1
|
Xu Y, Zhu Y, Shi Y, Ye B, Bo L, Tao T. Immune Checkpoint VISTA Negatively Regulates Microglia Glycolysis and Activation via TRIM28-Mediated Ubiquitination of HK2 in Sepsis-Associated Encephalopathy. Mol Neurobiol 2025; 62:4452-4465. [PMID: 39455538 DOI: 10.1007/s12035-024-04572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) has emerged as a crucial player in the pathogenesis of neurological disorders. However, the specific mechanism by which VISTA regulates microglial activation remains unclear. Septic mice were intracerebroventricularly injected with an agonistic anti-VISTA antibody or isotype control. To investigate the differential gene expression profiles, RNA sequencing was conducted on brain tissues from these mice. In vitro, VISTA was silenced in BV2 microglial cells using shRNA. Co-immunoprecipitation assays were performed to identify protein-protein interactions involving hexokinase 2 (HK2), and ubiquitination assays were used to examine the ubiquitination status of HK2. Additionally, BV2 cells were transfected with either tripartite motif-containing 28 overexpression plasmids (TRIM28-PcDNA3.1( +)) or TRIM28-specific siRNA to assess the impact of TRIM28 on VISTA-mediated microglial activation. The cellular glycolytic activity was measured using extracellular acidification rate assays, and proinflammatory cytokine and chemokines were quantified. Treatment with VISTA antibodies significantly alleviated microglial activation and prevented cognitive impairment in septic mice. In contrast, VISTA silencing in BV2 microglia led to the overexpression of proinflammatory cytokines and enhanced glycolysis in an HK2-dependent manner. Mechanistically, HK2 expression was regulated by the E3 ubiquitin ligase TRIM28 through K63-linked ubiquitination, which targeted HK2 for proteasomal degradation. Furthermore, knockdown of TRIM28 reduced the elevated glycolysis and proinflammatory response observed in VISTA-silenced microglia. VISTA modulates microglial activation in sepsis-associated encephalopathy by regulating HK2 expression through TRIM28-mediated K63-linked ubiquitination. These findings highlight VISTA as a potential therapeutic target for modulating microglial activation in sepsis.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Ying Zhu
- Department of Pulmonary and Critical Care Medicine, 7Th Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Yue Shi
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Bo Ye
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Shanghai, 200433, China.
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
2
|
Mott MD, Trusiano B, Allen IC. Buena VISTA: a promising outlook on targeting immune checkpoint regulators to combat sepsis. J Leukoc Biol 2024; 115:1002-1004. [PMID: 38526166 DOI: 10.1093/jleuko/qiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Regulation of T cell activation by VISTA is implicated in host organism immune response to sepsis and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Madeline D Mott
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, 1 Riverside Circle Suite 201, Roanoke, VA 24016, United States
| | - Briana Trusiano
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, 205 Duck Pond Dr, Blacksburg, VA 24061, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, 1 Riverside Circle Suite 201, Roanoke, VA 24016, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, 205 Duck Pond Dr, Blacksburg, VA 24061, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, United States
| |
Collapse
|
3
|
Li S, Wang G, Ren Y, Liu X, Wang Y, Li J, Liu H, Yang J, Xing J, Zhang Y, He C, Xu S, Hou X, Li N. Expression and function of VISTA on myeloid cells. Biochem Pharmacol 2024; 222:116100. [PMID: 38428824 DOI: 10.1016/j.bcp.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
V-domain containing Ig Suppressor of T cell Activation (VISTA) is predominantly expressed on myeloid cells and functions as a ligand/receptor/soluble molecule. In inflammatory responses and immune responses, VISTA regulates multiple functions of myeloid cells, such as chemotaxis, phagocytosis, T cell activation. Since inflammation and immune responses are critical in many diseases, VISTA is a promising therapeutic target. In this review, we will describe the expression and function of VISTA on different myeloid cells, including neutrophils, monocytes, macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs). In addition, we will discuss whether the functions of VISTA on these cells impact the disease processing.
