1
|
Manickasamy MK, Daimary UD, Sajeev A, Abbas M, Alqahtani MS, Abdulhammed A, Kunnumakkara AB. Comprehensive review of leonurine: harnessing its therapeutic potential for chronic diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04087-x. [PMID: 40202674 DOI: 10.1007/s00210-025-04087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Chronic diseases (CD) pose a significant global health challenge, affecting millions of individuals and contributing to substantial morbidity, mortality, and healthcare burden. Therapeutic approaches primarily aim at symptom management through pharmacotherapy, lifestyle modifications, dietary interventions, and regular physical activity. Given the persistent challenge of limited treatment options, scientific research has increasingly focused on exploring natural compounds for their therapeutic potential. Leonurine, a natural compound first isolated from the plant Herba leonuri in 1930, has garnered significant attention due to its extensive pharmacological properties relevant to the treatment of CDs. Extensive studies over the past have revealed that leonurine exhibits anticancer, antidiabetic, anti-inflammatory, and antioxidant activities. These effects are mediated through the modulation of various signaling pathways, including the TGF-β/Smad2, Nrf-2, JNK, NF-κB, BDNF/TrkB/CREB, TLR4/NF-κB/TNF-α, ATF4/CHOP/ASCL4, Akt, HIF-1, SHH/GLI, and mTOR/ERK, whose dysregulation is implicated in the pathogenesis of various CDs. Furthermore, leonurine regulates the levels of multiple pro-inflammatory cytokines, including numerous interleukins and TNF-α, indicating its potential in treating a wide range of chronic conditions, including cardiovascular, neurological, skeletal, and renal diseases. This review seeks to present an in-depth analysis of leonurine's therapeutic potential, emphasizing its promise in the management of various CDs. It also outlines potential avenues for future research to fully harness its pharmacological advantages in treating these conditions.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Ayman Abdulhammed
- Department of Biochemistry and Hormone, King Fahad Central Hospital, 82666, Gizan, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Shi H, Yan Z, Du H, Song K, Gun S. Structural characteristics of polysaccharide isolated from Potentilla anserina L. and its mitigating effect on Zearalenone-induced oxidative stress in Sertoli cells. Int J Biol Macromol 2025; 297:139752. [PMID: 39809396 DOI: 10.1016/j.ijbiomac.2025.139752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The present study aims to characterize the structural features of a natural polysaccharide called PAP-1b extracted from the roots of Potentilla anserina L. and to evaluate its antioxidant activity. Structural characterization indicated that PAP-1b with a molecular weight of 1.22 × 104 Da was primarily composed of glucose and galactose. Methylation and NMR analyses showed that PAP-1b mainly consisted of →4)-α-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→, →3,4)-α-Glcp-(1→ and α-D-Glcp-(1→). Subsequently, we evaluated the antioxidant activity of PAP-1b using zearalenone (ZEA)-induced oxidative stress in porcine Sertoli cells (SCs) as a model. Cellular experiments revealed that PAP-1b significantly attenuated ZEA-induced oxidative stress in SCs via the mitochondrial pathway, as evidenced by the increase in cell viability, the enhancement of antioxidant enzyme activities, and the reduction of reactive oxygen species (ROS), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, as well as stabilization of the mitochondrial membrane potential and the reduction of apoptosis rate. These results suggest that Potentilla anserina L. polysaccharides can serve as a promising natural antioxidant for applications in the field of functional foods.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China.
