Han
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Maofeng Gao
- Department of Orthopaedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Yi Xue
- Department of OrthopaedicsChangshu Hospital Affiliated to Nanjing University of Traditional Chinese MedicineSuzhou215500China
| | - Dechun Geng
- Department of Orthopaedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Xing Yang
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Centerthe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou215006China
- Gusu SchoolNanjing Medical UniversitySuzhou215006China
| |
Collapse
|
8
|
Jiang Q, Ding Y, Li F, Fayyaz AI, Duan H, Geng X. Modulation of NLRP3 inflammasome-related-inflammation via RIPK1/RIPK3-DRP1 or HIF-1α signaling by phenothiazine in hypothermic and normothermic neuroprotection after acute ischemic stroke. Redox Biol 2024; 73:103169. [PMID: 38692093 PMCID: PMC11070764 DOI: 10.1016/j.redox.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Inflammation and subsequent mitochondrial dysfunction and cell death worsen outcomes after revascularization in ischemic stroke. Receptor-interacting protein kinase 1 (RIPK1) activated dynamin-related protein 1 (DRP1) in a NLRPyrin domain containing 3 (NLRP3) inflammasome-dependent fashion and Hypoxia-Inducible Factor (HIF)-1α play key roles in the process. This study determined how phenothiazine drugs (chlorpromazine and promethazine (C + P)) with the hypothermic and normothermic modality impacts the RIPK1/RIPK3-DRP1 and HIF-1α pathways in providing neuroprotection. METHODS A total of 150 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. 8 mg/kg of C + P was administered at onset of reperfusion. Infarct volumes, mRNA and protein expressions of HIF-1α, RIPK1, RIPK3, DRP-1, NLRP3-inflammation and cytochrome c-apoptosis were assessed. Apoptotic cell death, infiltration of neutrophils and macrophages, and mitochondrial function were evaluated. Interaction between RIPK1/RIPK3 and HIF-1α/NLRP3 were determined. In SH-SY5Y cells subjected to oxygen/glucose deprivation (OGD), the normothermic effect of C + P on inflammation and apoptosis were examined. RESULTS C + P significantly reduced infarct volumes, mitochondrial dysfunction (ATP and ROS concentration, citrate synthase and ATPase activity), inflammation and apoptosis with and without induced hypothermia. Overexpression of RIPK1, RIPK3, DRP-1, NLRP3-inflammasome and cytochrome c-apoptosis were all significantly reduced by C + P at 33 °C and the RIPK1 inhibitor (Nec1s), suggesting hypothermic effect of C + P via RIPK1/RIPK3-DRP1pathway. When body temperature was maintained at 37 °C, C + P and HIF-1α inhibitor (YC-1) reduced HIF-1α expression, leading to reduction in mitochondrial dysfunction, NLRP3 inflammasome and cytochrome c-apoptosis, as well as the interaction of HIF-1α and NLRP3. These were also evidenced in vitro, indicating a normothermic effect of C + P via HIF-1α. CONCLUSION Hypothermic and normothermic neuroprotection of C + P involve different pathways. The normothermic effect was mediated by HIF-1α, while hypothermic effect was via RIPK1/RIPK3-DRP1 signaling. This provides a theoretical basis for future precise exploration of hypothermic and normothermic neuroprotection.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Aminah I Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Yang T, Cao T, Yang X, Wang G, Li Y. Elucidation of the key therapeutic targets and potential mechanisms of Andrographolide multi-targets against osteoarthritis via network pharmacological analysis and experimental validation. Gene 2024; 911:148351. [PMID: 38462021 DOI: 10.1016/j.gene.2024.148351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Our purpose is to unveil Andrographolide's potential multi-target and multi-mechanism therapeutic effects in treating OA via systematic network pharmacological analysis and cell experimental validation. MATERIALS AND METHODS Initially, we gathered data from Andrographolide and OA-related databases to obtain information on Andrographolide's biological properties and the targets linked with OA. We developed a bioinformatic network about Andrographolide and OA, whereby we analyzed the network to identify potential therapeutic targets and mechanisms of action of Andrographolide. Subsequently, we used molecular docking to analyze the binding sites of Andrographolide to the target proteins. At the same time, SDF-1 was used to construct an OA cell model to verify the therapeutic effect of Andrographolide on OA and its effect on target proteins. RESULTS Our experimental results show that Andrographolide has excellent pharmaceutical properties, by Lipinski's rules for drugs, suggesting that this compound can be considered to have a high therapeutic potential in drug development. 