1
|
Tan SY, Foo CN, Ng FL, Tan CH, Lim YM. Gene Expression Profiling of Maslinic Acid-treated MCF-7 Breast Cancer Cells Using Nanostring nCounter Pancancer Pathway Panel. Gene 2025; 935:149043. [PMID: 39486662 DOI: 10.1016/j.gene.2024.149043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Breast cancer remains a significant global health concern, impacting millions of women every year. Maslinic acid (MA), a pentacyclic triterpene has been found to exert promising anticancer effect in various cancers, including breast cancer, yet the underlying mechanisms remain unclear. This study aims to elucidate the anticancer properties of MA via gene expression profiles in breast cancer cells. Cytotoxicity assay results revealed that MCF-7 exerts the highest sensitivity after 72 h of MA treatment followed by T-47D and MDA-MB-231. MCF-7 were then selected for in-depth analysis using the Nanostring nCounter Pancancer Pathway Panel to analyze the differential expression of genes (DEGs). Across three time points (24, 48, and 72 h), 20 significant DEGs were identified, of which 5 were upregulated and 15 were downregulated. In silico analysis indicated that these DEGs were involved in Pathway of Cancer, Focal Adhesion-PI3K-mTOR Signaling Pathway, PI3K-Akt, and Ras Signaling Pathway. The regulation of these DEGs contributes to several cellular activities such as apoptosis, inhibition of cell proliferation, cell cycle and survival, reduction of glycolysis, angiogenesis, and DNA repair. Additionally, the unfolded protein response emerged as a noteworthy biological process in this study. This study unravels the molecular mechanisms underpinning the therapeutic potential of MA against breast cancer.
Collapse
Affiliation(s)
- Soon Yan Tan
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Population Medicine, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Foong Leng Ng
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Chinese Medicine, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Chee Hong Tan
- Quiliniq Lifesciences Sdn. Bhd, Unit 1-2, Menara Oval Damansara, Taman Tun Dr. Ismail, 60000 Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Pre-clinical Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Ye Q, Chen D, Liu X, Yang B, Li G, Ma J, Ai L, Li Z, Yang H, Yu T, Tan J. The EFNA4 gene is a potential prognostic biomarker in pancreatic cancer: a bioinformatics analysis. J Gastrointest Oncol 2024; 15:1165-1178. [PMID: 38989440 PMCID: PMC11231855 DOI: 10.21037/jgo-24-227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Background Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Qiuwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dong Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xin Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Burong Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liang Ai
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhilin Li
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Huaiyong Yang
- Clinical Pharmacy Department, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Tan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, China
| |
Collapse
|
3
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Mendonça JB, Fernandes PV, Fernandes DC, Rodrigues FR, Waghabi MC, Tilli TM. Unlocking Overexpressed Membrane Proteins to Guide Breast Cancer Precision Medicine. Cancers (Basel) 2024; 16:1402. [PMID: 38611080 PMCID: PMC11011122 DOI: 10.3390/cancers16071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BC) is a prevalent form of cancer affecting women worldwide. However, the effectiveness of current BC drugs is limited by issues such as systemic toxicity, drug resistance, and severe side effects. Consequently, there is an urgent need for new therapeutic targets and improved tumor tracking methods. This study aims to address these challenges by proposing a strategy for identifying membrane proteins in tumors that can be targeted for specific BC therapy and diagnosis. The strategy involves the analyses of gene expressions in breast tumor and non-tumor tissues and other healthy tissues by using comprehensive bioinformatics analysis from The Cancer Genome Atlas (TCGA), UALCAN, TNM Plot, and LinkedOmics. By employing this strategy, we identified four transcripts (LRRC15, EFNA3, TSPAN13, and CA12) that encoded membrane proteins with an increased expression in BC tissue compared to healthy tissue. These four transcripts also demonstrated high accuracy, specificity, and accuracy in identifying tumor samples, as confirmed by the ROC curve. Additionally, tissue microarray (TMA) analysis revealed increased expressions of the four proteins in tumor tissues across all molecular subtypes compared to the adjacent breast tissue. Moreover, the analysis of human interactome data demonstrated the important roles of these proteins in various cancer-related pathways. Taken together, these findings suggest that LRRC15, EFNA3, TSPAN13, and CA12 can serve as potential biomarkers for improving cancer diagnosis screening and as suitable targets for therapy with reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Júlia Badaró Mendonça
- Translational Oncology Platform, Center for Technological Development in Health, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratory of Applied Genomics and Bioinnovation, Instituto Oswaldo Cruz (IOC) Fiocruz, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Priscila Valverde Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Danielle C. Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Fabiana Resende Rodrigues
- Divisão de Patologia (DIPAT), Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.V.F.); (D.C.F.); (F.R.R.)
