1
|
Shiri Aghbash P, Sadri Nahand J, Rahbar Farzam O, Hosseini SMR, Bayat M, Entezari Maleki T, Bannazadeh Baghi H. Combination of Vitex pseudo-negundo methanolic-extract with cisplatin can induce antioxidant activity and apoptosis in HeLa and Caski cells. Front Pharmacol 2024; 15:1476152. [PMID: 39697540 PMCID: PMC11653208 DOI: 10.3389/fphar.2024.1476152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cisplatin-based chemotherapy as a common therapeutic regimen for cervical cancer patients, is becoming more and more ineffective due to high resistance. This urges the need for introducing novel metabolics such as botanical drugs with the capacity to increase the cisplatin effectiveness. In that regard, here we investigated the anticancer effects of the Cisplatin-Vitex pseudo-Negundo combination in cervical cancer cell lines. Method and Material V. pseudo-Negundo fruits were dried and extracted methanolic fraction. The MTT assay was performed to evaluate cytotoxicity of both drugs in CaSki and HeLa cells. Then, apoptosis, ROS production, and cell cycling were assessed by flow cytometry assay in cells treated with V. pseudo-Negundo and Cisplatin and their combination. Also, the rate of cell migration and colony formation were measured, using wound healing and colony formation assay, respectively. Also, the expression level of related genes (CD133, BAX, BCL2, Casp-3/8/9, MMP-3) was evaluated using the RT-PCR method. Results The obtained results established that the V. pseudo-Negundo plant has medicinal properties to induce apoptotic and antioxidant signals. The combination treatment of methanol extraction and Cisplatin had a cytotoxic effect on cervical cancer cell lines (HeLa and CaSki) compared to monotherapy. Also, combination therapy resulted in an increased apoptosis rate and diminished ROS production in both CaSki and HeLa cell lines. Furthermore, V. pseudo-Negundo and Cisplatin combination therapy leads to cell cycle arrest in the G2-M and G0-G1 phase in HeLa and CaSki cell lines, respectively. Moreover, combination therapy decreased the colony formation and cell motility in both cell lines and upregulated caspases gene expression. Conclusion The combination of V. pseudo-Negundo with Cisplatin therapy results in a significant anti-cancer and antioxidant effect compared to cisplatin, representing a promising candidate for future clinical investigations.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari Maleki
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Pan X, Jiang S, Zhang X, Wang Z, Wang X, Cao L, Xiao W. Recent strategies in target identification of natural products: Exploring applications in chronic inflammation and beyond. Br J Pharmacol 2024. [PMID: 39428703 DOI: 10.1111/bph.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Natural products are a treasure trove for drug discovery, especially in the areas of infection, inflammation and cancer, due to their diverse bioactivities and complex, and varied structures. Chronic inflammation is closely related to many diseases, including complex diseases such as cancer and neurodegeneration. Improving target identification for natural products contributes to elucidating their mechanism of action and clinical progress. It also facilitates the discovery of novel druggable targets and the elimination of undesirable ones, thereby significantly enhancing the productivity of drug discovery and development. Moreover, the rise of polypharmacological strategies, considered promising for the treatment of complex diseases, will further increase the demand for target deconvolution. This review underscores strategies for identifying natural product targets (NPs) in the context of chronic inflammation over the past 5 years. These strategies encompass computational methodologies for early target discovery and the anticipation of compound binding sites, proteomics-driven approaches for target delineation and experimental biology techniques for target validation and comprehensive mechanistic exploration.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Shan Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xinzhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| |
Collapse
|
3
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
4
|
Mottaghipisheh J, Kamali M, Doustimotlagh AH, Nowroozzadeh MH, Rasekh F, Hashempur MH, Iraji A. A comprehensive review of ethnomedicinal approaches, phytochemical analysis, and pharmacological potential of Vitex trifolia L. Front Pharmacol 2024; 15:1322083. [PMID: 38576489 PMCID: PMC10991721 DOI: 10.3389/fphar.2024.1322083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Plants, renowned for their rich reservoir of metabolites, play a pivotal role in addressing health-related issues. The Verbenaceae family stands out, showcasing immense potential in preventing and treating chronic diseases. Vitex trifolia L. (V. trifolia), a shrub with a rich history in traditional medicine, particularly in Eastern Asia, has garnered attention for its diverse therapeutic applications. This comprehensive review aims to bridge traditional knowledge and contemporary insights by investigating ethnopharmacology, phytochemistry, and pharmacological effects of V. trifolia. The keyword "V. trifolia" and its synonyms were searched within the main scientific databases including PubMed, Web of Science, ScienceDirect, Google Scholar, and Baidu Scholar (from 1974 to 2022, last search: 21.10.2023). Phytochemical