| |
Collapse
|
3
|
Eldakhakhny BM, Ghoneim FM, Soliman MFM, El-Khair SMA, Elsamanoudy AZ, Almoghrabi YM, Mohie PM, Hassan FE, Elfattah AAA. Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes. Histochem Cell Biol 2025; 163:28. [PMID: 39869176 DOI: 10.1007/s00418-025-02355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin. GDM was induced using streptozotocin (STZ) at 40 mg/kg, and metformin was administered at 200 mg/kg from gestational day (GD) 4 to GD17. Blood glucose and insulin levels were assessed, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was calculated. Placentae were weighed and subjected to histological, immunohistochemical, and molecular analyses, focusing on key angiogenesis markers (VEGF, VEGFR, CD31, KLF2) and oxidative stress indicators (MDA, eNOS). GDM increased placental weight, angiogenesis (elevated VEGF, VEGFR, CD31), and oxidative stress (elevated MDA, eNOS). Histopathological changes included villous edema, membrane rupture, and hemosiderin deposition. Metformin treatment reduced placental weight; normalized VEGF, KLF2, and PlGF expression; and improved placental architecture. Additionally, oxidative stress was significantly reduced in metformin-treated GDM rats. In conclusion, GDM induces placental abnormalities, promoting excessive angiogenesis and oxidative stress, potentially leading to IUGR and other complications. Metformin showed protective effects by reducing placental overgrowth and restoring vascular and oxidative balance. These findings suggest that metformin may play a therapeutic role in improving placental health in GDM pregnancies, warranting further investigation into its long-term effects on fetal development and maternal health.
Collapse
Affiliation(s)
- Basmah M Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma M Ghoneim
- Physiological Sciences Department, MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mona F M Soliman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Salwa M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman Z Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia.
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Yousef M Almoghrabi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Regenerative Medicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Passant M Mohie
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma E Hassan
- Faculty of Medicine, Medical Physiology Department, Kasr Alainy, Giza, 11562, Egypt
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Amany A Abd Elfattah
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| |
Collapse
|
4
|
Wang R, Chen Y, Han J, Ye H, Yang H, Li Q, He Y, Ma B, Zhang J, Ge Y, Wang Z, Sun B, Liu H, Cheng L, Wang Z, Lin G. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure. Nat Commun 2024; 15:10690. [PMID: 39681560 DOI: 10.1038/s41467-024-55295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment. We identify adiponectin receptor 2 (AdipoR2) as a selective target of SCM-198, with the AdipoR2 R335 residue being critical for the binding and signaling of SCM-198-AdipoR2 and AdipoR2 Y274 residue serving as a molecular switch for Ca2+ influx. SCM-198-AdipoR2 binding causes Ca2+ influx and elevates the phosphorylation levels of CaMKII and NOS3 in the AdipoR2-CaM-CaMKII-NOS3 complex identified in this study, rapidly inducing nitric oxide production for liver protection in murine ALF. SCM-198 also protects human ESC-derived liver organoids from APAP/TAA injuries. Thus, selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 is a rapid-acting therapeutic strategy for advanced ALF.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Youwei Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huikang Ye
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyan Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhen He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Huahua Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Shao C, Luo T, Wang S, Li Z, Yu X, Wu Y, Jiang S, Zhou B, Song Q, Song S, Wang X, Song H. Selenium nanoparticles alleviates cadmium induced hepatotoxicity by inhibiting ferroptosis and oxidative stress in vivo and in vitro. CHEMOSPHERE 2024; 364:143004. [PMID: 39097112 DOI: 10.1016/j.chemosphere.2024.143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Cadmium (Cd) is an important environmental toxicant that could cause serious damage to various organs including severe hepatotoxicity in intoxicated animals. Selenium has been reported to possess the protective effects against Cd toxicity, but the specific mechanism is still unclear. The purpose of this study was to explore the effects and mechanism of chitosan coated selenium nanoparticles (CS-SeNPs) against Cd-induced hepatotoxicity in animal and cellular models. ICR mice and rat hepatocyte BRL-3A cells were exposed to cadmium chloride (CdCl2) to evaluate the therapeutic efficiency of CS-SeNPs. Analysis of histopathological images, mitochondrial membrane potential (MMP) and ultramicrostructure, serum liver enzyme activities, ferroptosis-related indicators contents, and further molecular biology experiments were performed to investigate the underlying mechanisms. In vivo experiment results showed that CdCl2 caused significant pathological damage involving significant increase of liver index, contents of tissue MDA and serum ALT and AST, and significant decrease of serum GSH-Px activity. Moreover, CdCl2 exposure upregulated ACSL4 and HO-1 protein levels, downregulated GPX4, TfR1, ferritin protein levels in the liver. Notably, CS-SeNPs increased the expression level of GPX4 and ameliorated CdCl2-induced changes in above-mentioned indicators. In vitro experimental results showed that treatment with CS-SeNPs significantly elevated GSH-Px activity and GPX4 protein level, reversed CdCl2-induced expression of several ferroptosis-related proteins TfR1, FTH1 and HO-1, and repressed ROS production and increased MMP of the cells exposed to CdCl2. Our research indicated that CdCl2 induced hepatocyte injury by inducing ferroptosis, while CS-SeNPs can inhibit ferroptosis and reduce the degree of hepatocyte injury. This study is of great significance for further revealing the mechanism of Cd hepatotoxicity and expanding the clinical application of SeNPs.
