1
|
Sodhi K, Chanchalani G, Tyagi N. Current role of biomarkers in the initiation and weaning of kidney replacement therapy in acute kidney injury. World J Nephrol 2025; 14:99802. [PMID: 40134642 PMCID: PMC11755245 DOI: 10.5527/wjn.v14.i1.99802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 01/20/2025] Open
Abstract
The occurrence of acute kidney injury (AKI) in critically ill patients is often associated with increased morbidity and mortality rates. Despite extensive research, a consensus is yet to be arrived, especially regarding the optimal timing and indications for initiation of kidney replacement therapy (KRT) for critically ill patients. There is no clear guidance available on the timing of weaning from KRT. More recently, various biomarkers have produced promising prognostic prediction in such patients, regarding the need for KRT and its termination. Most of these biomarkers are indicative of kidney damage and stress, rather than recovery. However, large-scale validation studies are required to guide the cutoff values of these biomarkers among different patient cohorts so as to identify the optimum timing for KRT. This article reviews the kidney biomarkers in detail and summarizes the individual roles of biomarkers in the decision-making process for initiation and termination of the KRT among critically ill AKI patients and the supportive literature.
Collapse
Affiliation(s)
- Kanwalpreet Sodhi
- Department of Critical Care, Deep Hospital, Ludhiana 141002, Punjab, India
| | - Gunjan Chanchalani
- Department of Critical Care Medicine, Karamshibhai Jethabhai Somaiya Hospital and Research Centre, Mumbai 400022, India
| | - Niraj Tyagi
- Department of Critical Care Medicine, Sir Ganga Ram Hospital, New Delhi 110060, Delhi, India
| |
Collapse
|
2
|
Gao S, Ge Y, Huang H, Wang L, Zhang W. Adipose-Derived Mesenchymal Stem Cell Exosomes Encapsulating siIL1R2 Facilitate the Repair of DSS-Induced Intestinal Mucosal Injury. Immunol Invest 2025:1-17. [PMID: 40035289 DOI: 10.1080/08820139.2025.2468959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BACKGROUND Interleukin-1 receptor 2 (IL1R2) and C-C motif chemokine receptor 2 (CCR2) as critical mediators of immune modulation and inflammation. This study aims to evaluate their functions in dextran sulfate sodium (DSS)-induced intestinal injury. METHODS A DSS-induced intestinal injury model was established in C57BL/6 mice. Pharmacological inhibitors targeting IL1R2 or CCR2 were administered. Adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes were isolated and loaded with IL1R2-siRNA, which were then administered to intestinal epithelial cells (IEC-6) or DSS-challenged mice. RESULTS IL1R2 and CCR2 were upregulated in DSS-treated colon tissues. Pharmacological inhibition of IL1R2 or CCR2 improved body weight, restored colon length, reduced serum TNF-α and IL-6 levels, and preserved epithelial integrity in mice. miR-128-3p enriched in ADMSC-derived exosomes significantly reduced CCR2 expression in IEC-6 cells. Further loading of an IL1R2 siRNA in these exosomes led to a simultaneous inhibition of IL1R2. These exosomes reduced lipopolysaccharide-induced apoptosis and inflammation in IEC-6 cells and improved histological outcomes in DSS-challenged mice. CONCLUSION IL1R2 and CCR2 are key mediators of inflammation in DSS-induced intestinal injury. Dual inhibition of IL1R2 and CCR2 holds great promise for alleviating inflammatory responses and improving histological presentations in inflammatory bowel disease.
