1
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
5
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
6
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024; 10:1052-1071. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Zhang Y, Guo N, Zhu H, Liu M, Hao J, Wang S, Guo T, Mamun MAA, Pang J, Liu Q, Zheng Y, Liu H, Si P, Zhao L. Unlocking the dual role of LSD1 in tumor immunity: innate and adaptive pathways. Theranostics 2024; 14:7054-7071. [PMID: 39629133 PMCID: PMC11610140 DOI: 10.7150/thno.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
The roles of innate and adaptive immunity are crucial in both the development of cancer and its response to treatment. Numerous studies have demonstrated that histone lysine-specific demethylase 1 (LSD1) is overexpressed in various cancers. Elevated levels of LSD1 intricately modulate immune checkpoints, the function of immune cells, and the expression of immunomodulators, impacting both innate and adaptive immunity. Moreover, compelling evidence suggests that inhibiting LSD1 enhances tumor immunity, suppresses tumor growth, and improves the effectiveness of immunotherapy. However, a comprehensive classification of LSD1's role in both innate and adaptive immunity is lacking. In this review, we outline the role of LSD1 in tumor immunity in terms of both innate and adaptive immunity, summarizing the mechanisms associated with LSD1-mediated tumor immunity and its potential regulatory capacity in tumor immune escape. Finally, we summarize the research status of LSD1 inhibitors in tumor immunotherapy, which be valuable for promoting the development of effective LSD1-targeted agents used as combination immunotherapy drugs.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
- XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haoyi Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengyang Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jiahui Hao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shoukai Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University; Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan 450003, China
| | - Ting Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - MAA Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Jingru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University; Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan 450003, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
- XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Pilei Si
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University; Henan Provincial Engineering Research Center of Breast Cancer Precise Prevention and Treatment, Zhengzhou, Henan 450003, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; School of Pharmaceutical Sciences; Academy of Medical Sciences; Tianjian Laboratory of Advanced Biomedical Sciences; Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Tong LW, Hu YS, Yu SJ, Li CL, Shao JW. Current application and future perspective of CRISPR/cas9 gene editing system mediated immune checkpoint for liver cancer treatment. NANOTECHNOLOGY 2024; 35:402002. [PMID: 38964289 DOI: 10.1088/1361-6528/ad5f33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer.
Collapse
Affiliation(s)
- Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shi-Jing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
12
|
Muliawan GK, Lee TKW. The roles of cancer stem cell-derived secretory factors in shaping the immunosuppressive tumor microenvironment in hepatocellular carcinoma. Front Immunol 2024; 15:1400112. [PMID: 38868769 PMCID: PMC11167126 DOI: 10.3389/fimmu.2024.1400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and has a poor prognosis. Although immune checkpoint inhibitors have entered a new era of HCC treatment, their response rates are modest, which can be attributed to the immunosuppressive tumor microenvironment within HCC tumors. Accumulating evidence has shown that tumor growth is fueled by cancer stem cells (CSCs), which contribute to therapeutic resistance to the above treatments. Given that CSCs can regulate cellular and physical factors within the tumor niche by secreting various soluble factors in a paracrine manner, there have been increasing efforts toward understanding the roles of CSC-derived secretory factors in creating an immunosuppressive tumor microenvironment. In this review, we provide an update on how these secretory factors, including growth factors, cytokines, chemokines, and exosomes, contribute to the immunosuppressive TME, which leads to immune resistance. In addition, we present current therapeutic strategies targeting CSC-derived secretory factors and describe future perspectives. In summary, a better understanding of CSC biology in the TME provides a rational therapeutic basis for combination therapy with ICIs for effective HCC treatment.