| | - Mariana Caldas Waghabi
- Laboratory of Applied Genomics and Bioinnovation, Instituto Oswaldo Cruz (IOC) Fiocruz, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratory of Clinical and Experimental Pathophysiology, IOC, Fiocruz, Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
5
|
Zhou Y, Zhou X, Sun J, Wang L, Zhao J, Chen J, Yuan S, He Y, Timofeeva M, Spiliopoulou A, Mesa‐Eguiagaray I, Farrington SM, Ding K, Dunlop MG, Qian X, Theodoratou E, Li X. Exploring the cross-cancer effect of smoking and its fingerprints in blood DNA methylation on multiple cancers: A Mendelian randomization study. Int J Cancer 2023; 153:1477-1486. [PMID: 37449541 PMCID: PMC10952911 DOI: 10.1002/ijc.34656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Aberrant smoking-related DNA methylation has been widely investigated as a carcinogenesis mechanism, but whether the cross-cancer epigenetic pathways exist remains unclear. We conducted two-sample Mendelian randomization (MR) analyses respectively on smoking behaviors (age of smoking initiation, smoking initiation, smoking cessation, and lifetime smoking index [LSI]) and smoking-related DNA methylation to investigate their effect on 15 site-specific cancers, based on a genome-wide association study (GWAS) of 1.2 million European individuals and an epigenome-WAS (EWAS) of 5907 blood samples of Europeans for smoking and 15 GWASs of European ancestry for multiple site-specific cancers. Significantly identified CpG sites were further used for colocalization analysis, and those with cross-cancer effect were validated by overlapping with tissue-specific eQTLs. In the genomic MR, smoking measurements of smoking initiation, smoking cessation and LSI were suggested to be casually associated with risk of seven types of site-specific cancers, among which cancers at lung, cervix and colorectum were provided with strong evidence. In the epigenetic MR, methylation at 75 CpG sites were reported to be significantly associated with increased risks of multiple cancers. Eight out of 75 CpG sites were observed with cross-cancer effect, among which cg06639488 (EFNA1), cg12101586 (CYP1A1) and cg14142171 (HLA-L) were validated by eQTLs at specific cancer sites, and cg07932199 (ATXN2) had strong evidence to be associated with cancers of lung (coefficient, 0.65, 95% confidence interval [CI], 0.31-1.00), colorectum (0.90 [0.61, 1.18]), breast (0.31 [0.20, 0.43]) and endometrium (0.98 [0.68, 1.27]). These findings highlight the potential practices targeting DNA methylation-involved cross-cancer pathways.