analyses reveal a spectrum of secondary metabolites in V. trifolia, including terpenoids, flavonoids, lignans, phytosterols, anthraquinones, and fatty acids. Notably, terpenoids and flavonoids emerge as the main bioactive metabolites. Pharmacological studies validate its therapeutic potential, demonstrating significant antioxidant, anti-inflammatory, hepatoprotective, anticancer, anti-amnesic, antimicrobial, antiviral, anti-malaria, antispasmodic activities, and reported insecticidal effects. Despite existing literature exploring pharmacological attributes and secondary metabolites of related species, a conspicuous gap exists, specifically focusing on the pharmacological activities and novel methods of purification of pure metabolites from V. trifolia. This review aimed to fill this gap by delving into traditional medicinal applications, exploring secondary metabolites comprehensively, and providing an in-depth analysis of pharmacological effects of pure metabolites. Combining traditional uses with contemporary pharmacological insights, this article sought to serve as a crucial reference for future research and practical application of V. trifolia. This approach contributes substantially to understanding the plant, fostering scientific inquiry, and facilitating its broader application in healthcare.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Kamali
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hossein Nowroozzadeh
- Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rasekh
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Zhang J, Han M, Wang S, Wu R, Zhao Q, Chen M, Yang Y, Zhang J, Meng X, Zhang Y, Wang Z. Study on the anti-mitochondrial apoptosis mechanism of Erigeron breviscapus injection based on UPLC-Q-TOF-MS metabolomics and molecular docking in rats with cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117310. [PMID: 37827296 DOI: 10.1016/j.jep.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368-1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of "Zuo tan you huan." In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. AIM OF THE STUDY In this study, a metabonomics study based on ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. MATERIALS AND METHODS This study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. RESULTS Erigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP-kynurequinolinic acid and succinylornithine-urea cycle-NO metabolic pathways. CONCLUSIONS This paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengtian Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shu Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Heze University, Heze, 274015, China
| | - Ruixia Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qipeng Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihua Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
7
|
Zhang Q, He CX, Wang LY, Qian D, Tang DD, Jiang SN, Chen WW, Wu CJ, Peng W. Hydroxy-α-sanshool from the fruits of Zanthoxylum bungeanum Maxim. promotes browning of white fat by activating TRPV1 to induce PPAR-γ deacetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155113. [PMID: 37748388 DOI: 10.1016/j.phymed.2023.155113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Accumulating evidence suggested increasing energy expenditure is a feasible strategy for combating obesity, and browning of white adipose tissue (WAT) to promote thermogenesis might be one of the attractive ways. Hydroxy-α-sanshool (HAS), a natural amide alkaloid extracted from the fruits of Zanthoxylum bungeanum Maxim, possesses lots of benefits in lipid metabolism regulation. METHODS The anti-obesity effect of HAS was investigated by establishing an animal model of obesity and a 3T3-L1 differentiation cell model. Effects of HAS on the whole-body fat and liver of obese mice, and the role of HAS in inducing browning of white fat were studied by Micro CT, Metabolic cage detection, Cell mitochondrial pressure detection, transmission electron microscopy and cold exposure assays. Furthermore, the Real-time PCR (qPCR), digital PCR (dPCR), western blot, Co-immunoprecipitation (Co-IP), molecular docking, drug affinity responsive target stability (DARTS), Cellular thermal shift assay (CETSA) and other methods were used to investigate the target and mechanisms of HAS. RESULTS We found that treatment with HAS helped mice combat obesity caused by a high fat diet (HFD) and improve metabolic characteristics. In addition, our results suggested that the anti-obesity effect of HAS is related to increase energy consumption and thermogenesis via induction of browning of WAT. The further investigations uncovered that HAS can up-regulate UCP-1 expression, increase mitochondria number, and elevate the cellular oxygen consumption rates (OCRs) of white adipocytes. Importantly, the results indicated that browning effects of HAS is closely associated with SIRT1-dependent PPAR-γ deacetylation through activating the TRPV1/AMPK pathway, and TRPV1 is the potential drug target of HAS for the browning effects of WAT. CONCLUSIONS Our results suggested the HAS can promote browning of WAT via regulating AMPK/SIRT-1/PPARγ signaling, and the potential drug target of HAS is the membrane receptor of TRPV1.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Dan-Dan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Sheng-Nan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Wen-Wen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China.