Collapse
Affiliation(s)
- Chunyan Shao
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Tongwang Luo
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Shujie Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Zhuoyue Li
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Xiaoqiang Yu
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Ya Wu
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Sheng Jiang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Bin Zhou
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Quanjiang Song
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Shengzhe Song
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Xiaodu Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China
| | - Houhui Song
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, 311300, Zhejiang, China; Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, 311300, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, 311300, Zhejiang, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Liu S, Sun C, Tang H, Peng C, Peng F. Leonurine: a comprehensive review of pharmacokinetics, pharmacodynamics, and toxicology. Front Pharmacol 2024; 15:1428406. [PMID: 39101131 PMCID: PMC11294146 DOI: 10.3389/fphar.2024.1428406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Leonurine is an alkaloid unique to the Leonurus genus, which has many biological activities, such as uterine contraction, anti-inflammation, anti-oxidation, regulation of cell apoptosis, anti-tumor, angiogenesis, anti-platelet aggregation, and inhibition of vasoconstriction. This paper summarizes the extraction methods, synthetic pathways, biosynthetic mechanisms, pharmacokinetic properties, pharmacological effects in various diseases, toxicology, and clinical trials of leonurine. To facilitate a successful transition into clinical application, intensified efforts are required in several key areas: structural modifications of leonurine to optimize its properties, comprehensive pharmacokinetic assessments to understand its behavior within the body, thorough mechanistic studies to elucidate how it works at the molecular level, rigorous safety evaluations and toxicological investigations to ensure patient wellbeing, and meticulously conducted clinical trials to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: Recent evidence and perspectives. Phytother Res 2024; 38:2892-2930. [PMID: 38577989 DOI: 10.1002/ptr.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Atherosclerotic cardiovascular disease remains a preeminent cause of morbidity and mortality globally. The onset of atherosclerosis underpins the emergence of ischemic cardiovascular diseases, including coronary heart disease (CHD). Its pathogenesis entails multiple factors such as inflammation, oxidative stress, apoptosis, vascular endothelial damage, foam cell formation, and platelet activation. Furthermore, it triggers the activation of diverse signaling pathways including Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), NF-E2-related factor 2/antioxidant response element (Nrf2/ARE), the Notch signaling pathway, peroxisome proliferator-activated receptor (PPAR), nucleotide oligo-structural domain-like receptor thermoprotein structural domain-associated protein 3 (NLRP3), silencing information regulator 2-associated enzyme 1 (Sirt1), nuclear transcription factor-κB (NF-κB), Circular RNA (Circ RNA), MicroRNA (mi RNA), Transforming growth factor-β (TGF-β), and Janus kinase-signal transducer and activator of transcription (JAK/STAT). Over recent decades, therapeutic approaches for atherosclerosis have been dominated by the utilization of high-intensity statins to reduce lipid levels, despite significant adverse effects. Consequently, there is a growing interest in the development of safer and more efficacious drugs and therapeutic modalities. Traditional Chinese medicine (TCM) offers a vital strategy for the prevention and treatment of cardiovascular diseases. Numerous studies have detailed the mechanisms through which TCM active ingredients modulate signaling molecules and influence the atherosclerotic process. This article reviews the signaling pathways implicated in the pathogenesis of atherosclerosis and the advancements in research on TCM extracts for prevention and treatment, drawing on original articles from various databases including Google Scholar, Medline, CNKI, Scopus, and Pubmed. The objective is to furnish a reference for the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xulong Zhang