Collapse
Affiliation(s)
- Gregory Kenneth Muliawan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Mamun MAA, Zhang Y, Zhao JY, Shen DD, Guo T, Zheng YC, Zhao LJ, Liu HM. LSD1: an emerging face in altering the tumor microenvironment and enhancing immune checkpoint therapy. J Biomed Sci 2023; 30:60. [PMID: 37525190 PMCID: PMC10391765 DOI: 10.1186/s12929-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulation of various cells in the tumor microenvironment (TME) causes immunosuppressive functions and aggressive tumor growth. In combination with immune checkpoint blockade (ICB), epigenetic modification-targeted drugs are emerging as attractive cancer treatments. Lysine-specific demethylase 1 (LSD1) is a protein that modifies histone and non-histone proteins and is known to influence a wide variety of physiological processes. The dysfunction of LSD1 contributes to poor prognosis, poor patient survival, drug resistance, immunosuppression, etc., making it a potential epigenetic target for cancer therapy. This review examines how LSD1 modulates different cell behavior in TME and emphasizes the potential use of LSD1 inhibitors in combination with ICB therapy for future cancer research studies.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jin-Yuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Johnson JD, Alejo S, Jayamohan S, Sareddy GR. Lysine-specific demethylase 1 as a therapeutic cancer target: observations from preclinical study. Expert Opin Ther Targets 2023; 27:1177-1188. [PMID: 37997756 PMCID: PMC10872912 DOI: 10.1080/14728222.2023.2288277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Lysine-specific histone demethylase 1A (KDM1A/LSD1) has emerged as an important therapeutic target in various cancer types. LSD1 regulates a wide range of biological processes that influence cancer development, progression, metastasis, and therapy resistance. However, recent studies have revealed novel aspects of LSD1 biology, shedding light on its involvement in immunogenicity, antitumor immunity, and DNA damage response. These emerging findings have the potential to be leveraged in the design of effective LSD1-targeted therapies. AREAS COVERED This paper discusses the latest developments in the field of LSD1 biology, focusing on its role in regulating immunogenicity, antitumor immunity, and DNA damage response mechanisms. The newfound understanding of these mechanisms has opened possibilities for the development of novel LSD1-targeted therapies for cancer treatment. Additionally, the paper provides an overview of LSD1 inhibitor-based combination therapies for the treatment of cancer. EXPERT OPINION Exploiting LSD1 role in antitumor immunity and DNA damage response provides cues to not only understand the LSD1-resistant mechanisms but also rationally design new combination therapies that are more efficient and less toxic than monotherapy. The exploration of LSD1 biology and the development of LSD1-targeted therapies hold great promise for the future of cancer treatment.
Collapse
Affiliation(s)
- Jessica D. Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
17
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
18
|
Ji C, Chen L, Yuan M, Xie W, Sheng X, Yin Q. KDM1A drives hepatoblastoma progression by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription. Tissue Cell 2023; 81:101989. [PMID: 36642006 DOI: 10.1016/j.tice.2022.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
This study is to explore the mechanism of KDM1A-regulated hepatoblastoma (HB) development. Cancerous and paracancer tissues of 30 HB patients were collected for detection of KDM1A and DKK3 expression. HuH-6 and HepG2 cells were subjected to assays of cellular activities after treatment with sh-KDM1A, sh-DKK3, and/or XAV-939 (an inhibitor of the Wnt/β-catenin pathway). Chromatin immunoprecipitation was used to determine the interaction of KDM1A with DKK3. Nude mice were injected with HuH-6 cells in which KDM1A was knocked down. KDM1A was highly expressed and DKK3 was lowly expressed in HB patients. Knockdown of KDM1A reduced the proliferative and invasive capabilities of HepG2 and HuH-6 cells and accelerated the cell apoptosis; these influences were nullified by knockdown of DKK3. KDM1A inhibited DKK3 transcription by reducing H3 methylation. XAV-939 treatment inhibited the development of HepG2 and HuH-6 cells in which KDM1A and DKK3 were both knocked down. Knockdown of KDM1A reduced the tumor mass, inactivated the Wnt/β-catenin signaling, and increased the expression of DKK3 in nude mice. KDM1A stimulates HB development by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription.
Collapse
Affiliation(s)
- Chunyi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Miaoxian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Weixin Xie
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Xinyi Sheng
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, Hunan 410007, PR China.