Collapse
Affiliation(s)
- Song Gao
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yajuan Ge
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - He Huang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Lei Wang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
3
|
Liu AP, Sun TJ, Liu TY, Duan HZ, Jiang XH, Li M, Luo YZ, Feloney MP, Cline M, Zhang YY, Yu AY. Urinary exosomes as promising biomarkers for early kidney disease detection. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2025; 13:1-19. [PMID: 40124571 PMCID: PMC11928825 DOI: 10.62347/dake5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/21/2025] [Indexed: 03/25/2025]
Abstract
Kidney injury and disease pose a significant global health burden. Despite existing diagnostic methods, early detection remains challenging due to the lack of specific molecular markers to identify and stage various kidney lesions. Urinary exosomes, extracellular vesicles secreted by kidney cells, offer a promising solution. These vesicles contain a variety of biomolecules, such as proteins, RNA, and DNA. These biomolecules can reflect the unique physiological and pathological states of the kidney. This review explores the potential of urinary exosomes as biomarkers for a range of kidney diseases, including renal failure, diabetic nephropathy, and renal tumors. By analyzing specific protein alterations within these exosomes, we aim to develop more precise and tailored diagnostic tools to detect kidney diseases at an early stage and improve patient outcomes. While challenges persist in isolating, characterizing, and extracting reliable information from urinary exosomes, overcoming these hurdles is crucial for advancing their clinical application. The successful implementation of urinary exosome-based diagnostics could revolutionize early kidney disease detection, enabling more targeted treatment and improved patient outcomes.
Collapse
Affiliation(s)
- An-Ping Liu
- Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tian-Jing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tong-Ying Liu
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Hai-Zhen Duan
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Xu-Heng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Yuan-Ze Luo
- Dejiang County Ethnic Traditional Chinese Medicine HospitalZunyi 563003, Guizhou, China
| | - Michael P Feloney
- Department of Urology, School of Medicine, Creighton University School of MedicineOmaha, NE, USA
| | - Mark Cline
- Department of Pathology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Yuan-Yuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - An-Yong Yu
- Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| |
Collapse
|
4
|
Li B, Qi C, Zhang Y, Shi L, Zhang J, Qian H, Ji C. Frontier role of extracellular vesicles in kidney disease. J Nanobiotechnology 2024; 22:583. [PMID: 39304945 DOI: 10.1186/s12951-024-02852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Kidney diseases represent a diverse range of conditions that compromise renal function and structure which characterized by a progressive deterioration of kidney function, may ultimately necessitate dialysis or kidney transplantation as end-stage treatment options. This review explores the complex landscape of kidney diseases, highlighting the limitations of existing treatments and the pressing need for innovative strategies. The paper delves into the role of extracellular vesicles (EVs) as emerging biomarkers and therapeutic agents in the context of kidney pathophysiology. Urinary extracellular vesicles (uEVs), in particular, offer a non-invasive means of assessing renal injury and monitoring disease progression. Additionally, mesenchymal stem cell-derived EVs (MSC-EVs) are examined for their immunomodulatory and tissue repair capabilities, presenting a promising avenue for novel therapeutic interventions. And discusses the potential of engineering EVs to enhance their targeting and therapeutic efficacy. This paper systematically integrates the latest research findings and aims to provide a comprehensive overview of the role of EVs in kidney disease, providing cutting-edge insights into their potential as a diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Bei Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Qi
- Department of Clinical Laboratory, Suzhou Municipal Hospital of Anhui Province, Anhui, 234000, China
| | - Yifan Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
7
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
8
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Xue K, Mi B. Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review. Int J Nanomedicine 2024; 19:2377-2393. [PMID: 38469058 PMCID: PMC10926925 DOI: 10.2147/ijn.s452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic kidney diseases (CKD) present a formidable global health challenge, characterized by a deficiency of effective treatment options. Extracellular vesicles (EVs), recognized as multifunctional drug delivery systems in biomedicine, have gained accumulative interest. Specifically, engineered EVs have emerged as a promising therapeutic approach for targeted drug delivery, potentially addressing the complexities of CKD management. In this review, we systematically dissect EVs, elucidating their classification, biogenesis, composition, and cargo molecules. Furthermore, we explore techniques for EV engineering and strategies for their precise renal delivery, focusing on cargo loading and transportation, providing a comprehensive perspective. Moreover, this review also discusses and summarizes the diverse therapeutic applications of engineered EVs in CKD, emphasizing their anti-inflammatory, immunomodulatory, renoprotective, and tissue-regenerating effects. It critically evaluates the challenges and limitations in translating EV therapies from laboratory settings to clinical applications, while outlining future prospects and emerging trends.