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
9
|
Lee SM, Lee JW, Cho J, Choi S, Kim I, Pack CG, Ha CH. Yeast-derived particulate beta-glucan induced angiogenesis via regulating PI3K/Src and ERK1/2 signaling pathway. Int J Biol Macromol 2024; 269:131884. [PMID: 38685541 DOI: 10.1016/j.ijbiomac.2024.131884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The importance of β-glucan from S. cerevisiae in angiogenesis has not been well studied. We investigated whether β-glucan induces angiogenesis through PI3K/Src and ERK1/2 signaling pathway in HUVECs. We identified that β-glucan induced phosphorylation of PI3K, Src, Akt, eNOS, and ERK1/2. Subsequently, we found that this phosphorylation increased the viability of HUVECs. We also observed that stimulation of β-glucan promoted the activity of MEF2 and MEF2-dependent pro-angiogenic genes, including EGR2, EGR3, KLF2, and KLF4. Additionally, the role of β-glucan in angiogenesis was confirmed using in vitro and ex vivo experiments including cell migration, capillary-like tube formation and mouse aorta ring assays. To determine the effect of β-glucan on the PI3K/Akt/eNOS and ERK1/2 signaling pathway, PI3K inhibitor wortmannin and ERK1/2 inhibitor SCH772984 were used. Through the Matrigel plug assay, we confirmed that β-glucan significantly increased angiogenesis in vivo. Taken together, our study demonstrates that β-glucan promotes angiogenesis via through PI3K and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeongin Cho
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sujin Choi
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Pharmacology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Biochemistry and Molecular Biology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Wang M, Yang L, Sun G, Shao Y, Liu Y, Yang H, Wang Y, Zhang M, Shang Y, Gu X. Assessment of the Effect of Leonurine Hydrochloride in a Mouse Model of PCOS by Gene Expression Profiling. Genes (Basel) 2024; 15:507. [PMID: 38674441 PMCID: PMC11050333 DOI: 10.3390/genes15040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Li Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guojie Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yongbin Shao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yuran Liu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Huiying Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Mengyuan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| |
Collapse
|
11
|
Tu P, Pan Y, Wang L, Li B, Sun X, Liang Z, Liu M, Zhao Z, Wu C, Wang J, Wang Z, Song Y, Zhang Y, Ma Y, Guo Y. CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis. Biomater Res 2024; 28:0006. [PMID: 38439927 PMCID: PMC10911934 DOI: 10.34133/bmr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Bin Li
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xiaoxian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhongqing Liang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education,
Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Acupuncture and Tuina, School of Health and Rehabilitation,
Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zitong Zhao
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Zhifang Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, P.R. China
| | - Yu Song
- Zhangjiagang First People’s Hospital Affiliated to Soochow University, Zhangjiagang 215638, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| |
Collapse
|
12
|
Forouzanfar F, Tabatabaei Z, Emami SA, Ayati Z, Tayarani‐Najaran Z. Protective effects of fruit extract of Rosa canina and quercetin on human umbilical vein endothelial cell injury induced by hydrogen peroxide. Food Sci Nutr 2023; 11:7618-7625. [PMID: 38107098 PMCID: PMC10724588 DOI: 10.1002/fsn3.