| |
Collapse
|
19
|
Yu L, Ji T, Liao W, Xu Y, Fang Y, Zhu Q, Nie J, Yang D. H4-methylation regulators mediated epitranscriptome patterns and tumor microenvironment infiltration characterization in hepatocellular carcinoma. Clin Epigenetics 2023; 15:43. [PMID: 36932439 PMCID: PMC10024435 DOI: 10.1186/s13148-023-01460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Epigenetic modifications are involved in the remodeling of the tumor microenvironment (TME) and the regulation of immune response. Nonetheless, the role of histone H4 methylation (H4M) modification in the TME and immune regulation of hepatocellular carcinoma (HCC) is unknown. As a result, the purpose of this research is to discover H4M-mediated modification patterns and their effects on TME and immunologic characteristics in HCC. A total of 2305 samples were enrolled from 13 different cohorts. With the help of consensus clustering analysis, three distinct H4M modification patterns were identified. The cell-infiltrating characteristics of TME under these three patterns were highly consistent with their enriched biological processes and clinical outcome. The H4Mscore was then created using principal component analysis algorithm to quantify the H4M modification pattern of each individual tumor and was systematically correlated with representative tumor characteristics. We found that analyzing H4M modification patterns within individual tumors could predict TME infiltration, homologous recombination deficiency (HRD), intratumor heterogeneity, proliferation activity, mRNA stemness index, and prognosis. The group with a low H4Mscore had an inflamed TME phenotype and a better immunotherapy response, as well as a better survival outcome. The prognostic value of H4Mscore was validated in three internal cohorts and five external cohorts, respectively. In external immunotherapy cohorts, the low H4Mscore was also linked to an enhanced response to anti-PD-1/L1 and anti-CTLA4 immunotherapy and a better prognosis. This study revealed that H4M modification played an important role in forming TME diversity and complexity. Evaluating the H4M modification pattern of individual tumors could help us learn more about TME and develop more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Linyuan Yu
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Tao Ji
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Wei Liao
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Yuyan Xu
- grid.284723.80000 0000 8877 7471General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province China
| | - Yinghao Fang
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Qing Zhu
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Jianmin Nie
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Dinghua Yang
- grid.416466.70000 0004 1757 959XUnit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| |
Collapse
|
20
|
Akce M, El-Rayes BF, Wajapeyee N. Combinatorial targeting of immune checkpoints and epigenetic regulators for hepatocellular carcinoma therapy. Oncogene 2023; 42:1051-1057. [PMID: 36854723 DOI: 10.1038/s41388-023-02646-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The five-year survival rate of patients with unresectable HCC is about 12%. The liver tumor microenvironment (TME) is immune tolerant and heavily infiltrated with immunosuppressive cells. Immune checkpoint inhibitors (ICIs), in some cases, can reverse tumor cell immune evasion and enhance antitumor immunity. Rapidly evolving ICIs have expanded systemic treatment options in advanced HCC; however, single-agent ICIs achieve a limited 15-20% objective response rate in advanced HCC. Therefore, other combinatorial approaches that amplify the efficacy of ICIs or suppress other tumor-promoting pathways may enhance clinical outcomes. Epigenetic alterations (e.g., changes in chromatin states and non-genetic DNA modifications) have been shown to drive HCC tumor growth and progression as well as their response to ICIs. Recent studies have combined ICIs and epigenetic inhibitors in preclinical and clinical settings to contain several cancers, including HCC. In this review, we outline current ICI treatments for HCC, the mechanism behind their successes and failures, and how ICIs can be combined with distinct epigenetic inhibitors to increase the durability of ICIs and potentially treat "immune-cold" HCC.
Collapse
Affiliation(s)
- Mehmet Akce
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center of University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, 35233, USA.
| |
Collapse
|
21
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
22
|
Lu C, Cai Y, Liu W, Peng B, Liang Q, Yan Y, Liang D, Xu Z. Aberrant expression of KDM1A inhibits ferroptosis of lung cancer cells through up-regulating c-Myc. Sci Rep 2022; 12:19168. [PMID: 36357457 PMCID: PMC9649633 DOI: 10.1038/s41598-022-23699-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Ferroptosis is a cell death process caused by metabolic dysfunction with the feature of aberrant iron accumulation. Emerging studies have identified that ferroptosis is an important biological function involving in the tumorigenesis, and targeting ferroptosis could provide promising therapeutic targets for lung cancer. However, such therapeutic strategies show limited therapeutic effect owing to drug resistance and other unknown underlying mechanisms. In this study, lysine-specific demethylase 1 (LSD1/KDM1A) was found to be significantly upregulated in lung cancer cells and tissues. The patients with KDM1A downregulation displayed the good prognosis. Using gene set enrichment analysis (GSEA), we demonstrated that KDM1A-associated genes might participate in the regulation of cell ferroptosis and Myc signaling in lung cancer. Knockdown of KDM1A inhibited the level of c-Myc and increased the concentration of malondialdehyde (MDA) and irons in human lung cancer cells H1299 and A549. Downregulation of c-Myc could facilitate KDM1A knockdown-mediated ferroptosis. Our study has elucidated the effect of KDM1A/c-Myc regulatory axis in the ferroptosis resistance of lung cancer cells.