Collapse
Affiliation(s)
- Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
10
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang S, Du C, Li G. Mesenchymal stem cell-derived extracellular vesicles: emerging concepts in the treatment of spinal cord injury. Am J Transl Res 2023; 15:4425-4438. [PMID: 37560238 PMCID: PMC10408507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
Spinal cord injury (SCI) is a prevalent central nervous system disease with a high disability rate, leading to the loss of motor and sensory nerve function. Due to the complex pathophysiology of SCI, more effective clinical treatment strategies are needed. Research has indicated the considerable potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) as a cell-free therapy in SCI repair and regeneration due to their ability to regulate immune cell activity and stimulate damaged neuron regeneration. Moreover, applying MSCs and engineered EVs can fully exploit the potential of MSC-EVs in spinal cord repair. Here, we outline the pathological process of SCI and its current clinical treatment status, summarize the latest MSC-EVs research and its pretreatment and engineering strategies in SCI treatment, and explore MSC-EVs application prospects.
Collapse
Affiliation(s)
- Shujun Wang
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Chengzhe Du
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Guilan Li
- School of Life Sciences, Liaocheng UniversityLiaocheng, Shandong, China
| |
Collapse
|
12
|
Wang J, Wang Z, Zhang Y, Li J. Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye (Lond) 2023; 37:2061-2068. [PMID: 36253458 PMCID: PMC10333309 DOI: 10.1038/s41433-022-02286-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the proteomic profiles of exosomes derived from vitreous humour (VH) obtained from proliferative diabetic retinopathy (PDR) patients and non-diabetic controls with idiopathic macular hole/epiretinal membrane. METHODS Vitreal exosomes were isolated using differential ultracentrifugation, followed by characterisation performed using different techniques. A label-free proteomic analysis was conducted to determine the protein profiles of the exosomes. A parallel reaction monitoring (PRM) analysis was performed to verify the identified proteins and associated functional annotations were derived by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Receiver operating characteristic (ROC) analysis was utilised to evaluate the diagnostic value of target proteins in distinguishing PDR from controls. RESULTS Exosomes were successfully isolated from VH, and were well characterised by various techniques. The results of proteomic analysis showed that a total of 758 proteins were identified and 10 proteins were screened as differentially expressed proteins, significantly changed in the PDR group containing 4 elevated proteins and 6 reduced proteins. GO analysis indicated that these differential proteins were mainly involved in many metabolic pathways, including nicotinamide adenine dinucleotide metabolism, adenosine diphosphate metabolic process and glycolytic process. The KEGG analysis enriched the top five pathways including glycolysis/gluconeogenesis, fructose and mannose metabolism, biosynthesis of amino acids, hypoxia-inducible factor 1 signalling pathway and carbon metabolism. The differential proteins, namely, lactate dehydrogenase A, ficolin 3, apolipoprotein B and apolipoprotein M, were further verified by PRM and showed a consistent trend with label-free proteomic analysis. The ROC analysis identified these proteins as promising biomarkers for PDR diagnosis. CONCLUSIONS Vitreal exosomes from patients with PDR contained few proteins unique to PDR; thus, exosomal proteins have great potential as disease biomarkers and therapeutic targets for PDR.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Liaocheng Eye Hospital, Liaocheng, China