233 targets were preliminarily investigated, the mechanisms through which Andrographolide targets OA primarily involve the TNF signaling pathway, PI3K-AKT signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. These mechanisms target OA by influencing immune and inflammatory responses in the joints, regulating apoptosis to prevent chondrocyte death. Finally, TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, TGF-β1, and AKT1 were identified as 9 key targets of Andrographolide anti-OA. In addition, our molecular docking analyzes with cell experimental validation further confirm the network pharmacology results. According to our molecular docking results, Andrographolide can bind to all the hub target proteins and has a good binding ability (binding energy < -5 kcal/mol), with the strongest binding affinity to AKT1 of -9.2 kcal/ mol. The results of cell experiments showed that Andrographolide treatment significantly increased the cell viability and the expression of COL2A1 and ACAN proteins. Moreover, 30 μM Andrographolide significantly reversed SDF-1-induced increases in the protein expression of TNF-α, STAT3, TP53, IL-6, JUN, IL-1β, HIF-1α, and TGF-β1, and decreases in the protein expression of AKT1. CONCLUSION This study provides a comprehensive understanding of the potential therapeutic targets and mechanisms of action of Andrographolide in OA treatment. Our findings suggest that Andrographolide is a promising candidate for drug development in the management of OA.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tingting Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xianguang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
10
|
Ge W, Zhang X, Wang Q, Mao J, Jia P, Cai J. Dicoumarol attenuates NLRP3 inflammasome activation to inhibit inflammation and fibrosis in knee osteoarthritis. Mol Med Rep 2024; 29:100. [PMID: 38639180 DOI: 10.3892/mmr.2024.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 04/20/2024] Open
Abstract
Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin‑like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)‑induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis‑related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP‑induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF‑κB signaling, but it did directly interact with NOD‑like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half‑life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.
Collapse
Affiliation(s)
- Wenjie Ge
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Xian Zhang
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Qing Wang
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Jianjie Mao
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Pengfei Jia
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| | - Jianping Cai
- Department of Orthopedics and Traumatology, Wuxi Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
11
|
Zhang R, Han L, Lin W, Ba X, Yan J, Li T, Yang Y, Huang Y, Huang Y, Qin K, Chen Z, Wang Y, Tu S. Mechanisms of NLRP3 inflammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117432. [PMID: 37992880 DOI: 10.1016/j.jep.2023.117432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tingting Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuyao Yang
- Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Qin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Shi Y, Tao H, Li X, Zhang L, Li C, Sun W, Chu M, Chen K, Zhu P, Wang Q, Gu C, Wang L, Yang X, Hao Y. κ-Opioid receptor activation attenuates osteoarthritis synovitis by regulating macrophage polarization through the NF-κB pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:82-95. [PMID: 38013468 PMCID: PMC10875361 DOI: 10.3724/abbs.2023223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent and chronic joint disease that affects the aging population, causing pain and disability. Macrophages in synovium are important mediators of synovial inflammatory activity and pathological joint pain. Previous studies have demonstrated the significant involvement of κ-opioid receptor (KOR) in the regulation of pain and inflammation. Our study reveals a significant reduction in synovial KOR expression among patients and mice with OA. Here, we find that KOR activation effectively inhibits the expressions of the LPS-induced-inflammatory cytokines TNF-α and IL-6 by inhibiting macrophage M1 phenotype. Mechanistically, KOR activation effectively suppresses the proinflammatory factor secretion of macrophages by inhibiting the translocation of NF-κB into the nucleus. Our animal experiments reveal that activation of KOR effectively alleviates knee pain and prevents synovitis progression in OA mice. Consistently, KOR administration suppresses the expressions of M1 macrophage markers and the NF-κB pathway in the synovium of the knee. Collectively, our study suggests that targeting KOR may be a viable strategy for treating OA by inhibiting synovitis and improving joint pain in affected patients.