| |
Collapse
|
8
|
Meng X, Wang H, Kuang Z, Wu Y, Su X, Wang J, Li L, Liu C, Jia M. Traditional use, phytochemistry and pharmacology of Viticis Fructus. Heliyon 2023; 9:e19144. [PMID: 37810114 PMCID: PMC10558315 DOI: 10.1016/j.heliyon.2023.e19144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ethnopharmacological relevance Viticis Fructus (called Manjingzi in China) is the dried ripe fruits of the plant species Vitex trifolia subsp. litoralis Steenis and Vitex trifolia L. in the family Lamiaceae. Viticis Fructus has been used as a traditional Chinese medicine for thousands of years to treat illness such as colds, headache, vertigo, anesthesia, and hyperkinesias. More chemical constituents and medicinal effects have been discovered in Viticis Fructus with the development of modern technology.The aim of the review: This review aims to analyze the research progress of Viticis Fructus from the aspects of botany, ethnopharmacology, phytochemistry, and pharmacological activity, as well as to provide an outlook on the research and use prospects of Viticis Fructus. Material and methods A comprehensive literature search using online databases such Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data and SCI-Finder. In addition, information was obtained from local and foreign books on ethnobotany and ethnomedicine. Results The application of Viticis Fructus as a medicine can be traced back to around 480 AD. So far, more than 190 compounds have been isolated from Viticis Fructus, including flavonoids, sterols, cyclic enol ether terpenoids, and diterpenoids. Modern pharmacological studies have shown that the extracts of Viticis Fructus have various pharmacological effects, such as anti-allergic, antioxidant, anti-inflammatory, anti-cancer, and anti-bacterial effects. Conclusion As a widely used traditional medicine, Viticis Fructus is rich in chemical compositions and has an obvious biological activity. However, the application and pharmacological activity of Viticis Fructus have not been scientifically evaluated or convincing due to poor methodology, unclear results and lack of clinical data. Systematic and comprehensive research evaluations are needed to verify its pharmaceutical activity, clinical therapeutic efficacy and safety. As an important herbal medicine, it should be further explored to facilitate the development of new medicines and treatments for a variety of diseases.