Collapse
Affiliation(s)
- Siyu Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jiaqiang Yang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
Zhong X, Xie H, Wang S, Ren T, Chen J, Huang Y, Yang N. TIGIT regulates CD4 + T cell immunity against polymicrobial sepsis. Front Immunol 2024; 15:1290564. [PMID: 38545097 PMCID: PMC10965661 DOI: 10.3389/fimmu.2024.1290564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Sepsis is one of the major causes of death and increased health care burden in modern intensive care units. Immune checkpoints have been prompted to be key modulators of T cell activation, T cell tolerance and T cell exhaustion. This study was designed to investigate the role of the negative immune checkpoint, T cell immunoglobulin and ITIM domain (TIGIT), in the early stage of sepsis. Method An experimental murine model of sepsis was developed by cecal ligation and puncture (CLP). TIGIT and CD155 expression in splenocytes at different time points were assessed using flow cytometry. And the phenotypes of TIGIT-deficient (TIGIT-/-) and wild-type (WT) mice were evaluated to explore the engagement of TIGIT in the acute phase of sepsis. In addition, the characteristics were also evaluated in the WT septic mice pretreated with anti-TIGIT antibody. TIGIT and CD155 expression in tissues was measured using real-time quantitative PCR and immunofluorescence staining. Proliferation and effector function of splenic immune cells were evaluated by flow cytometry. Clinical severity and tissue injury were scored to evaluate the function of TIGIT on sepsis. Additionally, tissue injury biomarkers in peripheral blood, as well as bacterial load in peritoneal lavage fluid and liver were also measured. Results The expression of TIGIT in splenic T cells and NK cells was significantly elevated at 24 hours post CLP.TIGIT and CD155 mRNA levels were upregulated in sepsis-involved organs when mice were challenged with CLP. In CLP-induced sepsis, CD4+ T cells from TIGIT-/- mice shown increased proliferation potency and cytokine production when compared with that from WT mice. Meanwhile, innate immune system was mobilized in TIGIT-/- mice as indicated by increased proportion of neutrophils and macrophages with potent effector function. In addition, tissue injury and bacteria burden in the peritoneal cavity and liver was reduced in TIGIT-/- mice with CLP induced sepsis. Similar results were observed in mice treated with anti-TIGIT antibody. Conclusion TIGIT modulates CD4+ T cell response against polymicrobial sepsis, suggesting that TIGIT could serve as a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Xuexin Zhong
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiping Xie
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Ren
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Chen
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov 2023; 9:465. [PMID: 38114466 PMCID: PMC10730904 DOI: 10.1038/s41420-023-01766-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by dysregulated host responses to infection. Not only does sepsis pose a serious hazard to human health, but it also imposes a substantial economic burden on the healthcare system. The cornerstones of current treatment for sepsis remain source control, fluid resuscitation, and rapid administration of antibiotics, etc. To date, no drugs have been approved for treating sepsis, and most clinical trials of potential therapies have failed to reduce mortality. The immune response caused by the pathogen is complex, resulting in a dysregulated innate and adaptive immune response that, if not promptly controlled, can lead to excessive inflammation, immunosuppression, and failure to re-establish immune homeostasis. The impaired immune response in patients with sepsis and the potential immunotherapy to modulate the immune response causing excessive inflammation or enhancing immunity suggest the importance of demonstrating individualized therapy. Here, we review the immune dysfunction caused by sepsis, where immune cell production, effector cell function, and survival are directly affected during sepsis. In addition, we discuss potential immunotherapy in septic patients and highlight the need for precise treatment according to clinical and immune stratification.