Collapse
Affiliation(s)
- Yi Shi
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Huaqiang Tao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Xueyan Li
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Liyuan Zhang
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Chunhui Li
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Wen Sun
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Miao Chu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Kai Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Pengfei Zhu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Qiang Wang
- Department of OrthopedicsChangshu Hospital Affiliated to Soochow UniversityFirst People’s Hospital of Changshu CityChangshu215500China
| | - Chengyong Gu
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Liangliang Wang
- Department of Orthopedicsthe Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical UniversityChangzhou213000China
| | - Xing Yang
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou215000China
| |
Collapse
|
13
|
Liu MH, He K, Liu F. Clinical effect of glucosamine hydrochloride combined with compound osteopeptide injection for knee osteoarthritis. Pak J Med Sci 2023; 39:1809-1813. [PMID: 37936773 PMCID: PMC10626061 DOI: 10.12669/pjms.39.6.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 09/02/2023] [Indexed: 11/09/2023] Open
Abstract
Objective To investigate the clinical efficacy of glucosamine hydrochloride combined with compound osteopeptide injection for knee osteoarthritis (KOA). Methods We retrospectively collected clinical data of 82 patients with KOA admitted to Shandong Weifang People's Hospital from April 2019 to September 2022. According to the treatment records, 35 patients received an intramuscular injection of compound osteopeptide (control group), and 47 patients received an injection of glucosamine hydrochloride combined with compound osteopeptide (observation group). We compared clinical efficacy, WOMAC scores, inflammatory factor and CD4+ and CD8+ levels, and the incidence of adverse reactions between the two groups. Results The observation group's total efficacy (95.74%) was significantly higher than the control group's (80.00%; P<0.05). Treatment led to a significant reduction in WOMAC scores in both groups. In addition, the levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) in the observation group were significantly lower than those in the control group (P<0.05); while the levels of CD4+ and CD8+ were significantly higher in the observation group (P<0.05). Conclusions Compared with compound osteopeptide injection alone, glucosamine hydrochloride combined with compound osteopeptide injection is more effective for patients with KOA, with improved level of inflammatory factors and immune function.
Collapse
Affiliation(s)
- Mo Han Liu
- Mo Han Liu, Department of Allergy, Shandong Weifang People’s Hospital, Weifang 261041, Shandong Province, P.R. China
| | - Kang He
- Kang He, Department of Allergy, Shandong Weifang People’s Hospital, Weifang 261041, Shandong Province, P.R. China
| | - Fengxia Liu
- Fengxia Liu, Department of Allergy, Shandong Weifang People’s Hospital, Weifang 261041, Shandong Province, P.R. China
| |
Collapse
|
14
|
Chen WJ, Zhuang Y, Peng W, Cui W, Zhang SJ, Wang JW. Du Huo Ji Sheng Tang inhibits Notch1 signaling and subsequent NLRP3 activation to alleviate cartilage degradation in KOA mice. Chin Med 2023; 18:80. [PMID: 37386638 DOI: 10.1186/s13020-023-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) has a complex pathological mechanism and is difficult to cure. The traditional medicine Du Huo Ji Sheng Tang (DHJST) has been used for the treatment of KOA for more than one thousand years, but its mechanism for treating KOA has not been revealed. In our previous study, we confirmed that DHJST inhibited the activation of NLRP3 signaling in rats and humans. In the current study, we aimed to determine how DHJST inhibits NLRP3 to alleviate knee cartilage damage. METHODS Mice were injected with NLRP3 shRNA or Notch1-overexpressing adenovirus into the tail vein to construct systemic NLRP3 low-expressing or Notch1 high-expressing mice. Mice were injected with papain into the knee joint to replicate the KOA model. DHJST was used to treat KOA model mice with different backgrounds. The thickness of the right paw was measured to evaluate toe swelling. The pathohistological changes and the levels of IL-1β, MMP2, NLRP3, Notch1, collagen 2, collagen 4, HES1, HEY1, and Caspase3 were detected by HE staining, ELISA, immunohistochemical staining, western blotting, or real-time qPCR. RESULTS DHJST reduced tissue swelling and serum and knee cartilage IL-1β levels, inhibited cartilage MMP2 expression, increased collagen 2 and collagen 4 levels, decreased Notch1 and NLRP3 positive expression rates in cartilage, and decreased HES1 and HEY1 mRNA levels in KOA model mice. In addition, NLRP3 interference decreased cartilage MMP2 expression and increased collagen 2 and collagen 4 levels without affecting the expression levels of notch1, HES1 and HEY1 mRNA levels in the synovium of KOA mice. In KOA mice with NLRP interference, DHJST further reduced tissue swelling and knee cartilage damage in mice. Finally, Notch1-overexpressing mice not only showed more severe tissue swelling and knee cartilage degradation but also abolished the therapeutic effect of DHJST on KOA mice. Importantly, the inhibitory effects of DHJST on the mRNA expression of NLRP3, Caspase3 and IL-1β in the knee joint of KOA mice were completely limited after Notch1 overexpression. CONCLUSION DHJST significantly reduced inflammation and cartilage degradation in KOA mice by inhibiting Ntoch1 signaling and its subsequent NLRP3 activation in the knee joint.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Yin Zhuang
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Wei Peng
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Wei Cui
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China
| | - Shu-Jun Zhang
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, No. 999 of Liangxi Road, Wuxi, 214062, China.