Collapse
Affiliation(s)
- Xiangqing Meng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Zhixuan Kuang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yujie Wu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaohui Su
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jinyi Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Ling Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Min Jia
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
9
|
Yan CX, Wei YW, Li H, Xu K, Zhai RX, Meng DC, Fu XJ, Ren X. Vitex rotundifolia L. f. and Vitex trifolia L.: A review on their traditional medicine, phytochemistry, pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116273. [PMID: 36822343 DOI: 10.1016/j.jep.2023.116273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitex rotundifolia L. f. and Vitex trifolia L. belong to the genus Vitex, and Vitex rotundifolia L. f. evolved from Vitex trifolia L. Both are essential ethnic medicinal plants with a long history, commonly used to treat headaches, fever, diarrhea, hair loss, wound recovery, and other diseases. AIM OF THE REVIEW The research status of Vitex trifolia L. and its relative species Vitex rotundifolia L. f. were reviewed from the aspects of traditional medicinal use, phytochemistry, and pharmacological activities, to provide a reference for the further development and utilization of Vitex rotundifolia L. f. and Vitex trifolia L. MATERIALS AND METHODS In this paper, a comprehensive search of published literature was conducted through various books and online databases to obtain relevant information on Vitex rotundifolia L. f. and Vitex trifolia L. The search terms "(Vitex rotundifolia) OR (Vitex trifolia) OR (Fructus viticis)" were entered in PubMed, Web of Science, China national knowledge infrastructure (CNKI), Wanfang Data, Baidu Scholar, respectively. In addition to setting the year threshold of "2018-2022" on Baidu Scholar, other databases searched all fields and found 889, 283, 1263, 1023, and 147 articles, respectively. Among them, review, repetition, overlapping data, and other reasons were excluded, and finally, a total of 164 articles were included in the review study. RESULTS A total of 369 compounds have been identified, including 159 terpenoids, 51 flavonoids, 83 phenylpropanoids, and 76 other compounds. Pharmacological studies have shown that Vitex rotundifolia L. f. and Vitex trifolia L. have a variety of pharmacological activities, such as anti-tumor, analgesic, antipyretic, anti-inflammatory, antioxidant, antibacterial, and estrogen-like activity. Modern clinical use for treating cold headaches, diarrhea dysentery, irregular menstruation, and other diseases. CONCLUSIONS As traditional medicinal plants, Vitex rotundifolia L. f. and Vitex trifolia L. have wealthy chemical constituents and extensive pharmacological activities and are widely used in clinical practice from traditional to modern times. However, the research on the pharmacological activities of Vitex rotundifolia L. f. and Vitex trifolia L. is not in-depth, and the potential active components still need to be explored.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Ya-Wen Wei
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Hui Li
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Kuo Xu
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Run-Xiang Zhai
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - De-Chuan Meng
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China.
| | - Xia Ren
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China.
| |
Collapse
|
10
|
Gao Z, Zhan H, Zong W, Sun M, Linghu L, Wang G, Meng F, Chen M. Salidroside alleviates acetaminophen-induced hepatotoxicity via Sirt1-mediated activation of Akt/Nrf2 pathway and suppression of NF-κB/NLRP3 inflammasome axis. Life Sci 2023:121793. [PMID: 37224954 DOI: 10.1016/j.lfs.2023.121793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Acetaminophen (APAP) overdose-induced hepatotoxicity is the most common cause of drug-induced liver injury worldwide, which is significantly linked to oxidative stress and sterile inflammation. Salidroside is the main active component extracted from Rhodiola rosea L., with anti-oxidative and anti-inflammatory activities. Herein, we investigated the protective effects of salidroside on APAP-induced liver injury and its underlying mechanisms. Pretreatment with salidroside reversed the impacts of APAP on cell viability, LDH release, and cell apoptosis in L02 cells. Moreover, the phenomena of ROS accumulation and MMP collapse caused by APAP were reverted by salidroside. Salidroside elevated the levels of nuclear Nrf2, HO-1, and NQO1. Using PI3k/Akt inhibitor LY294002 further confirmed that salidroside mediated the Nrf2 nuclear translocation through the Akt pathway. Pretreatment with Nrf2 siRNA or LY294002 markedly prevented the anti-apoptotic effect of salidroside. Additionally, salidroside reduced the levels of nuclear NF-κB, NLRP3, ASC, cleaved caspase-1, and mature IL-1β elevated by APAP. Moreover, salidroside pretreatment increased Sirt1 expression, whereas Sirt1 knock-down diminished the protective activities of salidroside, simultaneously reversing the up-regulation of the Akt/Nrf2 pathway and the down-regulation of NF-κB/NLRP3 inflammasome axis mediated by salidroside. We