| | - Ying Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
13
|
Nassar A, Cashman K, Rao S, Dagher M, O'Brien C, Afif J, Cravedi P, Azzi JR. Liquid biopsy for non-invasive monitoring of patients with kidney transplants. FRONTIERS IN TRANSPLANTATION 2023; 2:1148725. [PMID: 38993899 PMCID: PMC11235308 DOI: 10.3389/frtra.2023.1148725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 07/13/2024]
Abstract
The current tools for diagnosing and monitoring native kidney diseases as well as allograft rejection in transplant patients are suboptimal. Creatinine and proteinuria are non-specific and poorly sensitive markers of injury. Tissue biopsies are invasive and carry potential complications. In this article, we overview the different techniques of liquid biopsy and discuss their potential to improve patients' kidney health. Several diagnostic, predictive, and prognostic biomarkers have been identified with the ability to detect and monitor the activity of native kidney diseases as well as early and chronic allograft rejection, such as donor-derived cell-free DNA, exosomes, messenger RNA/microsomal RNA, proteomics, and so on. While the results are encouraging, additional research is still needed as no biomarker appears to be perfect for a routine application in clinical practice. Despite promising advancements in biomarkers, the most important issue is the lack of standardized pre-analytical criteria. Large validation studies and uniformed standard operating procedures are required to move the findings from bench to bedside. Establishing consortia such as the Liquid Biopsy Consortium for Kidney Diseases can help expedite the research process, allow large studies to establish standardized procedures, and improve the management and outcomes of kidney diseases and of kidney transplant recipients.
Collapse
Affiliation(s)
- Anthony Nassar
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Katharine Cashman
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Shreya Rao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Maribel Dagher
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Connor O'Brien
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - John Afif
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil R Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Implications of Crosstalk between Exosome-Mediated Ferroptosis and Diseases for Pathogenesis and Treatment. Cells 2023; 12:cells12020311. [PMID: 36672245 PMCID: PMC9856458 DOI: 10.3390/cells12020311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a type of iron-dependent cell death caused by ferrous iron overload, reactive oxygen species generation through the Fenton reaction, and lipid peroxidation, leading to antioxidative system dysfunction and, ultimately, cell membrane damage. The functional role of ferroptosis in human physiology and pathology is considered a cause or consequence of diseases. Circulating exosomes mediate intercellular communication and organ crosstalk. They not only transport functional proteins and nucleic acids derived from parental cells but also serve as vehicles for the targeted delivery of exogenous cargo. Exosomes regulate ferroptosis by delivering the biological material to the recipient cell, affecting ferroptosis-related proteins, or transporting ferritin-bound iron out of the cell. This review discusses pathogenesis mediated by endogenous exosomes and the therapeutic potential of exogenous exosomes for ferroptosis-related diseases. In addition, this review explores the role of exosome-mediated ferroptosis in ferroptosis-related diseases with an emphasis on strategies for engineering exosomes for ferroptosis therapy.