| | - Jian-Wei Wang
- Department of Orthopaedics, Wuxi Hospital of Traditional Chinese Medicine, No. 8 West of Zhongnan Road, Wuxi, 214071, China.
| |
Collapse
|
15
|
Han X, Lin D, Huang W, Li D, Li N, Xie X. Mechanism of NLRP3 inflammasome intervention for synovitis in knee osteoarthritis: A review of TCM intervention. Front Genet 2023; 14:1159167. [PMID: 37065495 PMCID: PMC10090545 DOI: 10.3389/fgene.2023.1159167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Objective: This paper briefly reviews the structure and function of NLRP3 inflammasomes, signaling pathway, relationship with synovitis in KOA, and intervention of traditional Chinese medicine (TCM) in NLRP3 inflammasomes as a means to improve its therapeutic potential and clinical application.Method: Literatures about NLRP3 inflammasomes and synovitis in KOA were reviewed to analyze and discuss.Result: NLRP3 inflammasome can activate NF-κB mediated signal transduction, which in turn causes the expression of proinflammatory cytokines, initiates the innate immune response, and triggers synovitis in KOA. The TCM monomer/active ingredient, decoction, external ointment, and acupuncture regulating NLRP3 inflammasomes are helpful to alleviate synovitis in KOA.Conclusion: The NLRP3 inflammasome plays a significant role in the pathogenesis of synovitis in KOA, TCM intervention targeting the NLRP3 inflammasome can be a novel approach and therapeutic direction for the treatment of synovitis in KOA.
Collapse
Affiliation(s)
- Xianfu Han
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Demin Lin
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weiwei Huang
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Dingpeng Li
- Department of Orthopedics, The Second People’s Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Ning Li
- Clinical Medical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Ning Li, ; Xingwen Xie,
| | - Xingwen Xie
- Department of Orthopedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Ning Li, ; Xingwen Xie,
| |
Collapse
|
16
|
Xie W, Qi S, Dou L, Wang L, Wang X, Bi R, Li N, Zhang Y. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154663. [PMID: 36657317 DOI: 10.1016/j.phymed.2023.154663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Achyranthes bidentata Blume (A. bidentata) is a common Chinese herb used to treat osteoarthritis (OA). Achyranthoside D (Ach-D) is a glucuronide saponin isolated from A. bidentata. PURPOSE To assess the mechanisms of action of Ach-D and its effects on OA. METHODS The effects of Ach-D were evaluated in rats underwent anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx) and in interleukin (IL)-1β-induced chondrocytes. Histological changes in rat cartilage tissues were detected using Safranin O-Fast green and haematoxylin-eosin staining. Immunohistochemical staining, qRT-PCR, ELISA, immunoblotting, and immunofluorescence were conducted to examine cartilage degeneration-related and inflammation-related factor expression. CCK-8, LDH assay, and EdU staining were performed to detect chondrocyte death. RESULTS Ach-D dose-dependently reduced the Osteoarthritis Research Society International (OARSI) scores, alleviated cartilage injury, and decreased the serum concentrations of CTX-II and COMP in ACLT-MMx models. Ach-D increased the expression levels of collagen II and aggrecan and decreased the levels of cartilage degeneration-related proteins, ADAMTS-5, MMP13, and MMP3, in rat cartilage tissues. Additionally, nod-like receptor protein 3 (NLRP3)-related inflammation was reduced by Ach-D, as shown by the significantly inhibited expression levels of NLRP3, ASC, GSDMD, IL-6, TNF-α, IL-1β, and IL-18 in rat cartilage tissues. In primary rat chondrocytes, Ach-D protected against IL-1β-induced viability loss and LDH release. Wnt3a is the target protein of Ach-D. Mechanistically, Ach-D alleviated OA by inhibiting Wnt signalling. CONCLUSION ACH-D may reduce inflammation and cartilage degeneration by inhibiting the Wnt signalling pathway, thereby reducing OA.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Shangfeng Qi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Luming Dou
- Bone traumatology department, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265600, Shandong, PR China
| | - Lei Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Xiangpeng Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Rongxiu Bi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Nianhu Li
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| | - Yongkui Zhang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| |
Collapse
|
17
|
