1
|
Meng X, Yang H, Chen F, Li B, Wu Y, Wang R. Exercise preconditioning mitigates brain injury after cerebral ischemia-reperfusion injury in rats by restraining TIMP1. Immun Inflamm Dis 2024; 12:e70008. [PMID: 39364701 PMCID: PMC11450454 DOI: 10.1002/iid3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cerebral ischemic disease is a common cerebrovascular disease, especially ischemic stroke. Exercise has protective functions on brain tissues following cerebral ischemia-reperfusion injury (CIRI), but its preventive effects and mechanisms in CIRI remain unclear. We aimed to investigate the effects and mechanisms of exercise preconditioning on CIRI. METHODS The middle cerebral artery occlusion (MCAO) operation was prepared to establish CIRI rats. All rats were randomized into the MCAO, exercise (exercise preconditioning plus MCAO operation), vector (exercise preconditioning, MCAO operation plus intraventricular injection of empty vector), and tissue inhibitor of metalloprotease 1 overexpression (OE-TIMP1, exercise preconditioning, MCAO operation plus intraventricular injection of OE-TIMP1) groups. RESULTS The results indicated that exercise preconditioning suppressed approximately 66.67% of neurological deficit scores and 73.79% of TIMP1 mRNA expression in MCAO rats, which were partially offset by OE-TIMP1. The protective effects of exercise against neuron death status and cerebral infarction size in MCAO rats were reversed by OE-TIMP1. It also confirmed that exercise weakened apoptosis and oxidative stress damage, with notable increases of B-cell lymphoma-2, superoxide dismutase, and glutathione peroxidase production, and evident decreases of BCL2-associated X, caspase 3, and malondialdehyde in MCAO rats, while these effects were partially reversed by OE-TIMP1. Additionally, the inhibitory effects of exercise on the protein levels of TIMP1, hypoxia-inducible factor-alpha, vascular endothelial growth factor receptor 2, vascular endothelial growth factor, and neurogenic locus notch homolog protein 1 in MCAO rats were partially reversed by OE-TIMP1. CONCLUSION Altogether, exercise preconditioning had protective effects on CIRI by restraining TIMP1, which provided new therapeutic strategies for preventing CIRI.
Collapse
Affiliation(s)
- Xiangbo Meng
- Department of Rehabilitation MedicineThe Affiliated Hospital of Hangzhou Normal UniversityHangzhou310000Zhejiang ProvinceChina
| | - Hui Yang
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Feifeng Chen
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Baohua Li
- Department of NeurologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Yan Wu
- Department of Rehabilitation MedicineHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| | - Rong Wang
- Department of RadiologyHangzhou First People's HospitalHangzhou310006Zhejiang ProvinceChina
| |
Collapse
|
2
|
Bi X, Fang J, Jin X, Thirupathi A. The interplay between BDNF and PGC-1 alpha in maintaining brain health: role of exercise. Front Endocrinol (Lausanne) 2024; 15:1433750. [PMID: 39239097 PMCID: PMC11374591 DOI: 10.3389/fendo.2024.1433750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our evolutionary history, physical activity has played a significant role in shaping our physiology. Advances in exercise science have further reinforced this concept by highlighting how exercise can change gene expression and molecular signaling to achieve various beneficial outcomes. Several studies have shown that exercise can alter neuronal functions to prevent neurodegenerative conditions like Parkinson's and Alzheimer's diseases. However, individual genotypes, phenotypes, and varying exercise protocols hinder the prescription of exercise as standard therapy. Moreover, exercise-induced molecular signaling targets can be double-edged swords, making it difficult to use exercise as the primary candidate for beneficial effects. For example, activating PGC-1 alpha and BDNF through exercise could produce several benefits in maintaining brain health, such as plasticity, neuronal survival, memory formation, cognition, and synaptic transmission. However, higher expression of BDNF might play a negative role in bipolar disorder. Therefore, further understanding of a specific mechanistic approach is required. This review focuses on how exercise-induced activation of these molecules could support brain health and discusses the potential underlying mechanisms of the effect of exercise-induced PGC-1 alpha and BDNF on brain health.
Collapse
Affiliation(s)
- Xuecui Bi
- Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, China
| | - Jing Fang
- Basic Department, Dezhou Vocational and Technical College, Dezhou, China
| | - Xin Jin
- International Department, Beijing No.35 High School, Beijing, China
| | | |
Collapse
|
3
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Liao W, Wang P, He Y, Liu Z, Wang L. Investigation of the underlying mechanism of Buyang Huanwu decoction in ischemic stroke by integrating systems pharmacology-proteomics and in vivo experiments. Fitoterapia 2024; 175:105935. [PMID: 38580032 DOI: 10.1016/j.fitote.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 51006, People's Republic of China
| | - Yingying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipid, Guangzhou 510240, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China.