Collapse
Affiliation(s)
- Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Pallozzi M, Di Tommaso N, Maccauro V, Santopaolo F, Gasbarrini A, Ponziani FR, Pompili M. Non-Invasive Biomarkers for Immunotherapy in Patients with Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Cancers (Basel) 2022; 14:cancers14194631. [PMID: 36230554 PMCID: PMC9559710 DOI: 10.3390/cancers14194631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The search for non-invasive biomarkers is a hot topic in modern oncology, since a tissue biopsy has significant limitations in terms of cost and invasiveness. The treatment perspectives have been significantly improved after the approval of immunotherapy for patients with hepatocellular carcinoma; therefore, the quick identification of responders is crucial to define the best therapeutic strategy. In this review, the current knowledge on the available non-invasive biomarkers of the response to immunotherapy is described. Abstract The treatment perspectives of advanced hepatocellular carcinoma (HCC) have deeply changed after the introduction of immunotherapy. The results in responders show improved survival compared with Sorafenib, but only one-third of patients achieve a significant benefit from treatment. As the tumor microenvironment exerts a central role in shaping the response to immunotherapy, the future goal of HCC treatment should be to identify a proxy of the hepatic tissue condition that is easy to use in clinical practice. Therefore, the search for biomarkers that are accurate in predicting prognosis will be the hot topic in the therapeutic management of HCC in the near future. Understanding the mechanisms of resistance to immunotherapy may expand the patient population that will benefit from it, and help researchers to find new combination regimens to improve patients’ outcomes. In this review, we describe the current knowledge on the prognostic non-invasive biomarkers related to treatment with immune checkpoint inhibitors, focusing on serological markers and gut microbiota.
Collapse
Affiliation(s)
- Maria Pallozzi
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Natalia Di Tommaso
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Maccauro
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (F.R.P.); (M.P.)
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (F.R.P.); (M.P.)
| |
Collapse
|
24
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
25
|
Guo J, Fang X, Zhou J, Zeng L, Yu B. Identification and validation of miR-509-5p as a prognosticator for favorable survival in osteosarcoma. Medicine (Baltimore) 2022; 101:e29705. [PMID: 35984199 PMCID: PMC9387993 DOI: 10.1097/md.0000000000029705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer diagnosed in children. This study aims to explore the aberrantly expressed miRNAs that are prognostically related and to provide potential biomarkers for the prognosis prediction of OS. The miRNA profiles of OS and adjacent normal controls were obtained from 2 gene expression omnibus cohorts (i.e., GSE28423 and GSE65071). GSE39058 and Therapeutically Applicable Research to Generate Effective Treatments cohorts, which respectively contained 91 and 85 OS samples with both miRNA expression and clinical characteristics, were employed to perform survival and multivariate Cox regression analyses. Lymphocyte infiltration abundance between distinct subgroups was evaluated with the CIBERSORT algorithm and a previously proposed method. Gene set enrichment analysis was used to infer the dysregulated signaling pathways within each subgroup. Of the 31 differentially expressed miRNAs, miR-509-5p (miR-509) was the most significantly prognostic miRNA in the GSE39058 cohort and its high expression was associated with the better OS prognosis (Log-rank P = .008). In the Therapeutically Applicable Research to Generate Effective Treatments validation cohort, the association of high miR-509 expression with favorable survival was also observed (Log-rank P = .014). The results remained still significant even adjusted for clinical confounding factors in multivariate Cox regression models. Further immunology analyses demonstrated that elevated infiltration of lymphocytes, decreased infiltration of immune-suppressive cells, and immune response-related pathways were significantly enriched in patients with miR-509 high expression. Our study suggests that miR-509 may serve as a potential biomarker for evaluating OS prognosis and provides clues for tailoring OS immunotherapy strategies.
Collapse
Affiliation(s)
- Jiekun Guo
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Xiang Fang
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Jun Zhou
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - LingGuo Zeng
- Department of Orthopedic Surgery, Yuebei People’s Hospital, Shantou University, Guangdong, China
| | - Bin Yu
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bin Yu, Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (e-mail: )
| |
Collapse
|
26
|
Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol 2022; 11:44. [PMID: 35907881 PMCID: PMC9338491 DOI: 10.1186/s40164-022-00297-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2023] Open
Abstract
The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuandi Liu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Xibao Yu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Ling Xu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Yangqiu Li
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| | - Chengwu Zeng
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| |
Collapse
|
27
|
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Front Immunol 2022; 13:848327. [PMID: 35300341 PMCID: PMC8920996 DOI: 10.3389/fimmu.2022.848327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology implements precise programming of the human genome through RNA guidance. At present, it has been widely used in the construction of animal tumor models, the study of drug resistance regulation mechanisms, epigenetic control and innovation in cancer treatment. Tumor immunotherapy restores the normal antitumor immune response by restarting and maintaining the tumor-immune cycle. CRISPR/Cas9 technology has occupied a central position in further optimizing anti-programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the recent progress in exploring the regulatory mechanism of tumor immune PD-1 and programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical application in different cancer types. In addition, CRISPR genome-wide screening identifies new drug targets and biomarkers to identify potentially sensitive populations for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential and challenges of CRISPR/Cas9 for future clinical applications are discussed.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|