Zhang XA, Kong H. Mechanism of HIFs in osteoarthritis. Front Immunol 2023; 14:1168799. [PMID: 37020556 PMCID: PMC10067622 DOI: 10.3389/fimmu.2023.1168799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Osteoarthritis (OA) is a common disabling disease which has a high incidence rate in the elderly. Studies have found that many factors are involved in the pathogenesis of OA. Hypoxia-inducible factors (HIFs) are core regulators that induce hypoxia genes, repair the cellular oxygen environment, and play an important role in the treatment of OA. For example, HIF-1α can maintain the stability of the articular cartilage matrix, HIF-2α is able to cause chondrocyte apoptosis and intensify in-flammatory response, and HIF-3α may be the target gene of HIF-1α and HIF-2α, thereby playing a negative regulatory role. This review examines the mechanism of HIFs in cartilage extracellular matrix degradation, apoptosis, inflammatory reaction, autophagy and then further expounds on the roles of HIFs in OA, consequently providing theoretical support for the pathogenesis of OA and a new target for OA treatment.
Collapse
|
18
|
Ramirez-Perez S, Reyes-Perez IV, Martinez-Fernandez DE, Hernandez-Palma LA, Bhattaram P. Targeting inflammasome-dependent mechanisms as an emerging pharmacological approach for osteoarthritis therapy. iScience 2022; 25:105548. [PMID: 36465135 PMCID: PMC9708800 DOI: 10.1016/j.isci.2022.105548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arthritic diseases have attracted enormous scientific interest because of increased worldwide prevalence and represent a significant socioeconomic burden. Osteoarthritis (OA) is the most prevalent form of arthritis. It is a disorder of the diarthrodial joints, characterized by degeneration and loss of articular cartilage associated with adjacent subchondral bone changes. Chronic and unresolving inflammation has been identified as a critical factor driving joint degeneration and pain in OA. Despite numerous attempts at therapeutic intervention, no effective disease-modifying agents targeting OA inflammation are available to the patients. Inflammasomes are protein complexes known to play a critical role in the inflammatory pathology of several diseases, and their roles in OA pathogenesis have become evident over the last decade. In this sense, it is relevant to evaluate the vital role of inflammasomes as potential modulators of pathogenic features in OA. This review will provide an overview and perspectives on why understanding inflammasome activation is critical for identifying effective OA therapies. We elaborate on the contribution of extracellular mediators from the circulatory system and synovial fluid as well as intracellular activators within the synovial fibroblasts and articular chondrocytes toward invoking the inflammasome in OA. We further discuss the merits of emerging inflammasome targeting therapies and speculate on the potential strategies for inflammasome blockade for OA therapy.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Itzel Viridiana Reyes-Perez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Diana Emilia Martinez-Fernandez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco 44430, México
| | - Luis Alexis Hernandez-Palma
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición (IICAN), Centro Universitario del Sur, Universidad de Guadalajara, Guadalajara, Jalisco 49000, México
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México
| | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Guo H, Huang J, Liang Y, Wang D, Zhang H. Focusing on the hypoxia-inducible factor pathway: role, regulation, and therapy for osteoarthritis. Eur J Med Res 2022; 27:288. [PMID: 36503684 PMCID: PMC9743529 DOI: 10.1186/s40001-022-00926-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic disabling disease that affects hundreds of millions of people around the world. The most important pathological feature is the rupture and loss of articular cartilage, and the characteristics of avascular joint tissues lead to limited repair ability. Currently, there is no effective treatment to prevent cartilage degeneration. Studies on the mechanism of cartilage metabolism revealed that hypoxia-inducible factors (HIFs) are key regulatory genes that maintain the balance of cartilage catabolism-matrix anabolism and are considered to be the major OA regulator and promising OA treatment target. Although the exact mechanism of HIFs in OA needs to be further clarified, many drugs that directly or indirectly act on HIF signaling pathways have been confirmed by animal experiments and regarded as promising treatments for OA. Targeting HIFs will provide a promising strategy for the development of new OA drugs. This article reviews the regulation of HIFs on intra-articular cartilage homeostasis and its influence on the progression of osteoarthritis and summarizes the recent advances in OA therapies targeting the HIF system.