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The Nastaran plant, with the scientific name of Rosa canina, has been used since ancient times as a plant with medicinal properties. In the present study, human umbilical vein endothelial cells (HUVECs) were used to examine the protective effects of R. canina fruit extract (RCFE) and its flavonoid ingredient (quercetin) against H2O2-induced cell injury. RCFE (1.25-20 μg/mL) and quercetin (1.25-20 μM) were exposed to H2O2-oxidizing agent (1 and 2 mM) and the protective effect was examined on HUVEC cells by Alamar Blue test. The amount of intracellular reactive oxygen species (ROS) was measured by using DCFDA reagent by fluorimetric method. The effects of RCFE and quercetin on cell apoptosis were studied by staining with hypotonic PI solution and flow cytometry. The amount of PARP and survivin involved in the apoptotic process was measured using the western blot analysis. The results of the Alamar Blue test showed that RCFE and quercetin could reduce the toxicity of H2O2. RCFE and quercetin were able to significantly increase cell viability against H2O2. Also, it was found that RCFE and quercetin reduced the production of ROS by H2O2. It was found that RCFE and quercetin reduced the apoptosis and sub-G1 peak area in flow histogram after exposure of cells to H2O2. Based on western blot results, pretreatment with RCFE and quercetin could significantly increase survivin protein after exposure of cells to H2O2. Also, RCFE and quercetin could significantly reduce the amount of cleaved PARP after exposure of cells to H2O2. RCFE and its ingredient (quercetin) can be considered a promising source of phytochemicals in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zeynab Tabatabaei
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Western Sydney UniversityPenrithAustralia
| | - Zahra Tayarani‐Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Zhang Y. The essential role of glutamine metabolism in diabetic cardiomyopathy: A review. Medicine (Baltimore) 2023; 102:e36299. [PMID: 38013301 PMCID: PMC10681453 DOI: 10.1097/md.0000000000036299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition caused by diabetes mellitus and is the leading cause of diabetes mellitus-related mortality. The pathophysiology of DCM involves various processes, such as oxidative stress, inflammation, ferroptosis, and abnormal protein modification. New evidence indicates that dysfunction of glutamine (Gln) metabolism contributes to the pathogenesis of DCM by regulating these pathophysiological mechanisms. Gln is a conditionally essential amino acid in the human body, playing a vital role in maintaining cell function. Although the precise molecular mechanisms of Gln in DCM have yet to be fully elucidated, recent studies have shown that supplementing with Gln improves cardiac function in diabetic hearts. However, excessive Gln may worsen myocardial injury in DCM by generating a large amount of glutamates or increasing O-GlcNacylation. To highlight the potential therapeutic method targeting Gln metabolism and its downstream pathophysiological mechanisms, this article aims to review the regulatory function of Gln in the pathophysiological mechanisms of DCM.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Cardiovascular Medicine, Wuxi No.2 People’s Hospital, Wuxi City, People’s Republic of China
| |
Collapse
|
14
|
Wen W, Yang L, Wang X, Zhang H, Wu F, Xu K, Chen S, Liao Z. Fucoidan promotes angiogenesis and accelerates wound healing through AKT/Nrf2/HIF-1α signalling pathway. Int Wound J 2023; 20:3606-3618. [PMID: 37203309 PMCID: PMC10588368 DOI: 10.1111/iwj.14239] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
After skin injury, wound repair involves a complex process in which angiogenesis plays a crucial role. Previous research has indicated that fucoidan may aid in wound healing; we therefore hypothesised that fucoidan may speed up the process by promoting angiogenesis. In this study, we investigated the potential molecular mechanism underlying fucoidan's ability to accelerate wound healing by promoting angiogenesis. Using a full-cut wound model, we observed that fucoidan significantly intensified wound closure and promoted granulation formation and collagen deposition. Immunofluorescence staining revealed that fucoidan also promoted wound angiogenesis, specifically by accelerating the migration of new blood vessels to the middle area of the wound. Furthermore, fucoidan demonstrated the ability to enhance the proliferation of human umbilical vein endothelial cells (HUVECs) damaged by hydrogen peroxide (H2 O2 ) and to improve the formation of endothelial tubes. Mechanistic studies revealed that fucoidan upregulated the protein levels of the AKT/Nrf2/HIF-1α signalling pathway, which plays a crucial role in angiogenesis. This was further confirmed using the inhibitor LY294002, which reversed the promotion of endothelial tube formation by fucoidan. Overall, our findings suggest that fucoidan can promote angiogenesis via the AKT/Nrf2/HIF-1α signalling pathway and accelerate wound healing.