Collapse
Affiliation(s)
- Yajing Zhou
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuan Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Centre for Population Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography Research UnitInstitute of Public Health, University of Southern DenmarkOdenseDenmark
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
| | - Ines Mesa‐Eguiagaray
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Colon Cancer Genetics Group, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xiao Qian
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Evropi Theodoratou
- Centre for Global Health Sciences, Usher InstituteUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Wei Y, Jiao Z, Sun T, Lai Z, Wang X. Molecular Mechanisms Behind Vascular Mimicry as the Target for Improved Breast Cancer Management. Int J Womens Health 2023; 15:1027-1038. [PMID: 37465721 PMCID: PMC10350405 DOI: 10.2147/ijwh.s406327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Breast cancer has a high incidence and mortality rate in women due to metastasis and drug resistance which is associated with vasculogenic mimicry (VM). We purposed to explore VM formulation in breast cancer and mechanism of which is involved in EphA2/PIK3R1/CTNNB1 in the present study. Methods The expression of EphA2/PIK3R1/CTNNB1 and breast cancer patient prognosis was analyzed from TCGA data, both gene and protein expression as well as VM were measured in human breast cancer tissue samples collected in our study. The relationship between EphA2/PIK3R1/CTNNB1 and the formation of VM in breast cancer and its possible regulatory mechanism was explored. Results The results of the bioinformatics analysis based on TCGA showed that the expression of PIK3R1/ CTNNB1/ PECAM1 (CD31) in tumor tissues was significantly lower than that in normal tissues. EphA2 was positively correlated with PIK3R1, PIK3R1 with CTNNB1, and CTNNB1 with PECAM1 expression in breast cancer tissues. The results of detection in breast cancer and adjacent tissues indicated that the expression of EphA2/PIK3R1/CTNNB1 in cancer tissues was significantly lower than that in adjacent tissues. The expression of PIK3R1 was positively correlated with EphA2 and CTNNB1 expression, respectively, as well as EphA2 expression correlated with CTNNB1 expression positively. VM formation was significantly increased in breast cancer tissues compared with adjacent tissues. Conclusion Our results suggested that the formation of VM in breast cancer may be related to the EphA2/PIK3R1/CTNNB1 molecular signaling pathway.
Collapse
Affiliation(s)
- Yali Wei
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Zheng Jiao
- Department of Neurosurgery, Youanmen Hospital, Beijing, People’s Republic of China
| | - Tianpei Sun
- Clinical School of Medicine, Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Zhiwei Lai
- Department of Thoracic Surgery, Shanghai Sixth People’s Hospital Fujian Campus, Jinjiang, Fujian Province, People’s Republic of China
| | - Xiaochun Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| |
Collapse
|
7
|
Dai T, Liu Y, Cao R, Cao J. CBX7 regulates metastasis of basal-like breast cancer through Twist1/EphA2 pathway. Transl Oncol 2022; 24:101468. [PMID: 35843065 PMCID: PMC9294549 DOI: 10.1016/j.tranon.2022.101468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/09/2022] Open
Abstract
CBX7 was down-regulated, while twist and EphA2 were up-regulated in BLBC. EphA2 or twist silencing inhibited BLBC cell proliferation and metastasis. Twist bond to EphA2 and increased the expression of EphA2. CBX7 blocked the binding of twist to EphA2 and inhibited EphA2 expression. CBX7 regulated BLBC growth and metastasis via Twist/EphA2 axis.
Background Basal-like breast cancer (BLBC) is an important subtype of breast cancer. Twist1 is a key transcription factor in BLBC metastasis, which serves a key role in tumorigenesis. The potential mechanism of Twist1 in BLBC remains to be elucidated. Here, we explored the role and molecular mechanism of Twist1 in BLBC. Methods The levels of CBX7, Twist1 and EphA2 in BLBC tissues and cells were determined by Western blot. ChIP and dual-luciferase reporter assays confirmed the interaction between CBX7, Twist1 and EphA2 promoter. The cellular functions were analyzed by CCK-8, colony formation, wound healing and Transwell assays. Expression of EMT related proteins was analyzed by Western blot. IHC measured the expression of CBX7, Twist1 and EphA2 in tumor tissues. Results CBX7 was down-regulated in BLBC tissues and cells, whereas Twist1 and EphA2 were up-regulated. Twist1 silencing inhibited the cell migration, invasion and cancer metastasis of BLBC through targeting EphA2 and regulating EphA2 expression. Additionally, CBX7 blocked the binding of Twist1 to EphA2 promoter and inhibited EphA2 expression and suppressed BLBC growth and metastasis via Twist1/EphA2 axis. Conclusion CBX7 suppresses BLBC growth and metastasis through Twist1/EphA2 pathway. Our study may provide evidence and new therapeutic targets for the comprehensive treatment of BLBC.