Collapse
Affiliation(s)
- Hanhan Guo
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jianghong Huang
- grid.452847.80000 0004 6068 028XDepartment of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, 518035 China ,grid.12527.330000 0001 0662 3178Innovation Leading Engineering Doctor, Tsinghua University Shenzhen International Graduate School, Class 9 of 2020, Shenzhen, 518055 China
| | - Yujie Liang
- grid.452897.50000 0004 6091 8446Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 China
| | - Daping Wang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.452847.80000 0004 6068 028XDepartment of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 China
| | - Huawei Zhang
- grid.263817.90000 0004 1773 1790Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
20
|
Shi Q, Huang L, Duan J, Kuang G, Lu M, Tan X. The effects of Jiawei Duhuo Jisheng mixture on Wnt/β-catenin signaling pathway in the synovium inflamed by knee osteoarthritis: An in vitro and in vivo experiment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115363. [PMID: 35551975 DOI: 10.1016/j.jep.2022.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is one of the common age-degenerative diseases. Recent studies have demonstrated that the pathogenesis of KOA is closely related to synovial lesions. Jiawei Duhuo Jisheng mixture (JDJM) has shown great potential in the treatment of KOA. However, the effect and mechanism of JDJM on synovial lesions of KOA remain unclear. AIM OF THE STUDY The regulatory effect of JDJM on the Wnt/β-catenin signaling pathway in KOA inflamed synovium was studied via in vitro and in vivo experiments, respectively. MATERIALS AND METHODS For the in vitro experiment, fibroblasts were isolated from the rabbit synovium with KOA. The fibroblasts were grouped as follows: the vehicle group was given 0.5% FBS; the inhibitor group was treated with 0.5% volume fraction of XAV939; the normal serum groups and JDJM serum groups were treated with 5%, 10%, and 20% volume fractions of normal serum and JDJM-containing serum. The expression levels of Wnt3a, β-catenin, Cyclin D1, metalloproteinase-7(MMP-7) and cyclooxygenase-2(COX-2) were detected by different assays 48 and 72 h after the intervention. For the in vivo experiment, the rabbit KOA model was prepared using the improved Hulth modeling method, whereby all rabbits were randomly divided into normal control, model control, positive control, and traditional Chinese medicine (TCM) groups. The expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 were detected by different assays in the 2, 4, and 8 weeks of treatment. RESULTS In the two test results of in vitro experiments, the normal serum group was compared with the JDJM-containing serum group with the same volume fraction, demonstrating that mRNA transcription and protein expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7, and COX-2 in the latter decreased (P < 0.05), with more pronounced effects observed in the group treated with 20% volume fraction of JDJM serum. Compared with the inhibitor group, there was no significant difference (P > 0.05) in the mRNA transcription and protein expression levels, i.e., Wnt3a, β-catenin, Cyclin D1, and MMP-7 were observed in the JDJM serum groups, except for a significant decrease (P < 0.05) in the level of mRNA transcription and protein expression of COX-2. Based on the in vivo experiment, compared to the model control group, articular cartilage, synovial hyperplasia, and the inflammatory reaction of the TCM group at different treatment times were significantly improved. The mRNA transcription level of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 detected by RT-qPCR and the protein expression level of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 detected by Western blot were significantly reduced (P < 0.05), and the effect was more evident at the eighth week. CONCLUSION JDJM can regulate the synovial Wnt/β-catenin signaling pathway in KOA models, reduce the mRNA transcription and protein expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7, and COX-2 in the synovium, thus inhibiting synovial inflammation and protecting articular cartilage, which could be the key mechanism of action in treating this disease.