Collapse
Affiliation(s)
- Wenting Wen
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Xin Wang
- Dpartment of Plastic and Reconstructive Surgery, Hand and MicrosurgeryNingbo NO.6 HospitalZhejiangChina
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research InstituteWenzhou Medical UniversityZhejiangChina
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Xu
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| | - Shaodong Chen
- Department of OrthopaedicsLishui People's HospitalZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental SciencesWenzhou UniversityZhejiangChina
| |
Collapse
|
15
|
Chen T, Chen H, Fu Y, Liu X, Huang H, Li Z, Li S. The eNOS-induced leonurine's new role in improving the survival of random skin flap. Int Immunopharmacol 2023; 124:111037. [PMID: 37827057 DOI: 10.1016/j.intimp.2023.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
In reconstructive and plastic surgery, random skin flaps are commonly utilized to treat skin abnormalities produced by a variety of factors. Flap delay procedure is commonly used to reduce flap necrosis. Due to the limitations of various conditions, the traditional surgical improvement can't effectively alleviate the skin flap necrosis. And leonurine (Leo) has antioxidant and anti-inflammatory effects. In this study, we researched the mechanism underlying the influences of varied Leo concentrations on the survival rate of random skin flaps. Our results showed that after Leo treatment, tissue edema and necrosis of the flap were significantly reduced, while angiogenesis and flap perfusion were significantly increased. Through immunohistochemistry and Western blot, we proved that Leo treatment can upregulate the level of angiogenesis, while Leo treatment significantly reduced the expression levels of oxidative stress, apoptosis and inflammation. As a result, it can significantly improve the overall viability of the random skin flaps through the increase of angiogenesis, restriction of inflammation, attenuation of oxidative stress, and reduction of apoptosis. And this protective function was inhibited by LY294002 (a broad-spectrum inhibitor of PI3K) and L-NAME (NG- nitro-L-arginine methyl ester, a non-selective NOS inhibitor). All in all, Leo is an effective drug that can activate the eNOS via the PI3K/Akt pathway. By encouraging angiogenesis, preventing inflammation, minimizing oxidative stress, and lowering apoptosis, Leo can raise the survival rate of random skin flaps. The recommended concentration of Leo in this study was 30 mg/kg.
Collapse
Affiliation(s)
- Tingxiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Hongyu Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuedong Fu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haosheng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhijie Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Shi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
16
|
Bai FY, Bi SJ, Yue SJ, Xu DQ, Fu RJ, Sun Y, Sun XH, Tang YP. The serum lipidomics reveal the action mechanism of Danggui-Yimucao herbal pair in abortion mice. Biomed Chromatogr 2023; 37:e5717. [PMID: 37580977 DOI: 10.1002/bmc.5717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Medical abortion is a common medical procedure that women choose to terminate an unwanted pregnancy, but it often brings post-abortion complications. Danggui (Angelica sinensis Radix)-Yimucao (Leonuri Herba), as a herbal pair (DY) in clinical prescriptions of traditional Chinese medicine, is often used in the treatment of gynecological diseases and has the traditional functions of tonifying the blood, promoting blood circulation, removing blood stasis and regulating menstruation. In this study, serum lipidomics were adopted to dissect the mechanism of DY in promoting recovery after medical abortion. A total of 152 differential metabolites were screened by lipidomics. All metabolites were imported into MetaboAnalyst for analysis, and finally key metabolic pathways such as glycerophospholipid metabolism, linoleic acid metabolism and pentose and glucuronate interconversions were enriched. Our results indicated that metabolic disorders in abortion mice were alleviated by DY through glycerophospholipid metabolism, while prostaglandin and leukotriene metabolites might be the key targets of DY to promote post-abortion recovery.