Collapse
Affiliation(s)
- Tao Dai
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410013 Hunan Province, PR China
| | - Yiqi Liu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Jingying Cao
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha 410013 Hunan Province, PR China.
| |
Collapse
|
8
|
Xie R, Yuan M, Jiang Y. The Pan-Cancer Crosstalk Between the EFNA Family and Tumor Microenvironment for Prognosis and Immunotherapy of Gastric Cancer. Front Cell Dev Biol 2022; 10:790947. [PMID: 35309935 PMCID: PMC8924469 DOI: 10.3389/fcell.2022.790947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: EFNA1-5 have important physiological functions in regulating tumorigenesis and metastasis. However, correlating EFNA genes in the tumor immune microenvironment (TIME), and the prognosis of patients with gastric cancer remains to be determined. Methods: Using public databases, the expression of EFNA1-5 in pan-cancer and gastric cancer was comprehensively analyzed using UCSC Xena, the Oncomine dataset and UALCAN. We further completed survival analysis by Kaplan-Meier plotter to evaluate the prognosis of the high and low expression groups of the EFNAs gene in patients with gastric cancer. The TIMER tool was used to reveal the correlation between immune cell infiltration and genes of interest. Spearman correlation was used to find an association between the EFNA genes and tumor stem cells, TIME, microsatellite instability (MSI) or tumor mutational burden (TMB). We also used cBioportal, GeneMANIA and STRINGS to explore the types of changes in these genes and the protein interactions. Finally, we described the TIME based on QUANTISEQ algorithm, predicted the relationship between the EFNA genes and half-maximal inhibitory concentration (IC50), and analyzed the relationship between the EFNA family genes and immune checkpoints. Results: The expression of EFNA1, EFNA3, EFNA4, and EFNA5 was elevated in pan-cancer. Compared with normal adjacent tissues, EFNA1, EFNA3, and EFNA4 were up-regulated in gastric cancer. In terms of the influence on the survival of patients, the expression of EFNA3 and EFNA4 were related to overall survival (OS) and disease-free survival (DFS) for patients with gastric cancer. High expression of EFNA5 often predicted poor OS and DFS. In gastric cancer, the expression of EFNA3 and EFNA4 showed a significant negative correlation with B cells. The higher the expression of EFNA5, the higher the abundance of B cells, CD4+T cells and macrophages. CD8+T cells, dendritic cells infiltration and EFNA1-4 expression were negatively correlated. The infiltration of CD4+T cells, macrophages and neutrophils was negatively correlated with the expression of EFNA1, EFNA3, and EFNA4. TMB and MSI were positively correlated with EFNA3/EFNA4 expression. In the tumor microenvironment and drug sensitivity, EFNA3/4/5 also showed a significant correlation. In addition, we explored the relationship between the EFNA family genes and the immune microenvironment (B cells, M2 macrophages, monocytes, CD8+ T cells, regulatory T cells, myeloid dendritic cells, natural killer cells, non-regulatory CD4+ T cells), immune checkpoint (PDCD1, PDCD1LG2, CD274, CTLA4), and IC50 of common chemotherapeutic drugs for gastric cancer (5-fluorouracil, cisplatin, docetaxel and gemcitabine). Conclusions: Our study provides new ideas for tumor treatment and prognosis from the perspective of TIME, and nominates EFNA1-5 to become potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Rongrong Xie
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengping Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|