Collapse
|
15
|
Hun M, Wen H, Han P, Vun T, Zhao M, He Q. Bibliometric analysis of scientific papers on extracellular vesicles in kidney disease published between 1999 and 2022. Front Cell Dev Biol 2023; 10:1070516. [PMID: 36684427 PMCID: PMC9849820 DOI: 10.3389/fcell.2022.1070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background: In recent years, there has been an increasing interest in using extracellular vesicles (EVs) as potential therapeutic agents or natural drug delivery systems in kidney-related diseases. However, a detailed and targeted report on the current condition of extracellular vesicle research in kidney-related diseases is lacking. Therefore, this prospective study was designed to investigate the use of bibliometric analysis to comprehensively overview the current state of research and frontier trends on extracellular vesicle research in kidney-related diseases using visualization tools. Methods: The Web of Science Core Collection (WoSCC) database was searched to identify publications related to extracellular vesicle research in kidney-related diseases since 1999. Citespace, Microsoft Excel 2019, VOSviewer software, the R Bibliometrix Package, and an online platform were used to analyze related research trends to stratify the publication data and collaborations. Results: From 1 January 1999 to 26 June 2022, a total of 1,122 EV-related articles and reviews were published, and 6,486 authors from 1,432 institutions in 63 countries or regions investigated the role of extracellular vesicles in kidney-related diseases. We found that the number of articles on extracellular vesicles in kidney-related diseases increased every year. Dozens of publications were from China and the United States. China had the most number of related publications, in which the Southeast University (China) was the most active institution in all EV-related fields. Liu Bi-cheng published the most papers on extracellular vesicles, while Clotilde Théry had the most number of co-citations. Most papers were published by The International Journal of Molecular Sciences, while Kidney International was the most co-cited journal for extracellular vesicles. We found that exosome-related keywords included exosome, exosm, expression, extracellular vesicle, microRNA, microvesicle, and liquid biopsy, while disease- and pathological-related keywords included biomarker, microRNA, apoptosis, mechanism, systemic lupus erythematosus, EGFR, acute kidney injury, and chronic kidney disease. Acute kidney disease (AKI), CKD, SLE, exosome, liquid biopsy, and extracellular vesicle were the hotspot in extracellular vesicle and kidney-related diseases research. Conclusion: The field of extracellular vesicles in kidney-related disease research is rapidly growing, and its domain is likely to expand in the next decade. The findings from this comprehensive analysis of extracellular vesicles in kidney-related disease research could help investigators to set new diagnostic, therapeutic, and prognostic ideas or methods in kidney-related diseases.
Collapse
Affiliation(s)
- Marady Hun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huai Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Phanna Han
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tharith Vun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Mingyi Zhao, ; Qingnan He,
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Mingyi Zhao, ; Qingnan He,
| |
Collapse
|
16
|
Importance and implications of exosomes in nephrology and urology. Pflugers Arch 2023; 475:153-166. [PMID: 36399151 PMCID: PMC9849294 DOI: 10.1007/s00424-022-02771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Exosomes are extracellular vesicles that are formed by two invaginations of the plasma membrane and can be released by all eukaryotic cells. Because of their bioactive contents, including nucleic acids and proteins, exosomes can activate a variety of functions in their recipient cells. Due to the plethora of physiological and pathophysiological functions, exosomes have received a lot of attention from researchers over the past few years. However, there is still no consensus regarding isolation and characterization protocols of exosomes and their subtypes. This heterogeneity poses a lot of methodical challenges but also offers new clinical opportunities simultaneously. So far, exosome-based research is still mostly limited to preclinical experiments and early-stage clinical trials since the translation of experimental findings remains difficult. Exosomes could potentially play an important role as future diagnostic and prognostic agents and might also be part of the development of new treatment strategies. Therefore, they have previously been investigated in a variety of nephrological and urological conditions such as acute kidney injury or prostate cancer.
Collapse
|
17
|
Perinatal Oxidative Stress and Kidney Health: Bridging the Gap between Animal Models and Clinical Reality. Antioxidants (Basel) 2022; 12:antiox12010013. [PMID: 36670875 PMCID: PMC9855228 DOI: 10.3390/antiox12010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress arises when the generation of reactive oxygen species or reactive nitrogen species overwhelms antioxidant systems. Developing kidneys are vulnerable to oxidative stress, resulting in adult kidney disease. Oxidative stress in fetuses and neonates can be evaluated by assessing various biomarkers. Using animal models, our knowledge of oxidative-stress-related renal programming, the molecular mechanisms underlying renal programming, and preventive interventions to avert kidney disease has grown enormously. This comprehensive review provides an overview of the impact of perinatal oxidative stress on renal programming, the implications of antioxidant strategies on the prevention of kidney disease, and the gap between animal models and clinical reality.
Collapse
|
18
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
19
|
Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022; 13:1006427. [PMID: 36203940 PMCID: PMC9531119 DOI: 10.3389/fphys.2022.1006427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.