Collapse
Affiliation(s)
- Feng-Yun Bai
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ying Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Xiao-Hu Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
17
|
Xu TY, Qing SL, Zhao JX, Song J, Miao ZW, Li JX, Yang FY, Zhao HY, Zheng SL, Li ZY, Wang SN, Miao CY. Metrnl deficiency retards skin wound healing in mice by inhibiting AKT/eNOS signaling and angiogenesis. Acta Pharmacol Sin 2023; 44:1790-1800. [PMID: 37142683 PMCID: PMC10462726 DOI: 10.1038/s41401-023-01090-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl-/-) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/-) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 μM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Sheng-Li Qing
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jing-Xin Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jia-Xin Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Feng-Yan Yang
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Huan-Yu Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Othman NS, Aminuddin A, Zainal Abidin S, Syafruddin SE, Ahmad MF, Mohd Mokhtar N, Kumar J, Hamid AA, Ugusman A. Profiling of Differentially Expressed MicroRNAs in Human Umbilical Vein Endothelial Cells Exposed to Hyperglycemia via RNA Sequencing. Life (Basel) 2023; 13:1296. [PMID: 37374078 DOI: 10.3390/life13061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
19
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
20
|
m6A-Related Angiogenic Genes to Construct Prognostic Signature, Reveal Immune and Oxidative Stress Landscape, and Screen Drugs in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8301888. [PMID: 36246403 PMCID: PMC9554665 DOI: 10.1155/2022/8301888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Background. m6A modification plays a key role in the development of hepatocellular carcinoma (HCC). Angiogenesis-related genes (ARGs) are increasingly being used to define signatures predicting patient prognosis. The correlations between m6A-related ARGs (mARGs), clinical outcomes, and the immune and oxidative stress landscape are unclear. Methods. Univariate Cox regression analysis of 24 mARGs yielded 13 prognostic genes, which were then analyzed for their enriched functions and pathways. After LASSO regression analysis, a prognostic signature was constructed and its reliability validated. Patients were grouped by risk using the signature score, and then the clinical prognosis, the immune landscape, and the oxidative stress landscape between the two groups were analyzed. Drug sensitivity analysis was performed to identify potentially efficient therapeutic agents. Results. Thirteen prognosis-related mARGs consistently clustered patients with HCC into four groups with significantly different prognosis. Four mARGs (EGF, ITGA5, ITGAV, and PLG) were used to construct a prognostic signature and define risk groups. Among them, EGF, ITGA5, and ITGAV, were defined as prognostic risk factors, while PLG was defined as a prognostic protective factor. Compared to low-risk patients, HCC patients in the high-risk group had a poorer prognosis and showed significant differences in clinical characteristics, enriched pathways, tumor stemness, and tumor microenvironment. The drug sensitivity of oxaliplatin and LDK-378 negatively correlated with ITGAV expression. Ten drugs had lower IC50s in the high-risk group, indicating better antitumor efficacy than in the low-risk group, with epothilone B having the lowest IC50 value. Conclusions. A prognostic model consisting of mARGs can be used to predict the prognosis of HCC patients. The risk grouping of our model can be used to reveal differences in the tumor immune microenvironment of patients with HCC. Further in-depth study may provide new targets for future treatment.
Collapse
|
21
|
Wang B, Sun T, Sun L, Li L, Wan H, Ding Z, Ye X. Amygdalin attenuates PM2.5-induced human umbilical vein endothelial cell injury via the TLR4/NF-κB and Bcl-2/Bax signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1476-1485. [PMID: 36178164 PMCID: PMC9828314 DOI: 10.3724/abbs.2022136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Mounting evidence supports that long-term exposure to fine particle pollutants (PM2.5) is closely implicated in cardiovascular diseases, especially atherosclerosis. Amygdalin is reported to attenuate external stimuli-induced cardiovascular diseases. However, the underlying mechanisms are still not understood. In this study, we aim to explore the protective effects of amygdalin on PM2.5-induced human umbilical vein endothelial cell (HUVEC) injury and unravel the specific mechanisms by MTT, DCFH-DA, biochemical, immunofluorescence, ELISA, RT-qPCR, flow cytometry, TUNEL and western blot analysis. The results reveal that amygdalin reverses PM2.5-induced cytotoxicity and attenuates intracellular ROS production. Moreover, amygdalin increases the levels of SOD and GSH and alleviates the MDA content. Additionally, amygdalin causes a decline of IL-6, IL-1β, TNF-α and COX-2 levels. Moreover, amygdalin inhibits NF-κB p50 and TLR4 protein expressions and NF-κB p65 nuclear translocation. Concomitantly, a decline of phospho-NF-κB p65/NF-κB p65 and phospho-IκB-α/IκB-α is detected. Meanwhile, amygdalin pretreatment reduces HUVEC apoptosis. In addition, amygdalin triggers an upregulation of Bcl-2 and a downregulation of Bax after stimulation with PM2.5. Collectively, these results suggest that amygdalin suppresses PM2.5-induced HUVEC injury by regulating the TLR4/NF-κB and Bcl-2/Bax signaling pathways, indicating that amygdalin may be a novel target for atherosclerosis treatments.