then used C57BL/6 mice to establish APAP-induced liver injury models and found that salidroside significantly alleviated liver injury. Furthermore, western blot analyses showed that salidroside promoted the Sirt1 expression, activated the Akt/Nrf2 pathway, and inhibited the NF-κB/NLRP3 inflammasome axis in APAP-treated mice. The findings of this study support a possible application of salidroside in the amelioration of APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhengshan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Honghong Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wei Zong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Miaomiao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lang Linghu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Tian S, Zhang J, Yuan S, Wang Q, Lv C, Wang J, Fang J, Fu L, Yang J, Zu X, Zhao J, Zhang W. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform 2023; 24:7017365. [PMID: 36719094 DOI: 10.1093/bib/bbad027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Shunling Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang S, Chen Y, Yang Z, Xiang H, Kang P, Li J. Active substances and molecular mechanisms of the anti-myocardial ischemia effects of Carthami flos by network pharmacology and in vitro experiments. Heliyon 2023; 9:e13877. [PMID: 36895345 PMCID: PMC9988582 DOI: 10.1016/j.heliyon.2023.e13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Myocardial ischemia is a predominant cardiovascular disorder that can result in a series of life-threatening cardiovascular diseases. Carthami flos (CF), the flower of Carthamus tinctorius L., is a commonly used herbal medicine in Chinese medicine for treating coronary atherosclerotic heart diseases based on its anti-myocardial ischemia (MI) effects. This paper aimed to investigate the active substances and mechanisms of the anti-MI effects of CF by network pharmacology and in vitro experiments. The results indicated that 9 constituents showed high degree of association with multiple targets of MI, including quercetin, kaempferol, β-sitosterol, luteolin, baicalein, safflomin A, safflomin C, safflower-yellow-B and hydroxysafflor yellow A. In addition, AKT1, EGFR, CASP3, MYC, JUN, ALB, CTNNB1, VEGFA, ESR1, and IL1B were screened as the leading targets with a degree number ≥50. Bioinformatic annotation of GO-MF and KEGG showed that the anti-MI effects of CF are related to apoptosis and response to antioxidative stress pathways. The in vitro results showed that CF reduced LDH and CK levels, alleviated cell cycle arrest, and decreased ROS levels in H2O2-treated H9c2 cells. In addition, CF also promoted the nuclear shift of Nrf2 and the mRNA expressions of Akt, Nrf2 and Bcl-2 but decreased the expression of caspase-3 in H2O2-treated H9c2 cells. Collectively, the anti-MI effects of CF involve inhibiting apoptosis and antioxidative stress in cardiomyoblasts by regulating Akt/Nrf2/Caspase-3/Bcl-2, and the possible active substances of CF are quercetin, kaempferol, β-sitosterol, luteolin, baicalein, safflomin C, safflower-yellow-B, and hydroxysafflor yellow A. The results of this study will be helpful for further drug development of CF and its active monomers.
Collapse
Affiliation(s)
- Sirong Zhang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
- Corresponding author.
| | - Zhilin Yang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Hai Xiang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Pan Kang
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, PR China
| | - Jiang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
- Corresponding author.
| |
Collapse
|
13
|
Li L, Yang M, Yu J, Cheng S, Ahmad M, Wu C, Wan X, Xu B, Ben-David Y, Luo H. A Novel L-Phenylalanine Dipeptide Inhibits the Growth and Metastasis of Prostate Cancer Cells via Targeting DUSP1 and TNFSF9. Int J Mol Sci 2022; 23:ijms231810916. [PMID: 36142828 PMCID: PMC9504056 DOI: 10.3390/ijms231810916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingfei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Mashaal Ahmad
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Caihong Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xinwei Wan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Bixue Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (Y.B.-D.); (H.L.); Tel.: +86-0851-8387-6210 (H.L.)
| |
Collapse
|
14
|
Xiong Y, Ruan YT, Zhao J, Yang YW, Chen LP, Mai YR, Yu Q, Cao ZY, Liu FF, Liao W, Liu J. Magnesium-L-threonate exhibited a neuroprotective effect against oxidative stress damage in HT22 cells and Alzheimer’s disease mouse model. World J Psychiatry 2022; 12:410-424. [PMID: 35433327 PMCID: PMC8968501 DOI: 10.5498/wjp.v12.i3.410] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oxidative stress results in the production of excess reactive oxygen species (ROS) and triggers hippocampal neuronal damage as well as occupies a key role in the pathological mechanisms of neurodegenerative disorders such as Alzheimer’s disease (AD). A recent study confirmed that magnesium had an inhibitory effect against oxidative stress-related malondialdehyde in vitro. However, whether Magnesium-L-threonate (MgT) is capable of suppressing oxidative stress damage in amyloid β (Aβ)25-35-treated HT22 cells and the AD mouse model still remains to be investigated.
