1
|
Özyalçın B, Sanlier N. Antiobesity pathways of pterostilbene and resveratrol: a comprehensive insight. Crit Rev Food Sci Nutr 2024; 64:11428-11436. [PMID: 37486219 DOI: 10.1080/10408398.2023.2238319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
It may not always be possible for obese individuals to limit energy intake or to provide and/or maintain greater energy expenditure through exercise and physical activity. Therefore, the search for effective methods for obesity continues. Recently, the anti-obesity effect of stilbenes has attracted attention. In this review, aim was evaluating the effect of pterostilbene and resveratrol against obesity and the possible mechanisms in this effect. Dietary phytochemicals can induce body weight loss by increasing basal metabolic rate and thermogenesis and/or altering lipid metabolism. Stilbenes are products of the plant phenylpropanoid pathway. Very important mechanisms for the anti-obesity impact belonging to resveratrol as well as pterostilbene include thermogenic activation in brown adipose tissue alongside the browning of white adipose tissue. Considering nutrition and dietary habits, which have an important place in lifestyle changes for both the prevention and the treatment of obesity, pterostilbene and resveratrol, which are polyphenols and stilbenes, are seen as promising. However, optimal dose, duration, mechanism, long-term safety, side effects, combination, elucidation of genomic interactions, and lifestyle modifications should be considered.
Collapse
Affiliation(s)
- Büşra Özyalçın
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
2
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Lin SK, Wang HW, Shun CT, Yang CN, Hong CY, Lai EHH, Cheng SJ, Chen MH, Yang H, Lin HY, Wu FY, Kok SH. Sirtuin 6 ameliorates arthritis through modulating cyclic AMP-responsive element binding protein/CCN1/cyclooxygenase 2 pathway in osteoblasts. J Bone Miner Metab 2023; 41:772-784. [PMID: 37898986 DOI: 10.1007/s00774-023-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION CCN1 is an immediate-early gene product pivotal for arthritis progression. We have previously shown that sirtuin 6 (SIRT6) inhibited hypoxia-induced CCN1 expression in osteoblasts. Herein we examined the contribution of cyclic AMP-responsive element binding protein (CREB)/CRE to this suppressive action and the influence of CCN1 on cyclooxygenase (COX) 2 synthesis. MATERIALS AND METHODS MC3T3-E1 murine osteoblasts were cultured under normoxia (21% oxygen) or hypoxia (2% oxygen). Expressions of CCN1, phospho-CREB (Ser133), COX2 and relevant kinases were assessed by Western blot. SIRT6 was overexpressed in cultured osteoblasts and arthritic joints by a lentiviral-based technique. Activities of CCN1 gene promoter constructs were examined by luciferase reporter assay. Interaction between CREB and CCN1 promoter was assessed by chromatin immunoprecipitation (ChIP). Collagen-induced arthritis (CIA) was established in 20 rats to evaluate the effects of SIRT6 therapy on osteoblastic expressions of phospho-CREB, CCN1 and COX2. RESULTS SIRT6 suppressed hypoxia-enhanced CCN1 expression and CREB phosphorylation. Attenuation of calcium/calmodulin-dependent protein kinase II (CaMKII) may be responsible for SIRT6-induced CREB inhibition. CRE at - 286 bp upstream of the ATG start codon was essential for CCN1 expression under hypoxia and SIRT6 reduced hypoxia-stimulated CREB/CRE interaction. Forced expression of CREB rescued SIRT6-suppressed CCN1 synthesis. CCN1 induced COX2 expression in osteoblasts. In rat CIA, the therapeutic effect of SIRT6 was accompanied by decreases in osteoblastic expressions of phospho-CREB, CCN1 and COX2. CONCLUSION Our study indicated that the benefits of SIRT6 to inflammatory arthritis and bone resorption are at least partially derived from its modulation of CREB/CCN1/COX2 pathway in osteoblasts.
Collapse
Affiliation(s)
- Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, No. 1 Chang-Te Street, Taipei, Taiwan.
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wu Y, Hu Q, Wang X, Cheng H, Yu J, Li Y, Luo J, Zhang Q, Wu J, Zhang G. Pterostilbene attenuates microglial inflammation and brain injury after intracerebral hemorrhage in an OPA1-dependent manner. Front Immunol 2023; 14:1172334. [PMID: 37614235 PMCID: PMC10442819 DOI: 10.3389/fimmu.2023.1172334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Microglial activation and subsequent inflammatory responses are critical processes in aggravating secondary brain injury after intracerebral hemorrhage (ICH). Pterostilbene (3', 5'-dimethoxy-resveratrol) features antioxidant and anti-inflammation properties and has been proven neuroprotective. In this study, we aimed to explore whether Pterostilbene could attenuate neuroinflammation after experimental ICH, as well as underlying molecular mechanisms. Here, a collagenase-induced ICH in mice was followed by intraperitoneal injection of Pterostilbene (10 mg/kg) or vehicle once daily. PTE-treated mice performed significantly better than vehicle-treated controls in the neurological behavior test after ICH. Furthermore, our results showed that Pterostilbene reduced lesion volume and neural apoptosis, and alleviated blood-brain barrier (BBB) damage and brain edema. RNA sequencing and subsequent experiments showed that ICH-induced neuroinflammation and microglial proinflammatory activities were markedly suppressed by Pterostilbene treatment. With regard to the mechanisms, we identified that the anti-inflammatory effects of Pterostilbene relied on remodeling mitochondrial dynamics in microglia. Concretely, Pterostilbene reversed the downregulation of OPA1, promoted mitochondrial fusion, restored normal mitochondrial morphology, and reduced mitochondrial fragmentation and superoxide in microglia after OxyHb treatment. Moreover, conditionally deleting microglial OPA1 in mice largely countered the effects of Pterostilbene on alleviating microglial inflammation, BBB damage, brain edema and neurological impairment following ICH. In summary, we provided the first evidence that Pterostilbene is a promising agent for alleviating neuroinflammation and brain injury after ICH in mice, and uncovered a novel regulatory relationship between Pterostilbene and OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Li
- Department of Neurosurgery, The General Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, Sichuan, China
| | - Qingjiu Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|