Collapse
Affiliation(s)
- Bixu Wang
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Tong Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Ling Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Lan Li
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Haitong Wan
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Zhishan Ding
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Xiaoqing Ye
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
22
|
Shi XD, Zhang JX, Hu XD, Zhuang T, Lu N, Ruan CC. Leonurine Attenuates Obesity-Related Vascular Dysfunction and Inflammation. Antioxidants (Basel) 2022; 11:antiox11071338. [PMID: 35883829 PMCID: PMC9311755 DOI: 10.3390/antiox11071338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress in adipose tissue is a crucial pathogenic mechanism of obesity-associated cardiovascular diseases. Chronic low-grade inflammation caused by obesity increases ROS production and dysregulation of adipocytokines. Leonurine (LEO) is an active alkaloid extracted from Herba Leonuri and plays a protective role in the cardiovascular system. The present study tested whether LEO alleviates inflammation and oxidative stress, and improves vascular function in an obese mouse model. Here, we found that obesity leads to inflammation and oxidative stress in epididymal white adipose tissue (EWAT), as well as vascular dysfunction. LEO significantly improved inflammation and oxidative stress both in vivo and in vitro. Obesity-induced vascular dysfunction was also improved by LEO as evidenced by the ameliorated vascular tone and decreased mesenteric artery fibrosis. Using mass spectrometry, we identified YTHDF1 as the direct target of LEO. Taken together, we demonstrated that LEO improves oxidative stress and vascular remodeling induced by obesity and targets YTHDF1, raising the possibility of LEO treating other obesity-related metabolic syndromes.
Collapse
Affiliation(s)
- Xiao-Dong Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Jia-Xin Zhang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Xi-De Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Ning Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| |
Collapse
|
23
|
Liao L, Zhou M, Wang J, Xue X, Deng Y, Zhao X, Peng C, Li Y. Identification of the Antithrombotic Mechanism of Leonurine in Adrenalin Hydrochloride-Induced Thrombosis in Zebrafish via Regulating Oxidative Stress and Coagulation Cascade. Front Pharmacol 2021; 12:742954. [PMID: 34803688 PMCID: PMC8600049 DOI: 10.3389/fphar.2021.742954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Thrombosis is a general pathological phenomenon during severe disturbances to homeostasis, which plays an essential role in cardiovascular and cerebrovascular diseases. Leonurine (LEO), isolated from Leonurus japonicus Houtt, showes a crucial role in anticoagulation and vasodilatation. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. Therefore, the antithrombotic effect of LEO was investigated in this study. Hematoxylin-Eosin staining was used to detect the thrombosis of zebrafish tail. Fluorescence probe was used to detect the reactive oxygen species. The biochemical indexes related to oxidative stress (lactate dehydrogenase, malondialdehyde, superoxide dismutase and glutathione) and vasodilator factor (endothelin-1 and nitric oxide) were analyzed by specific commercial assay kits. Besides, we detected the expression of related genes (fga, fgb, fgg, pkcα, pkcβ, vwf, f2) and proteins (PI3K, phospho-PI3K, Akt, phospho-Akt, ERK, phospho-ERK FIB) related to the anticoagulation and fibrinolytic system by quantitative reverse transcription and western blot. Beyond that, metabolomic analyses were carried out to identify the expressions of metabolites associated with the anti-thrombosis mechanism of LEO. Our in vivo experimental results showed that LEO could improve the oxidative stress injury, abnormal platelet aggregation and coagulation dysfunction induced by adrenalin hydrochloride. Moreover, LEO restored the modulation of amino acids and inositol metabolites which are reported to alleviate the thrombus formation. Collectively, LEO attenuates adrenalin hydrochloride-induced thrombosis partly via modulating oxidative stress, coagulation cascade and platelet activation and amino acid and inositol metabolites.
Collapse
Affiliation(s)
- Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|