1
|
Chen Z, Wu FF, Li J, Dong JB, He HY, Li XF, Lu Q, Zhang WX, Shao CM, Yao ZN, Lin N, Ye ZM, Xu JT, Li HY. Investigating the synergy of Shikonin and Valproic acid in inducing apoptosis of osteosarcoma cells via ROS-mediated EGR1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155459. [PMID: 38417243 DOI: 10.1016/j.phymed.2024.155459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhuo Chen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Feng-Feng Wu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Jing Li
- School of Medicine, Huzhou University, Huzhou, Zhejiang, PR China
| | - Jia-Bao Dong
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Hong-Yi He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Xiong-Feng Li
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Qian Lu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Wen-Xuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Ming Shao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhao-Nong Yao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Nong Lin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Zhao-Ming Ye
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Jun-Tao Xu
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, PR China.
| | - Heng-Yuan Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Zhao Y, Wu D, Fu Z, Liu W, Yao Y, Liang Y. Shikonin reactivates TSGs GADD45B and PPP3CC to block NSCLC cell proliferation and migration through JNK/P38/MAPK signaling pathways. BMC Complement Med Ther 2024; 24:10. [PMID: 38167059 PMCID: PMC10759768 DOI: 10.1186/s12906-023-04306-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Shikonin, a natural naphthoquinone compound extracted from the Chinese traditional herbal medicine "Lithospermum erythrorhizon", possesses antitumor activity against various cancer types. Tumor-suppressor genes (TSGs) negatively regulate cell growth, proliferation, and differentiation, thereby inhibiting tumor formation. However, the molecular mechanism of action of shikonin on TSGs in non-small-cell lung cancer (NSCLC) remains unclear. METHODS The inhibitory effect of shikonin on the proliferation and migration abilities of lung cancer cells were measured by Cell Counting Kit 8 (CCK8) and wound healing assays. The alteration of genes by shikonin treatment was detected by mRNA high-throughput sequencing and further confirmed by qPCR and western blotting experiments. The dominant functions of the upregulated genes were analyzed by GO and KEGG profiling. RESULTS Shikonin inhibited the proliferation and migration of A549 and H1299 NSCLC cells in a dose-dependent manner. mRNA high-throughput sequencing revealed a total of 1794 upregulated genes in shikonin-treated NSCLC cells. Moreover, bioinformatic analysis of GO and KEGG profiling revealed that the up-regulated genes were mostly involved in the JNK/P38/MAPK signaling pathway, among which the expression of GADD45B and PPP3CC was significantly enhanced. Finally, we confirmed that GADD45B and PPP3CC were indeed upregulated in JNK/P38/MAPK pathway. CONCLUSIONS Taken together, these results suggested that shikonin might affect the expression of GADD45B and PPP3CC through the JNK/P38/MAPK pathway, therefore exerting an inhibitory effect on the proliferation and migration of cancer cells. To our knowledge, this is the first study reporting the role of shikonin in upregulating TSGs to activate the JNK/P38/MAPK signaling pathways in NSCLC.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 710086, Xi'an, Shaanxi, China
| | - Dan Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Zhenkai Fu
- School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Wenna Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China
| | - Yu Yao
- Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 710086, Xi'an, Shaanxi, China.
| | - Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Qian X, Zhu L, Xu M, Liu H, Yu X, Shao Q, Qin J. Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact 2023; 382:110588. [PMID: 37268198 DOI: 10.1016/j.cbi.2023.110588] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Small cell lung cancer (SCLC) is a subtype of lung cancer with a very poor overall survival rate due to its extremely high proliferation and metastasis predilection. Shikonin is an active ingredient extracted from the roots of Lithospermum erythrorhizon, and exerts multiple anti-tumor functions in many cancers. In the present study, the role and underlying mechanism of shikonin in SCLC were investigated for the first time. We found that shikonin effectively suppressed cell proliferation, apoptosis, migration, invasion, and colony formation and slightly induced apoptosis in SCLC cells. Further experiment indicated the shikonin could also induced ferroptosis in SCLC cells. Shikonin treatment effectively suppressed the activation of ERK, the expression of ferroptosis inhibitor GPX4, and elevated the level of 4-HNE, a biomarker of ferroptosis. Both total ROS and lipid ROS were increased, while the GSH levels were decreased in SCLC cells after shikonin treatment. More importantly, our data identified that the function of shikonin was dependent on the up-regulation of ATF3 by performing rescue experiments using shRNA to silence the expression of ATF3, especially in the total and lipid ROS accumulaiton. Xenograft model was established using SBC-2 cells, and the results revealed that shikonin also significantly inhibited tumor growth by inducing ferroptosis. Finally, our data further confirmed that shikonin activated ATF3 transcription by impairing the recruitment of HDAC1 mediated by c-myc on the ATF3 promoter, and subsequently elevating of histone acetylation. Our data documented that shikonin suppressed SCLC by inducing ferroptosis in a ATF3-dependent manner. Shikonin upregulated the expression of ATF3 expression via promoting the histone acetylation by inhibiting c-myc-mediated HDAC1 binding on ATF3 promoter.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine (Hangzhou Cancer Hospital), Hangzhou, Zhejiang, 310006, China
| | - Lin Zhu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mengzhen Xu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haoli Liu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyan Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiuyue Shao
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Qin
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic oncology (lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, 310022, PR China.
| |
Collapse
|
4
|
Lohberger B, Glänzer D, Kaltenegger H, Eck N, Leithner A, Bauer R, Kretschmer N, Steinecker-Frohnwieser B. Shikonin derivatives cause apoptosis and cell cycle arrest in human chondrosarcoma cells via death receptors and MAPK regulation. BMC Cancer 2022; 22:758. [PMID: 35820864 PMCID: PMC9275282 DOI: 10.1186/s12885-022-09857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach. Methods The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR. Results Chondrosarcoma cells showed a dose-dependent inhibition of cell viability after treatment with shikonin and its derivatives, with the strongest effect for shikonin and IC50 values of 1.3 ± 0.2 µM. Flow cytometric measurements revealed a G2/M arrest of the cells after treatment. Protein and gene expression analysis demonstrated a dose-dependent downregulation of survivin and XIAP, and an upregulation of Noxa, γH2AX, cleaved caspase-8, -9, -3, and -PARP. Furthermore, the expression of various death receptors was modulated. As MAPK signaling pathways play a key role in tumor biology, their phosphorylation pattern and their corresponding downstream gene regulation were analyzed. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase of pAKT and the MAPKs pERK, pJNK, and pp38 in a dose-dependent manner. Conclusions These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09857-x.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria. .,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria.
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | | |
Collapse
|