Collapse
Affiliation(s)
- Qiyun Shi
- Hunan University of TCM, Changsha, Hunan, 410208, China; Luoyang Orthopedic-Traumatological Hospital of Henan Province/Orthopedic Hospital of Henan Province, Luoyang, Henan, 471000, China.
| | - Lu Huang
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Jiahao Duan
- Hunan University of TCM, Changsha, Hunan, 410208, China.
| | - Gaoyan Kuang
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Min Lu
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Xuyi Tan
- Hunan University of TCM, Changsha, Hunan, 410208, China; Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China.
| |
Collapse
|
21
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
22
|
NLRP3 Knockout Protects against Lung Injury Induced by Cerebral Ischemia–Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260102. [PMID: 35432726 PMCID: PMC9012655 DOI: 10.1155/2022/6260102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Background and Purpose. Stroke-associated pneumonia (SAP) is a common complication after stroke that increases the mortality of patients. Although there have been many studies suggesting that stroke can increase patient susceptibility to pneumonia, it is still unknown whether the treatment of stroke can also improve lung injury. We used NLRP3-knockout (NLRP3-KO) mice to verify that an improvement in brain injury would also be beneficial to lung injury and further confirm the relationship between stroke and pneumonia. Methods. C57/BL6 wild-type (WT) and NLRP3-KO mice were used to construct middle cerebral artery occlusion (MCAO) models. 2,3,5-Triphenyltetrazolium chloride (TTC) was used to evaluate brain damage, and neurological deficits were assessed. Then, lung tissue injury was examined in the different groups of mice by hematoxylin-eosin (HE) staining. Inflammation (macrophage and neutrophil infiltration, NLRP3-associated inflammatory molecules) and oxidative stress (reactive oxygen species, ROS) in the lungs were comprehensively examined by immunofluorescence staining and Western blotting. Results. First, our findings demonstrated that NLRP3 knockout had a protective effect against cerebral ischemia–reperfusion injury after MCAO. Second, by reducing brain damage after MCAO, lung inflammation was also alleviated. Immunofluorescence staining showed that NLRP3-KO-MCAO mice had reduced inflammatory effector molecule (caspase-1 and IL-1β) expression and macrophage and neutrophil infiltration in the lung, as well as remissive oxidative stress state in the lung, compared with WT-MCAO mice. We also observed a decrease in phosphorylated p65 (p-p65) (an NF-κB factor) in NLRP3-KO-MCAO mice, suggesting that the NF-κB pathway was involved in the protective effect of NLRP3 gene knockout on stroke-induced lung injury. Conclusions. NLRP3 inflammasome knockout not only is beneficial for cerebral ischemia–reperfusion injury but also reduces the severity of poststroke lung injury by reducing brain damage. It has been confirmed that there is a relationship between central insult and peripheral organ injury, and protecting the brain can prevent peripheral organ damage.
Collapse
|
23
|
Feldt J, Schicht M, Welss J, Gelse K, Sesselmann S, Tsokos M, Socher E, Garreis F, Müller T, Paulsen F. Production and Secretion of Gelsolin by Both Human Macrophage- and Fibroblast-like Synoviocytes and GSN Modulation in the Synovial Fluid of Patients with Various Forms of Arthritis. Biomedicines 2022; 10:723. [PMID: 35327525 PMCID: PMC8945596 DOI: 10.3390/biomedicines10030723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Gelsolin (GSN) is an actin-binding protein involved in cell formation, metabolism and wound closure processes. Since this protein is known to play a role in arthritis, here we investigate how the synovial membrane with its specific synoviocytes contributes to the expression of GSN and how the amount of GSN expressed is modulated by different types of arthritis. Synovial membranes from adult healthy subjects and patients with rheumatoid arthritis (RA) and osteoarthritis (OA) are analyzed by immunofluorescence, Western blot and ELISA. Macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) were isolated, cultured and analyzed for their potential to produce and secrete GSN. In addition, the GSN concentrations in the synovial fluid of various forms of arthritis are determined by ELISA. GSN is produced by the healthy and arthritic synovial membranes. Both forms of synoviocytes (MLS and FLS) release GSN. The results show that there is a significant reduction in GSN in the synovial fluid in adult patients with OA. This reduction is also detectable in adult patients with RA but is not as evident. In juvenile arthritis, there is a slight increase in GSN concentration in the synovial fluid. This study shows that primary MLS and FLS express GSN and that these cells, in addition to articular chondrocytes, contribute to GSN levels in synovial fluid. Furthermore, GSN concentrations are modulated in different types of arthritis. Further studies are needed to fully understand how GSN is involved in joint homeostasis.