Collapse
Affiliation(s)
| | | | | | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Identifying stable reference genes in polyethene glycol precipitated urinary extracellular vesicles for RT-qPCR-based gene expression studies in renal graft dysfunction patients. Transpl Immunol 2022; 75:101715. [PMID: 36122652 DOI: 10.1016/j.trim.2022.101715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary extracellular vesicles (UEVs) hold RNA in their cargo and are potential sources of biomarkers for gene expression studies. The most used technique for gene-expression studies is quantitative polymerase chain reaction (qPCR). It is critical to use stable reference genes (RGs) as internal controls for normalising gene expression data, which aren't currently available for UEVs. METHODS UEVs were precipitated from urine of graft dysfunction patients and healthy controls by Polyethylene glycol, Mn6000 (PEG6K). Vesicular characterisation confirmed the presence of UEVs. Gene expression levels of five commonly used RGs, i.e., Beta-2-Microglobulin (B2M), ribosomal-protein-L13a (RPL13A), Peptidylprolyl-Isomerase-A (PPIA), hydroxymethylbilane synthase (HMBS), and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) were quantified, and their stability was established through the RefFinder. The stability of identified RGs was validated by quantification of Perforin and granzyme B, signature molecules of renal graft dysfunction. RESULTS Urine precipitated with 12% 6 K PEG yielded round and double-membraned UEVs of size ranging from 30 to 100 nm, as confirmed through transmission electron microscopy. Nanoparticle tracking analysis (59 ± 22 nm) and Dynamic-light-scattering (78 ± 56.5 nm) confirmed their size profile. Semi-quantitative Exocheck antibody array demonstrated the presence of EV protein markers in UEV. Using the comparative ΔCт method and RefFinder analysis, B2M (1.6) and RPL13A (1.8) genes emerged as the most stable reference genes. Validation of target gene expression in renal graft dysfunction patients confirmed the efficiency of B2M and RPL13A through significant upregulation compared to other RGs. CONCLUSIONS Our study identified and validated B2M and RPL13A as optimal RGs for mRNA quantification studies in the UEVs of patients with renal graft dysfunction.
Collapse
|
21
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
22
|
Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. Front Pharmacol 2022; 13:957771. [PMID: 36003496 PMCID: PMC9395204 DOI: 10.3389/fphar.2022.957771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A wound occurs when the epidermis and dermis of the skin are damaged internally and externally. The traditional wound healing method is unsatisfactory, which will prolong the treatment time and increase the treatment cost, which brings economic and psychological burdens to patients. Therefore, there is an urgent need for a new method to accelerate wound healing. As a cell-free therapy, exosome derived from stem cell (EdSC) offers new possibilities for wound healing. EdSC is the smallest extracellular vesicle secreted by stem cells with diameters of 30-150 nm and a lipid bilayer structure. Previous studies have found that EdSC can participate in and promote almost all stages of wound healing, including regulating inflammatory cells; improving activation of fibroblasts, keratinocytes, and endothelial cells; and adjusting the ratio of collagen Ⅰ and Ⅲ. We reviewed the relevant knowledge of wounds; summarized the biogenesis, isolation, and identification of exosomes; and clarified the pharmacological role of exosomes in promoting wound healing. This review provides knowledge support for the pharmacological study of exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
23
|