AIM To explore the neuroprotective effect of MgT against oxidative stress injury in vitro and in vivo, and investigate the mechanism.
METHODS Aβ25-35-induced HT22 cells were preconditioned with MgT for 12 h. APPswe/PS1dE9 (APP/PS1) mice were orally administered with MgT daily for 3 mo. After MgT treatment, the viability of Aβ25-35-treated HT22 cells was determined via conducting cell counting kit-8 test and the cognition of APP/PS1 mice was measured through the Morris Water Maze. Flow cytometry experiments were applied to assess the ROS levels of HT22 cells and measure the apoptosis rate of HT22 cells or hippocampal neurons. Expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), hypoxia-inducible factor (HIF)-1α, NADPH oxidase (NOX) 4, Aβ1-42 and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway proteins was quantified by Western blot.
RESULTS In vitro data confirmed that Aβ25–35-induced HT22 cells had a significantly lower cell viability, higher ROS level and higher apoptosis rates compared with those of control cells (all P < 0.001). MgT prevented the Aβ25-35-triggered oxidative stress damage by elevating viability and decreasing ROS formation and apoptosis of HT22 cells (all P < 0.001). APP/PS1 mice exhibited worse cognitive performance and higher apoptosis rate of hippocampal neurons than wild-type (WT) mice (all P < 0.01). Meanwhile, significant higher expression of Aβ1-42 and NOX4 proteins was detected in APP/PS1 mice than those of WT mice (both P < 0.01). MgT also ameliorated the cognitive deficit, suppressed the apoptosis of hippocampal neuron and downregulated the expression of Aβ1-42 and NOX4 proteins in APP/PS1 mouse (all P < 0.05). Moreover, MgT intervention significantly downregulated HIF-1α and Bax, upregulated Bcl-2 and activated the PI3K/Akt pathway both in vitro and in vivo (all P < 0.05).
CONCLUSION MgT exhibits neuroprotective effects against oxidative stress and hippocampal neuronal apoptosis in Aβ25-35-treated HT22 cells and APP/PS1 mice.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Yu-Ting Ruan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Yu-Wen Yang
- Department of Medical Ultrasound, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| | - Li-Ping Chen
- Department of Medical Ultrasound, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| | - Ying-Ren Mai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Qun Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Zhi-Yu Cao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Fei-Fei Liu
- Department of Medical Ultrasound, Xiang’an Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
| | - Wang Liao
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
15
|
Cui Z, Li C, Chen P, Yang H. An update of label-free protein target identification methods for natural active products. Theranostics 2022; 12:1829-1854. [PMID: 35198076 PMCID: PMC8825594 DOI: 10.7150/thno.68804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Natural active products (NAPs) are derived from chemical substances found in nature that have biological activity and medicinal potential. Screening and revealing the protein targets of NAPs is an indispensable link in the pharmacological and toxicological understanding of NAPs. Proteins are the main factors executing cell functions, and cells rely on the function of proteins to complete various activities in the life cycle. The important mechanism of action of drugs is to regulate cell biological activities by interacting with proteins and other macromolecules. At present, the classic way to screen protein targets is based on the molecular label tracing method, which has a long cycle and changes the molecular structure and pharmacological effects of NAPs. Due to the shortcomings of molecular labelling methods, in recent years, scientists have tried to develop a variety of label-free protein target identification methods for NAPs and have made a certain amount of progress. This article reviews the current protein target identification methods for NAPs with the aim of providing a reference for research on NAP protein targets.
Collapse
Affiliation(s)
- Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|