Collapse
Affiliation(s)
- Min Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
- Coagulation, Liverpool University Hospitals NHS Foundation Trust, Liverpool, L7 8XP, UK
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Zhang MJ, Liu J, Wan SC, Li JX, Wang S, Fidele NB, Huang CF, Sun ZJ. CSRP2 promotes cell stemness in head and neck squamous cell carcinoma. Head Neck 2023; 45:2161-2172. [PMID: 37466293 DOI: 10.1002/hed.27464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Xing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nyimi Bushabu Fidele
- The National keys laboratory of Basic Sciences of Stomatology of Kinshasa University, School of Medical University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Immune checkpoint alterations and their blockade in COVID-19 patients. BLOOD SCIENCE 2022; 4:192-198. [PMID: 36311817 PMCID: PMC9592141 DOI: 10.1097/bs9.0000000000000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that seriously affects people's lives. Immune dysfunction, which is characterized by abnormal expression of multiple immune checkpoint proteins (ICs) on immune cells, is associated with progression and poor prognosis for tumors and chronic infections. Immunotherapy targeting ICs has been well established in modulating immune function and improving clinical outcome for solid tumors and hematological malignancies. The role of ICs in different populations or COVID-19 stages and the impact of IC blockade remains unclear. In this review, we summarized current studies of alterations in ICs in COVID-19 to better understand immune changes and provide strategies for treating COVID-19 patients, particularly those with cancer.
Collapse
|
8
|
Gray CC, Biron-Girard B, Wakeley ME, Chung CS, Chen Y, Quiles-Ramirez Y, Tolbert JD, Ayala A. Negative Immune Checkpoint Protein, VISTA, Regulates the CD4 + T reg Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival. Front Immunol 2022; 13:861670. [PMID: 35401514 PMCID: PMC8988198 DOI: 10.3389/fimmu.2022.861670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a systemic immune response to infection that is responsible for ~35% of in-hospital deaths and over 24 billion dollars in annual treatment costs. Strategic targeting of non-redundant negative immune checkpoint protein pathways can cater therapeutics to the individual septic patient and improve prognosis. B7-CD28 superfamily member V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an ideal candidate for strategic targeting in sepsis. We hypothesized that immune checkpoint regulator, VISTA, controls T-regulatory cells (Treg), in response to septic challenge, thus playing a protective role/reducing septic morbidity/mortality. Further, we investigated if changes in morbidity/mortality are due to a Treg-mediated effect during the acute response to septic challenge. To test this, we used the cecal ligation and puncture model as a proxy for polymicrobial sepsis and assessed the phenotype of CD4+ Tregs in VISTA-gene deficient (VISTA-/-) and wild-type mice. We also measured changes in survival, soluble indices of tissue injury, and circulating cytokines in the VISTA-/- and wild-type mice. We found that in wild-type mice, CD4+ Tregs exhibit a significant upregulation of VISTA which correlates with higher Treg abundance in the spleen and small intestine following septic insult. However, VISTA-/- mice have reduced Treg abundance in these compartments met with a higher expression of Foxp3, CTLA4, and CD25 compared to wild-type mice. VISTA-/- mice also have a significant survival deficit, higher levels of soluble indicators of liver injury (i.e., ALT, AST, bilirubin), and increased circulating proinflammatory cytokines (i.e., IL-6, IL-10, TNFα, IL-17F, IL-23, and MCP-1) following septic challenge. To elucidate the role of Tregs in VISTA-/- sepsis mortality, we adoptively transferred VISTA-expressing Tregs into VISTA-/- mice. This adoptive transfer rescued VISTA-/- survival to wild-type levels. Taken together, we propose a protective Treg-mediated role for VISTA by which inflammation-induced tissue injury is suppressed and improves survival in early-stage murine sepsis. Thus, enhancing VISTA expression or adoptively transferring VISTA+ Tregs in early-stage sepsis may provide a novel therapeutic approach to ameliorate inflammation-induced death.
Collapse
Affiliation(s)
- Chyna C. Gray
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Bethany Biron-Girard
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Yael Quiles-Ramirez
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Jessica D. Tolbert
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- Division of Surgical Research, Department of Surgery, Brown University, Providence, RI, United States
| |
Collapse
|