Sun F, Sun Y, Zhu J, Wang X, Ji C, Zhang J, Chen S, Yu Y, Xu W, Qian H. Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Res Ther 2022; 13:293. [PMID: 35841055 PMCID: PMC9284871 DOI: 10.1186/s13287-022-02983-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background As a leading cause of vision decline and severe blindness in adults, diabetic retinopathy (DR) is characterized by the aggravation of retinal oxidative stress and apoptosis in the early stage. Emerging studies reveal that mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) treatment represents a promising cell-free approach to alleviate ocular disorders. However, the repairing effects of MSC-sEV in DR remain largely unclear. This study aimed at exploring the role and the underlying mechanism of MSC-sEV in hyperglycemia-induced retinal degeneration. Methods In vivo, we used streptozotocin (STZ) to establish diabetic rat model, followed by the intravitreal injection of MSC-sEV to determine the curative effect. The cell viability and antioxidant capacity of retinal pigment epithelium (RPE) cells stimulated with high-glucose (HG) medium after MSC-sEV treatment were analyzed in vitro. By detecting the response of cell signaling pathways in MSC-sEV-treated RPE cells, we explored the functional mechanism of MSC-sEV. Mass spectrometry was performed to reveal the bioactive protein which mediated the role of MSC-sEV. Results The intravitreal injection of MSC-sEV elicited antioxidant effects and counteracted retinal apoptosis in STZ-induced DR rat model. MSC-sEV treatment also reduced the oxidative level and enhanced the proliferation ability of RPE cells cultured in HG conditions in vitro. Further studies showed that the increased level of phosphatase and tensin homolog (PTEN) inhibited AKT phosphorylation and nuclear factor erythroid 2-related factor 2 (NRF2) expression in RPE cells stimulated with HG medium, which could be reversed by MSC-sEV intervention. Through mass spectrometry, we illustrated that MSC-sEV-delivered neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) could cause PTEN ubiquitination and degradation, activate AKT signaling and upregulate NRF2 level to prevent DR progress. Moreover, NEDD4 knockdown impaired MSC-sEV-mediated retinal therapeutic effects. Conclusions Our findings indicated that MSC-sEV ameliorated DR through NEDD4-induced regulation on PTEN/AKT/NRF2 signaling pathway, thus revealing the efficiency and mechanism of MSC-sEV-based retinal protection and providing new insights into the treatment of DR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02983-0.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
24
|
Sun Z, Wu J, Bi Q, Wang W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther 2022; 13:297. [PMID: 35841017 PMCID: PMC9284726 DOI: 10.1186/s13287-022-02986-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Human urine-derived stem cells (USCs)-derived exosomes (USC-Exo) could improve kidney ischemia/reperfusion injury (IRI), while the underlying mechanisms of this protective effect remain unclear. Methods Human USCs and USC-Exo were isolated and verified by morphology and specific biomarkers. The effects of USC-Exo on ferroptosis and kidney injury were detected in the IRI-induced acute kidney injury (AKI) model in C57BL/6 mice. The effects of USC-Exo on ferroptosis and lncRNA taurine-upregulated gene 1 (TUG1) were detected in hypoxia/reoxygenation (H/R)-treated human proximal tubular epithelial cells (HK-2). The interaction of SRSF1 and TUG1, ACSL4 was checked via RNA pull-down/RIP and RNA stability assays. The effects of LncRNA TUG1 on SRSF1/ACSL4-mediated ferroptosis were verified in H/R-treated HK-2 cells and the IRI-induced AKI mouse models. Results USC-Exo treatment improved kidney injury and ameliorated ferroptosis in IRI-induced AKI mouse models. USC-Exo were rich in lncRNA TUG1, which suppressed ferroptosis in HK-2 cells exposed to H/R. Mechanistically, lncRNA TUG1 regulates the stability of ACSL4 mRNA by interacting with RNA-binding protein SRSF1. In addition, SRSF1 upregulation or ACSL4 downregulation partially reversed the protective effect of lncRNA TUG1 on ferroptosis in H/R-treated HK-2 cells. Further, ACSL4 upregulation partially reversed TUG1’s repression on kidney injury and ferroptosis in IRI-induced AKI mice. Conclusion Collectively, lncRNA TUG1 carried by USC-Exo regulated ASCL4-mediated ferroptosis by interacting with SRSF1 and then protected IRI-induced AKI. Potentially, USC-Exo rich in lncRNA TUG1 can serve as a promising therapeutic method for IRI-AKI.
Collapse
Affiliation(s)
- Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
25
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|