Collapse
Affiliation(s)
- Jessica Feldt
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Jessica Welss
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Kolja Gelse
- Department of Trauma Surgery and Orthopaedic Surgery, Hospital Traunstein, 83278 Traunstein, Germany;
| | - Stefan Sesselmann
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, 92224 Amberg, Germany;
| | - Michael Tsokos
- Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| | - Thomas Müller
- Department of Child and Adolescent Medicine, Pediatrics I, Pediatric Rheumatology, Martin Luther University Halle-Wittenberg (MLU), 06108 Halle (Saale), Germany;
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 19, 91054 Erlangen, Germany; (J.F.); (J.W.); (E.S.); (F.G.)
| |
Collapse
|
24
|
Yan J, Ding D, Feng G, Yang Y, Zhou Y, Ma L, Guo H, Lu Z, Jin Q. Metformin reduces chondrocyte pyroptosis in an osteoarthritis mouse model by inhibiting NLRP3 inflammasome activation. Exp Ther Med 2022; 23:222. [PMID: 35222699 PMCID: PMC8812147 DOI: 10.3892/etm.2022.11146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease, and its incidence is increasing with the ageing of the population. Metformin, as the first-line medication for the treatment of diabetes, has received increasing attention for its role in OA. The purpose of the present study was to confirm the therapeutic effect of metformin in a mouse model of OA and to determine the mechanism underlying the resultant delay in OA progression. The right knees of 8-week-old C57BL/6 male mice were subjected to destabilization of the medial meniscus (DMM). Metformin (200 mg/kg) was then administered daily for 4 or 8 weeks. Safranin O-fast green staining, H&E staining and micro-CT were used to analyse the structure and morphological changes. Immunohistochemical staining was used to detect type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), NOD-like receptor protein 3 (NLRP3), caspase-1, gasdermin D (GSDMD) and IL-1β protein expression. Reverse transcription-quantitative PCR was used to detect the mRNA expression of NLRP3, caspase-1, GSDMD and IL-1β. Histomorphological staining showed that metformin delayed the progression of OA in the DMM model. With respect to cartilage, metformin decreased the Osteoarthritis Research Society International score, increased the thickness of hyaline cartilage and decreased the thickness of calcified cartilage. Regarding the mechanism, in cartilage, metformin increased the expression of Col II and decreased the expression of MMP-13, NLRP3, caspase-1, GSDMD and IL-1β. In addition, in subchondral bone, metformin inhibited osteophyte formation, increased the bone volume fraction (%) and the bone mineral density (g/cm3), decreased the trabecular separation (mm) in early stage of osteoarthritis (4 weeks) but the opposite in an advanced stage of osteoarthritis (8 weeks). Overall, metformin inhibited the activation of NLRP3 inflammasome, decreased cartilage degradation, reversed subchondral bone remodelling and inhibited chondrocyte pyroptosis.
Collapse
Affiliation(s)
- Jiangbo Yan
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Dong Ding
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Gangning Feng
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Yang
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China.,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Zhou
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhidong Lu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
25
|
Bolia IK, Mertz K, Faye E, Sheppard J, Telang S, Bogdanov J, Hasan LK, Haratian A, Evseenko D, Weber AE, Petrigliano FA. Cross-Communication Between Knee Osteoarthritis and Fibrosis: Molecular Pathways and Key Molecules. Open Access J Sports Med 2022; 13:1-15. [PMID: 35261547 PMCID: PMC8898188 DOI: 10.2147/oajsm.s321139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Knee fibrosis is characterized by the presence of excessive connective tissue due to dysregulated fibroblast activation following local or systemic tissue damage. Knee fibrosis constitutes a major clinical problem in orthopaedics due to the severe limitation in the knee range of motion that leads to compromised function and patient disability. Knee osteoarthritis is an extremely common orthopedic condition that is associated with patient disability and major costs to the health-care systems worldwide. Although knee fibrosis and osteoarthritis (OA) have traditionally been perceived as two separate pathologic entities, recent research has shown common ground between the pathophysiologic processes that lead to the development of these two conditions. The purpose of this review was to identify the pathophysiologic pathways as well as key molecules that are implicated in the development of both knee OA and knee fibrosis in order to understand the relationship between the two diagnoses and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Ioanna K Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA,Correspondence: Ioanna K Bolia, 1520 San Pablo Street Suite 2000, Los Angeles, CA, 90033, USA, Tel +1 9703432813, Fax +1 818-658-5925, Email
| | - Kevin Mertz
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ethan Faye
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Justin Sheppard
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Sagar Telang
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Jacob Bogdanov
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Laith K Hasan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Aryan Haratian
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Denis Evseenko
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|