| |
Collapse
|
5
|
Zhao Y, Zhu Q, Bi C, Yuan J, Chen Y, Hu X. Bibliometric analysis of tumor necrosis factor in post-stroke neuroinflammation from 2003 to 2021. Front Immunol 2022; 13:1040686. [PMID: 36389810 PMCID: PMC9661963 DOI: 10.3389/fimmu.2022.1040686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Tumor necrosis factor (TNF), a crucial cytokine, has important research value in post-stroke neuroinflammation (PSN). We analyzed the studies that have been conducted in this area and used bibliometric methods to predict research hotspots and identify trends regarding TNF in PSN. Methods Publications were accessed at the Science Citation Index Expanded 1975-2021 (SCI expanded), Web of Science Core Collection (WoSCC), on May 1, 2022. Additionally, software such as CiteSpace and VOSviewer were utilized for bibliometric analyses. Results In total, 1391 original articles and reviews on TNF in PSN published from 2003 to 2021 were identified. An upward trend was observed in the number of publications on TNF in PSN. These publications were primarily from 57 countries and 1446 institutions, led by China and the United States with China leading the number of publications (NP) and the US with the number of citations (NC). The League of European Research Universities (LERU) and Journal of Neuroinflammation, respectively were the most prolific branches and journals. Zhang, John H. published the most papers and Finsen, Bente had the most cited papers. One paper by Kettenmann, H. published in 2011 reached the highest level of Global Citation Score (GCS). The keyword co-occurrence and reference co-citation analyses suggest that poststroke therapy and potential mechanistic pathways are important topics related to PSN in recent years. Reference burst detection suggests new burst hotspots after 2015, focusing on pathway modulation and discovery of therapeutic targets, suggesting a substantial development in the study of TNF in PSN research. Conclusion The present bibliometric analysis shows a continuous trend of increasing literature related to TNF in PSN, and shows that TNF plays an important role in PSN involves multiple immune mechanisms and may contribute as a potential target for neuroprotective therapeutics after stroke. Prior to 2011, most of the research was focused on discovering the specific role of TNF in PSN, and in recent years studies have mainly targeted the exploration of the signaling pathways. Future research prospects may lie in finding key therapeutic targets in pathway of TNF in PSN.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Basic Medicine, Third Military Medical University, Army Medical University, Chongqing, China
| | - Qihan Zhu
- Department of Basic Medicine, Third Military Medical University, Army Medical University, Chongqing, China
| | - Chen Bi
- Department of Graduate, China People’s Police University, Langfang, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Jichao Yuan, ; Yujie Chen, ; ; Xiaofei Hu, ;
| |
Collapse
|
6
|
Zhu Y, Sun Y, Hu J, Pan Z. Insight Into the Mechanism of Exercise Preconditioning in Ischemic Stroke. Front Pharmacol 2022; 13:866360. [PMID: 35350755 PMCID: PMC8957886 DOI: 10.3389/fphar.2022.866360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Abstract
Exercise preconditioning has attracted extensive attention to induce endogenous neuroprotection and has become the hotspot in neurotherapy. The training exercise is given multiple times before cerebral ischemia, effectively inducing ischemic tolerance and alleviating secondary brain damage post-stroke. Compared with other preconditioning methods, the main advantages of exercise include easy clinical operation and being readily accepted by patients. However, the specific mechanism behind exercise preconditioning to ameliorate brain injury is complex. It involves multi-pathway and multi-target regulation, including regulation of inflammatory response, oxidative stress, apoptosis inhibition, and neurogenesis promotion. The current review summarizes the recent studies on the mechanism of neuroprotection induced by exercise, providing the theoretical basis of applying exercise therapy to prevent and treat ischemic stroke. In addition, we highlight the various limitations and future challenges of translational medicine from fundamental study to clinical application.
Collapse
Affiliation(s)
- Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jichao Hu
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
7
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|
8
|
Xue Y, Zeng X, Tu WJ, Zhao J. Tumor Necrosis Factor- α: The Next Marker of Stroke. DISEASE MARKERS 2022; 2022:2395269. [PMID: 35265224 PMCID: PMC8898850 DOI: 10.1155/2022/2395269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023]
Abstract
Although there is no shortage of research on the markers for stroke, to our knowledge, there are no clear markers that can meet the needs of clinical prediction and treatment. The inflammatory cascade is a critical process that persists and functions throughout the stroke process, ultimately worsening stroke outcomes and increasing mortality. Numerous inflammatory factors, including tumor necrosis factor (TNF), are involved in this process. These inflammatory factors play a dual role during stroke, and their mechanisms are complex. As one of the representatives, TNF is the primary regulator of the immune system and plays an essential role in the spread of inflammation. In researches done over the last few years, tumor necrosis factor-alpha (TNF-α) has emerged as a potential marker for stroke because of its essential role in stroke. This review summarizes the latest research on TNF-α in stroke and explores its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianwei Zeng
- Rehabilitation Hospital of the National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|